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Abstract: Highly porous carbon black and micro/mesoporous activated carbon were impregnated
with cobalt and nickel nitrates, followed by heat treatment at 850 ◦C in nitrogen. Detailed information
about chemistry and porosity was obtained using XPS, XRD, TEM/EDX, and nitrogen adsorption.
The samples were used as ORR catalysts. Marked differences in the performance were found
depending on the type of carbon. Differences in surface chemistry and porosity affected the chemistry
of the deposited metal species that governed the O2 reduction efficiency along with other features
of the carbon supports, including electrical conductivity and porosity. While dissociating surface
acidic groups promoted the high dispersion of small metal species, carbon reactivity with oxygen
and acidity limited the formation of the most catalytically active Co3O4. Formation of Co3O4 on the
highly conductive carbon black resulted in an excellent performance with four electrons transferred
and a current density higher than that on Pt/C. When Co3O4 was not formed in a sufficient quantity,
nickel metal nanoparticles promoted ORR on the Ni/Co-containing samples. The activity was also
significantly enhanced by small pores that increased the ORR efficiency by strongly adsorbing oxygen,
which led to its bond splitting, followed by the acceptance of four electrons.

Keywords: porous carbons; Ni- and Co-based catalytic centers; oxygen reduction; surface chemistry;
number of electrons transferred

1. Introduction

One of the factors governing the performance of fuel cells is the efficiency of an
oxygen reduction reaction, which is determined by the number of electrons transferred
as close as possible to four, an onset potential in the most positive range, small Tafel plot
slope, and a high current density. In the specific catalytic reactions of oxygen reduction
in either acidic or alkane electrolytes H2O or OH- are formed, respectively. So far, the
most efficient catalysts have been those based on noble metals, and platinum dispersed
on various conductive forms of carbons is considered as the benchmark of the catalytic
performance [1]. However, high costs of this kind of catalysts directed a search for efficient
fuel cell electrocatalysts to transition metals [2,3], and even to nonmetal catalysts [4–6].
While the latter are mainly based on carbon materials modified with various heteroatoms
including nitrogen, sulfur phosphorus, and boron, the former approach focuses on the
catalytic role of Fe, Ni, Co, or Cu species [2,3]. The emphasis is usually on a catalyst chemical
and physical form and on its dispersion on a carbon support. Recently, research efforts have
been focused on so-called single atom catalysts [7], SAC, where an atomically dispersed
metal is chemically coordinated with nitrogen atoms embedded into the carbon matrix [8].
These materials allow the most efficient utilization of catalytic sites and a provide high
stability [9]. For formation of SAC the specificity of a carbon support is a very important
feature. Its significance is also demonstrated in a separate line of research dedicated
exclusively to carbon catalysts, whose performance has been recently summarized in
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various reviews [4,5,10–16]. The advantages of these materials in replacing Pt/C are in a
sufficient conductivity and in the relative easiness of the modulation of their electronic
structure by an introduction of heteroatoms [17–29]. A special emphasis has been placed
on nitrogen [19,20], either alone or in combination with sulfur [22,23,27], and oxygen [28],
which, by providing basic and positively charged sites to the carbon surface, attracts oxygen
as a first step of its reduction process. Another important heteroatom for ORR is sulfur [21],
which has been found as advancing the reduction process when located in the proximity of
nitrogen-containing centers [29].

Another catalytically important feature of the carbon materials is their porosity, which
has recently been indicated as advancing the oxygen reduction process [10,30–41]. This
includes the effect of mesopores as mass transport pores [10] and that of micropores as
pseudocatalytic centers contributing to reduction of oxygen through providing a strong
adsorption potential [34–41]. Moreover, the higher porosity of carbon is often directly
linked to the higher structural defects which were also identified as the catalytic ORR
centers [16,42,43].

Carbon blacks are a commodity of a highly conductive nature and they have been
commonly used as supports for a high dispersion of noble metal-based catalysts [44,45].
Nevertheless, for this purpose rather nonporous carbon blacks, such as Vulcan, have been
explored over their highly porous counterparts [46,47]. However, there are reports on
carbon blacks’ direct usage as transition metal catalyst supports [47–52] and catalysts
themselves [41], especially those modified with nitrogen [53,54]. Even though there are
numerous reports on the catalytic effects of transition metals on oxygen reduction on
various carbon materials [2,8], carbon blacks deserve special attention not only owing
to their high electrical conductivity, but also due to the possibility of utilization of their
specific porosity to advance ORR [40,41]. Often that porosity effect might have been
overseen when the emphasis of reports was on a direct influence of metal catalysts. Nickel
and cobalt are considered as the most suitable catalysts for ORR, and since the works of
Bagotzky et al. [55,56], many researchers have reported their positive influence on this
reaction; examples are references [48,49,52,55–70]. It has been proposed that either single
metal atoms coordinated with nitrogen embedded to the carbon matrix [57,58,60,61], metal
nanoparticles [59], and oxides [64,66], especially Co3O4 [52,57] and oxyhydroxide [64], can
work as the ORR catalysts. On the other hand, there are also reports claiming that these
metals work as the ORR catalysts only when coordinated with nitrogen [68].

Recent works on various forms of carbon materials, including carbon blacks, activated
carbons, carbon nanotubes, or carbon aerogels modified with cobalt and nickel as ORR
catalysts have reported that the number of electrons transferred in alkaline electrolytes can
reach four [60]; the onset potential can even be more positive than that on Pt/C [57,58], and
the kinetic current as high as 8.1 mA/cm2 [60]. When a catalytic action of both metals is
considered, cobalt usually outperforms nickel [67] and NiCo alloys, alone or integrated
with their oxides, and have shown an exceptional catalytic activity [69,70].

Published reports on Co and/or Ni-containing carbons as the ORR or bifunctional
catalysts mainly link the catalytic activity to the content of metal on the surface and its
dispersion, presence of nitrogen providing the coordination sites, and form/chemistry
of Co and Ni species. Some of them analyze the effects of catalyst precursors [59]. The
most common catalyst supports are porous carbons (either activated ones or their synthetic
counterparts) and carbon blacks. While the former, doped with N or undoped, provide
a developed surface area promoting the high dispersion of catalytic sites, the high con-
ductivity of the latter is considered as an advantage, which also directed these materials
to be used as the Pt catalysts supports. What is often not considered as an advantage
of carbon blacks is the high surface area of some specific commercial products, and an
example is Black Pearl 2000. Even though Black Pearl carbon blacks have been studied as
ORR catalysts and supports with some conflicting results [41,44,68,71], and recently the
role of oxygen adsorption in pores of the Black Pearl carbon family has been indicated
as affecting the efficiency of ORR [40,41], in our opinion, in the results published so far
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there has not been enough emphasis on researching the role of the carbon black surface in
promoting the activity of the Co/Ni catalysts for ORR and in providing synergistic activity.
Our inspiration for pursuing this angle of research is in our recent results on the excellent
performance of this commodity, either unmodified [41] or modified with nitrogen [72], in
the oxygen reduction process. To provide deeper insight into this perspective, we analyzed
Co and/or Ni modified Black Pearl 2000 catalysts in parallel with those based on com-
mercial wood-based activated carbon BAX-1500 of a highly developed surface area in a
micro/mesoporous structure. The results discussed threw new light not only on the nature
of active sites affecting ORR, but also on the role of the carbon support in bringing this kind
of complex catalytic activity. Our efforts focus on “old” carbon forms to provide relatively
broad conclusions and to emphasize the economic aspects of targeting alternative sources
of energy.

2. Materials and Methods
2.1. Materials

Commercial carbon black from Cabot Corporation (Boston, MA, USA), Black Pearls
2000 (referred to as BP), and wood-based activated carbon from Ingevity (North Charleston,
SC, USA), BAX-1500 (referred to as BAX) were used as catalysts supports. While BP was
used as-received, BAX pellets were first ball-milled and sieved to a particle size below
212 µm. Cobalt nitrate hexahydrate (Co(NO3)2·6H2O) and nickel nitrate hexahydrate
(Ni(NO3)2·6H2O) were used separately or combined in a 1 to 1 mass ratio of the salts to
introduce metal-base active phase onto the carbon surface. BAX or BP was first impregnated
with an aqueous solution of metal salt using a 1:1 mass ratio of carbon to salt (equivalent to
1:0.2 mass ratio of carbon to metal). After drying, the mixtures were heated at 850 ◦C for
30 min, with a heating rate of 10 ◦C/min and under a nitrogen atmosphere (100 mL/min).
The samples were then washed in a Soxhlet apparatus until constant pH and dried at
120 ◦C. Two series of three samples, BP-Ni, BP-Co, BP-NiCo and BAX-Ni, BAX-Co, and
BAX-NiCo were prepared in this way, where the first term designates the type of carbon
(BP or BAX) and the second term the kind of metal incorporated (Ni, Co, or a 1-to-1 mix of
Ni and Co).

2.2. Methods
2.2.1. Surface Characterization

Nitrogen adsorption isotherms measured on an ASAP 2020 (Micromeritics, Norcross,
GA, USA) at −196 ◦C, after degassing the samples at 120 ◦C overnight, were used to
calculate a surface area, SBET (using the Brunauer–Emmett–Teller theory), and total pore
volume Vtot (from the total amount of nitrogen adsorbed at relative pressure of 0.98).
A volume of micropores, Vmic, was calculated using 2-NLDFT assuming the pore wall
heterogeneity [73]. This method was also used to provide pore size distributions. The
volume of mesopores Vmes was calculated from the difference between Vtot and Vmic.

Thermogravimetric (TG) and differential TG (DTG) analyses were carried out on an
SDT Q600 (TA Instruments, New Castle, DE, USA). The samples were heated up to 1000 ◦C
with a heating rate of 10 ◦C/min and under a 100 mL/min argon or air flow.

XPS spectra were collected on a Physical Electronics (Chanhassen, MN, USA) PHI
5000 VersaProbe II spectrometer (using an Al Kα X-ray source (50 W, 15 kV, 1486.6 eV) and
a take-off angle of 45◦). A concentric hemispherical analyzer operated in a constant-pass-
energy mode, at 29.35 eV, with a 200 µm diameter analysis area. Multipack software was
used to deconvolute the spectra.

Resistivity of the materials was measured using a Keithley 2400 Multimeter (Keithley
Instruments, Cleveland, OH, USA) on a 0.5 × 0.45 cm gold interdigitated electrode covered
with a thin film of carbon.

TEM images were taken with a JEM2100 electron microscope (JEOL, Tokyo, Japan)
operated at a 200kV voltage. It is fitted with an Inca Energy Dispersive X-ray Spectrometer
(EDX) system used to obtain the elemental maps.
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Oxygen adsorption in solution was measured by recording the concentration of dis-
solved oxygen in 50 mL water using a Hach (Loveland, CO, USA) IntelliCAL LDO probe
upon the addition of 250 mg of the carbon sample.

2.2.2. Electrochemical Measurements

Electrochemical measurements were carried out with a 0.1 M KOH electrolyte (pH = 13).
A three-electrode system was controlled with a WaveDriver 40 bipotentiostat (Pine Research
Instrumentation, Durham, NC, USA). A rotating ring-disk electrode (RRDE) with a gold
ring and a glassy carbon disk (0.1963 cm2) coated with a catalyst ink (a thin film on the
carbon disk was made of 33.3 µg of a sample and the same amount of Nafion binder) were
used as a working electrode, a graphite rod as a counter-electrode, and a silver/silver
chloride electrode (filled with 4 M KCl) as a reference electrode. Potentials EAg/AgCl
measured were converted to potentials versus reversible hydrogen electrode, ERHE, using
the following formula:

ERHE = EAg/AgCl + 0.199 + 0.59pH (1)

Cyclic voltammetry (CV) curves were measured at a scan rate of 5 mV/s after satura-
tion of the electrolyte solutions with either nitrogen or oxygen gas.

Electrochemically active surface area (ECSA) of the samples was estimated from their
double layer capacitance (CDL), assuming that they have a similar specific capacitance CS
equal to that of carbon black, 27.5 µF/cm2 [74]:

ECSA =
CDL

CS
(2)

CDL was calculated from the cathodic (Ic) and anodic (Ia) current measured at different
scan rate between 5 and 150 mV/s in a non-faradaic region [75]:

CDL =
Ic + Ia

2ν
(3)

Linear sweep voltammetry (LSV) curves were recorded at various rotation speeds (ω,
between 400 and 2000 rpm) in oxygen-saturated electrolytes while keeping the ring at a
constant potential of 1.07 V vs. RHE. They were corrected for any capacitive currents by
subtracting the background LSV curves measured in oxygen-free electrolytes.

The kinetic current was calculated from the LSV curves, using the Koutecky–Levich
Equation (3) [75]:

1
ID

=
1
Il
+

1
Ik

=
1

Bω1/2 +
1
Ik

(4)

where ID, Il, and Ik are the disk, diffusion limited, and kinetic currents, respectively. They
were divided by the carbon disk area, 0.1963 cm2, to obtain the corresponding current
densities JD, Jl, and Jk.

The onset potential was calculated from the LSV curves measured at 2000 rpm using
the unbiased second derivative method [76], and the number of electrons transferred, n,
and the percentage of H2O2 produced from Equations (4) and (5), respectively [75]:

n =
4ID

ID + IR
N

(5)

%H2O2 =
200 IR

N

ID + IR
N

(6)

where ID and IR are the disk and ring currents, respectively, and N the collection efficiency
of the ring-disk electrode is equal to 25.6%.
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The Tafel plot of the potential as a function of log(|Jk|) was built in a region close to
the onset potential and the slope was obtained by a linear fit.

The stability of the samples was evaluated by chronoamperometry at the potential of
a maximum oxygen reduction current, with a constant O2 flow through the electrolyte, for
24 h.

An ethanol crossover effect was tested by measuring the change of a current at the
potential giving a maximum oxygen reduction current, upon addition of 2.5 mL of methanol
into 60 mL of the electrolyte solution.

3. Results and Discussion

Figure 1 presents the comparison of the CV curves collected in the oxygen and nitrogen
saturated electrolytes, where oxygen reduction humps are clearly seen with differences
in their intensity and the positions of hump minimum/maximum currents. While the
oxygen reduction process is better defined for the BP series, a capacitive behavior is more
pronounced for the BAX series.
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As expected, LSV curves (Figure S1 of the Supplementary Information) show that the
current depends on a rotation rate, especially for the BP series, which is typical for a mixed
kinetic-diffusion control process. Current densities at 2000 rpm are compared in Figure 2.
The modification of BP with metals significantly improved the performance (Figure 2A).
While the LSV curve of the initial BP sample exhibits typical two waves characteristic for
porous carbons [32], the modification with metals markedly changed the shapes of the
LSV curves, making them similar to that measured on Pt/C. Interestingly, the current
density measured on BP-Co exceeds that of the platinum-based catalyst of about 1 mA/cm2

(6.3 vs. 5.3 mA/cm2). That current density is higher than those measured on carbon blacks
modified with cobalt reported in the literature [52,71]. For example, on Black Pearls 2000
with deposited Co3O4 the current density reached 5.6 mA/cm2 [52], and on the same
carbon black modified with cobalt acetate-4.5 mA/cm2 [71]. A similar value of the current
density (6.18 mA/cm2) was reported on carbon black with deposited carbonized Co2+,
Zn2+, and 2-methylimidazole [57]. The current density of BP-NiCo is between those for
the Co- and Ni-modified samples, which might suggest the predominant effect of the
cobalt species on the ORR activity on these samples. The onset potential is reported as that
calculated from the unbiased second order discrete differentiation method (SODDM) [75].
For the sake of discussion, we also reported a half wave potential (Figure 2B). For BP-Co,
which is the best-performing sample, it is 80 mV less positive than that on Pt/C, and the
other two samples show values lower of 115 mV when compared to Pt/C, with BP-Ni as the
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worst-performing catalyst. Even though, due to various approaches used in the literature
to deliver onset potential values discussed in detail in Ref. [76], the direct comparison of
this quantity reported might be biased, it is important to mention that the introduction of
Co species led to the onset potential of ORR up to 85 mV more positive than that on the
unmodified sample. Liu et al. reported the onset potential of 860 mV on amide grafted and
modified with cobalt Vulcan XC-72, while on Black Pearls 2000 with CoOx only 750 mV
was measured [71]. Among other results reported in the literature, on nickel porphyrin-
modified carbon fiber the onset potential was 820 mV [77], on tetraphenolphthalein cobalt
(II) phthalocyanine polymer modified multiwalled carbon nanotubes it was 803 mV [78],
and on atomically dispersed cobalt on N-doped carbon frameworks - 870 mV [60]. In terms
of the kinetic current density calculated using the Koutecky–Levich Equation (Figure 2C),
BP-Co shows an exceptional performance, reaching ~130 mA/cm2, which is much higher
than the kinetic current density measured on Pt/C (~35 mA/cm2). The results obtained on
BP-Co are better than those reported in the literature on Co-modified carbon, [52,57,71,78]
and even on those where SAC were directly targeted [15,59,79,80].
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Figure 2. Current density for the BP series samples (A) and the BAX ones (D); onset potentials
for the BP series samples (B) and the BAX ones (E); the kinetic current densities calculated using
Koutecky–Levich Equation for the BP series samples (C) and the BAX one (F).

The LSV curves for the BAX series show marked inferiority in the current density
compared to that measured on the BP series (Figure 2D). It is interesting that initially BAX
shows the highest current density and highest kinetic current density (Figure 2F), and the
modifications with metal have detrimental effects on these quantities. Among the modified
samples, Co shows the highest current density; however, it reaches only 2.6 mA/cm2. For
this series, the comparison of the onset potential values points to the modification with
Ni as the most efficient one and the onset potential on these samples being 90 mV less
positive than that on Pt/C (Figure 2E). Nevertheless, the two-wave shape of the LSV curve
is still preserved and the current density is low, indicating that even though the process
can start at the relatively positive potential value, the ORR process encounters serious
limitations on these materials. This low current density led to marked differences between
the onset potential calculated using the unbiased SODDM method [76], and the potential
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at a half wave. Interestingly, the onset potentials of both initial carbons are quite similar to
each other.

The comparison of the number of electrons transferred is presented in Figure 3A,D.
Even though for all samples n values can be considered as reaching 4 (between 3.85 and
4), indicating the high efficiency of the reduction process, in this case the BP series also
outperforms the BAX one. Nevertheless, for both series, the best results are obtained on
the cobalt-containing samples, and mixing nickel and cobalt (= less cobalt) worsened the
performance even when compared to that of the initial samples. Values of n close to four
were reported on many carbon-based samples containing cobalt and modified by various
approaches [15,52,81], but it is important to mention that the performance of our modified
BP samples is better than that reported by Liu et al. [71] and by Goubert-Renaudin and
Wieckowski [68] on the same catalyst support. It is also important to bring up that the
amount of peroxide formed on the cobalt-containing samples (Figure 3B,E) is even smaller
than that on Pt/C and the highest amount formed on BAX-Ni reaches only 8 %, which is
significantly lower than on other carbon samples reported with similar number of electrons
transferred [81].
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Figure 3. The number of electrons transferred on the BP series samples (A) and the BAX ones (D);
percent of HO2

− formed in the BP series samples (B) and the BAX ones (E); Tafel plot for the BP
series samples (C) and the BAX ones (F).

The Tafel plot slopes’ values are linked to the kinetics of an electron transfer [24].
Figure 3C,E,F show the Tafel plots with their calculated slopes. For Pt/C the slope of
0.81 mV/dec was found and BP-Co exhibits a very similar behavior. The modification
improves the kinetics of the ORR process on both series of carbons. The worst kinetics
are on the BAX series and especially on BAX-Co, and the best, even better than that on
Pt/C, are on BAX-Ni. In terms of the kinetics of the electron transfer, modified carbon
black tested by Cheng et al. [52] showed better results, which might be attributed to the
additional modification of their catalyst support by nitrogen.

The stability of the catalysts is compared in Figure 4A,D. While all BAX samples are
less stable than is Pt/C, in the case of the BP series, better performance than that of Pt/C
was found for the single-metal-modified samples, but their stability is worse than that of the
initial BP. Interestingly, in the case of the BAX series, the modification increased the stability
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compared to that of the initial sample, which might be linked to exposing carbon to a
higher temperature than that used in the synthesis of original BAX (600 ◦C). The difference
between the BP and BAX series are likely caused by the differences in susceptibility of
their carbon matrices to oxidation by formed H2O2. Testing of the effect of the methanol
cross-over shows the significantly higher stability of all samples tested than that of Pt/C
(Figure 4B,E).
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The measured ECSA are collected in Figure 4C,F. This parameter is considered as
reflecting the specific activity of a catalyst, and the highest values measured for the BP and
BAX series are those on BP-Co and BAX-Ni, respectively, which reflects the trend found in
the onset potential values. Mixing Ni and Co decreases ECSA, which is also the observed
effect on other ORR process descriptors. Interestingly, initial BP has higher ECSA than the
modified samples while a totally opposite trend was found for the BAX series. This might
indicate that for the initial BP sample, the high electrochemical activity should be linked to
totally different factors than those governing the modified BP samples, and those factors
were discussed elsewhere [27,30–41]. In the case of the BAX series, the modification with
metals introduced highly active in ORR surface sites.

The presented above results of the electrochemical tests clearly show the effects of a
carbon support on the performance of the catalysts. This performance is expected to be
markedly influenced by resulting chemistry and the porosity of the catalysts influenced by
the support. An important factor in our consideration is that the amounts of Ni and Co
salts originally used for the modifications and the conditions of the treatments were the
same for both series of samples. Therefore, any differences/trends in the surface properties
should be linked to the effects of the carbon support and the interactions of their surfaces
with deposited Co or/and Ni nitrate salts, and to the complex effects of the applied heat
treatment on the resulting surface features. Following the general consensus, a surface
rich in carboxylic groups is expected to increase the dispersion of metals, and the thermal
decomposition of nitrates into NOx might oxidize/activate the surface and cause even
some degree of mass loss/volatilization (as CO/CO2) in the case of supports with a low
level of carbon ring condensation. It might also result in the development of an additional
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porosity. The deposition of salts, especially in large agglomerates, might also block some
pores and decrease a pore volume and surface area determined by the N2 molecule.

To understand the direction of surface chemistry and porosity changes that affect the
final catalytic performance, we will first analyze the differences in the nature of the metal
species deposited on the carbon surfaces. Even though these carbons were arbitrarily chosen
owing to the specific micro/mesoporosity resulting in the high BET surface areas, they
still differ significantly in other surface features. Burning carbon samples in air provides
the information on the content of an inorganic matter, which in our case is considered to
contain in majority nickel and/or cobalt oxides, remaining as a residue at 1000 ◦C. The
comparison of TG and DTG curves measured in air is presented in Figure S2. Based on the
preparation procedure, the samples should contain ~17% of metals assuming that released
nitrogen oxides did not cause an extensive burn-off of the carbon matrix. This seems to
be the case for the BP series where ~20% of metal oxides are detected for all samples. The
situation is different for the BAX series, where the content of metal oxide exceeds the
theoretical amount and is about 5% higher than in the BP series. A plausible explanation is
more extensive burn-off of the BAX support resulting in the removal of carbon as CO2/CO
during the thermal treatment in nitrogen. Obviously, more metal species on the surface of
the BAX series did not lead to the higher catalytic activity.

Some information about the differences in chemistry of the metal species can be
provided by the thermal analysis conducted in argon, and the results, as TG and DTG
curves, are presented in Figures 5A,B and S3, respectively. Thermal events related to the
decomposition and reduction of surface species by carbon are seen as weight losses on the
TG curves or peaks on the DTG curves. Compared to the initial BP sample, the modified
samples of this series exhibit a very chemically heterogeneous surface (Figure 5A). The first
weight loss between 200 and 300 ◦C is linked to the dehydroxylation of either Co(OH)2 or
Ni(OH)2, which leads to the formation of corresponding oxides that are reduced to metal
between 500 and 700 ◦C. This process is reflected by sharp decreases in the weight. In the
case of BP-Co, two steps are visible in this temperature range, suggesting the presence
of cobalt in a higher oxidation state than +2, which was first reduced to CoO and then
the reduction of the latter took place. The weight loss pattern for BP-Co suggests that
hydroxide is present in a very small amount, or the particles of cobalt oxides are rather
small and their reduction takes place gradually between 300 and 600 ◦C, with larger
particles reduced at higher temperatures. The shape of the TG curve for BP-Ni rather
suggests the less heterogeneous distribution of sizes than that for BP-Co, since a well-
defined reduction event is detected at ~400 ◦C. The weight loss of BP-NiCo is apparently
influenced by some mixed Co/Ni forms. For the BAX series, the comparison of the weight
loss pattern of the modified samples with that of the initial sample should be performed
only up to 600 ◦C, since it is the highest temperature that carbon was exposed to during
its production. Gradual weight losses for BAX-Ni and BAX-NiCo suggest the presence of
oxygen-containing particles of various sizes. The BAX carbon matrix reduces the majority
of oxides between 500 and 800 ◦C and a two-step weight loss in this temperature range
implies that some Co might be in a +3 oxidation state. In fact, the weight loss for BAX-Ni,
and especially that for BAX-Co, resemble that for BP-Co between 600 and 800 ◦C; however,
the reduction of the former sample starts to occur at lower temperatures, ~500 ◦C. The
results of the thermal analysis in argon suggest that the particles of metal species/oxides
on BP are larger than those on BAX, especially in the case of cobalt, and the particle sizes in
the case of BAX are more heterogeneous in their sizes’ range.
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u Co3O4 cubic Fd-3 m.

X-ray diffraction experiments bring information about the speciation of the crystal-
lographic phases and on the sizes of the crystals on the surface of the carbon supports
(Figure 5C,D). For the BP series, the highest crystallinity level of the deposited species is
seen for BP-Co, whose diffractogram shows show many sharp peaks representing Co3O4
with large crystals sizes of 27.5 nm, as calculated from the Scherrer Equation. The BP-Ni
crystallographic phases are more chemically heterogeneous and broader than in the case
of BP-Co diffraction peaks, and are assigned to Ni(OH)2 and metallic nickel crystals with
sizes of about 6.2 and 6.9 nm, respectively. The presence of hydroxide in the case of BP-Ni
is consistent with the sharp weight loss seen at ~300 ◦C on the TG curve of this sample
measured in argon (Figure 5A). When Ni and Co are deposited simultaneously on the
surface of the BP sample, the resulting crystallographic phases are the same as in the case
of BP-Ni but the sizes of crystals are slightly larger, where Ni(OH)2 size is ~12.2 and that of
Ni metal particles of 10.4 nm.

The diffraction patterns of the BAX series totally differ from those of the BP samples.
Even though some crystals are present on the surfaces, the results suggest that the inorganic
species are more dispersed than are in the latter series, and various phases of hydroxides
and oxyhydroxides were identified [82], especially on BAX-Co and BAX-NiCo. Their
presence might explain a gradual reduction of the surface seen on the TG curves measured
in argon (Figure 5B). On both BAX-Co and BAX-Ni, corresponding metal particles are
detected with sizes of 5.2 nm and 11.5 nm, respectively. These crystals are also present in
BAX-NiCo and their sizes are about 14.6 nm. On BP-Co small crystals of Co3O4 exist. The
most dispersed/amorphous inorganic species are on BAX-Ni.

The trends obtained from the TA and X-ray analyses are confirmed in the TEM images
of the samples presented in Figure 6, where the metal-containing particles on the surface
of the BAX series are much smaller than those on BP, and their dispersion is much higher
on the former samples. In the case of the BP series, the highest dispersion of the metal-
containing species was found on BP-Ni, and this is consistent with the differences in the
diffraction patterns (Figure 5D). These results are confirmed by the EDX maps (Figure 7).
The comparison of cobalt and oxygen signals supports the existence of the metal nanopar-
ticles on both BP-Co and BAX-Co. In the case of BP-NiCo, even though there is a strong
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indication of the coexistence of both metals in Co+ Ni +O configurations, the analysis of
the maps still suggests that the particles of both metals are deposited on the carbon surface.
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To assess the surface chemical environment in more detail, an XPS analysis was per-
formed and the results are collected in Figures 8 and 9, and in Table S1 of the Supplementary
Information. Even though both initial samples have similar contents of oxygen, the thermal
treatment with nitrates led to a marked increase in the surface oxygen for the BAX series
and to a decrease for the BP series, which might be associated with differences in the
oxidation states of both metals, those of the carbon matrices, and the sizes of the oxygen-
containing particles. The deconvolution of O 1s core energy level spectra indicates that
the vast majority of oxygen in BAX is in oxides with some contributions from hydroxides
and carbon–oxygen bonds, while for the BP series oxygen is mainly associated with the
metal phase and in the form of hydroxides. The small detected amount of oxygen in the BP
series might be linked to the presence of the metal particles or to the existence of the large
particles of the oxygen-containing inorganic phase.

As for oxygen, the BAX series also exhibits much more Ni and Co on the surface than
does the BP series. As mentioned above, this is likely related to the larger particles of the
metal species in the case of BP series. A 7 nm limit of the XPS surface analysis is not able to
account for all metals and oxygen present in these particles, leading to their underestimated
amounts. Ni 2p3/2 and Co 2p3/2 core energy levels were deconvoluted using multiplets
based on the deconvolution approach of Biesinger et al. [83]. A combination of Ni, Ni(OH)2
and NiO was used to deconvolute Ni 2p3/2, and a combination of Co, Co(OH)2, and Co3O4
was used to deconvolute Co 2p3/2, keeping their relative positions, FWHM, and area ratios
(as given in Ref. [83]) fixed. Consistently with the X-ray analysis, both Ni and Co metallic
particles are clearly detected on the surfaces of BP-Ni and BP-NiCo. While on the BAX
carbon sample modified with either Ni or Co and on corresponding BP the metallic particles
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are present, on BP-Co mainly Co3O4 is detected by XPS, in agreement with the X-ray results.
Some small contribution of Co(OH)2 is also detected and it explains the lack of well-defined
weight loss on the BP-Co TG curve associated with dehydroxylation and two well-defined
steps associated with the reduction of oxides. The chemical distributions of Ni on the BP
and BAX samples are similar, but those of cobalt markedly differ between the series and
BAX-Co, BAX-NiCo, and BP-NiCo have more Co(OH)2 than Co3O4, making BP-Co an
outlier in terms of the Co3O4 content. On both BP-NiCo and BAX-NiCo hydroxides are in
the predominant amounts. It is important to mention that on the BP samples nitrogen is
detected in about 1 at.% and upon the treatment, its distribution changes and more nitrogen
becomes incorporated to the aromatic rings, especially in the case of BP-Co. Regarding
the carbon content on the surface, an increase in the detected relative content of carbon on
BP can be explained by the presence of the discussed-above large particles of the metal
species. Nevertheless, an increase in the contribution of carbon–oxygen bonds in the case
of BAX supports mentioned-above oxidation and burn-off of the BAX carbon matrix by
released NOx.

Owing to the similarity in preparation, the discussed-above differences in the chem-
istry of the deposited metal species and in their distribution on the surfaces are expected to
be mainly governed by the chemical features of the carbon matrices, which were discussed
in detail elsewhere [84]. Here, for the sake of comparison, we reintroduce important infor-
mation on carbon surface pH, the nature of oxygen groups, and density of those group on
the surface of mesopores, where dissociating groups are expected to exist. These features
are anticipated to affect chemistry most. Even though both carbons are micro/mesoporous
(Table 1), the surface in mesopores composes 38% of the total surface area for BAX and 26%
for BP. Taking into account that on the surface of BAX and BP 1.42 and 0.41 mmol/g of
dissociating groups are present (0.71 and 0.19 mmol/g of carboxylic groups), respectively,
there are much more groups per unit surface area in the case of BAX than BP (an order of
magnitude difference in an average density). Thus, these groups increase the dispersion
of the metal cations via cation exchange process and polar interactions. With the same
amounts of nitrates needed to be distributed through the surfaces, or even more in the
case of the modified BAX samples, this difference leads to the higher density of the metal
species and their smaller sizes on the surface of BAX than on BP. This is in agreement
with the results of the thermal analysis, XRD, and XPS discussed above. The small sizes
of the deposited nitrate particles are readily reduced by the carbon surface during the
preparation heat treatment up to 850 ◦C, forming the metal nanoparticles on the BAX
sample. They might even coalesce due to the surface oxidation/decomposition of oxygen
groups, forming the well-defined crystals. The relatively large particles of Co3O4 visible
on the surface of BP-Co are formed by oxidation of CoO in large “islands”, existing due to
the scarcity of oxygen-containing dissociating group, by NOx from the decomposition of
nitrates. The metal contents in the BP series suggest that burn-off/activation of the surface
during the preparation heat treatment occurred to a rather small extent. Highly dispersed
Co(OH)2 formed on the functional groups remains on the surface, as a result of the contact
of CoO with ambient air/moisture. In the case of BP-Ni, NiO from the decomposition
of nitrates cannot undergo oxidation and remain on the surface in its original form or
as Ni(OH)2. Here, the highly dispersed small particles of the nickel species are reduced
to nickel metal. This is because NOx is able to oxidize only carbon, and formed carbon
monoxide is a reducing agent to NiO. In the case of BAX, generally much smaller particles
of nitrates were deposited on the surface and therefore the crystallographic phases are
not well-defined. Here, Co3O4 is formed in a much smaller extent not only due the acidic
nature of that carbon (pH of BAX is 4.73 vs. 7.98 of BP [84]) but also due to the preference
of NOx to oxidize the carbon matrix, as indicated by the TA analysis in air. Interestingly,
the surfaces of BP and BAX led to the same extent of the contributions of nickel species,
although the Ni(OH)2 and NiO particles are much smaller on the surface of BAX and the
metal particles are smaller on BP. In the case of mixed metal samples, nickel is present
mainly as hydroxides, as also detected by X-ray diffraction. Cobalt is also in majority as
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Co(OH)2; however, it exists in a highly dispersed form. The small particles of Co3O4 are
also present and their contribution is slightly higher on BAX-NiCo than on BP-NiCo.
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Table 1. The parameters of pore structure.

Samples SBET
m2/g

Vtot
cm3/g

V<0.7
cm3/g

Vmic
cm3/g

Vmes
cm3/g

Vmes/Vtot
%

BP 1609 2.705 0.001 0.532 2.173 80
BP-Ni 1201 1.919 0.063 0.361 1.558 81
BP-Co 1295 2.141 0.066 0.388 1.753 82

BP-NiCo 1161 1.889 0.067 0.356 1.533 81
BAX 2158 1.424 0.079 0.725 0.699 49

BAX-Ni 741 0.436 0.141 0.321 0.115 26
BAX-Co 658 0.425 0.113 0.272 0.153 36

BAX-NiCo 724 0.451 0.119 0.294 0.157 35
SBET—surface area, Vtot—total pore volume, V<0.7—volume of ultramicropores, Vmic—volume of micropores,
Vmes—volume of mesopores and Vmes/Vtot—mesoporosity degree.

The analysis of porosity of the materials tested might bring information not only on
the dispersion of the metal phase and on the accessibility of the pores for the electrolyte
with dissolved oxygen, but also on the activation/burn off processes taking place during
the sample preparation, as speculated above. The measured nitrogen adsorption isotherms
and calculated from them pore size distributions and presented in Figure 10A,D. The
calculated parameters of the pore structure are collected in Table 1. While the amounts
of N2 adsorbed on the modified BP samples decreased only slightly compared to that on
the initial sample, for the BAX samples a significant decrease in the nitrogen uptake was
found. As seen in Table 1, the surface area of modified BAX decreased almost three-fold
compared to that of the initial sample. A marked increase in the volume of ultramicropores
(V<0.7) supports surface activation by NOx. On the other hand, over a 50% decrease in the
volume of micropores indicates that the deposited species blocks an access of the probe
nitrogen molecule to the small pores. The biggest decrease was found in the volume of
mesopores and it might be caused by the deposition of the metal species on their surface
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functional groups, decreasing mesopore sizes markedly. The increase in the volume of
ultramicropores is greater for BAX-Ni than that for BAX-Co, which supports the strong
oxidation effects of NOx on the carbon matrix of BAX-Ni, as compared to that on the latter
sample. In the case of BP samples the porosity of the modified samples is similar, although
the nickel-containing sample still exhibits a slightly greater decrease in the surface area
compared to that of BP-Co. In these samples some ultramicropores were formed, which
could be due to the deposit of relatively large inorganic particles in supermicropores and
in mesopores, causing a decrease in their sizes. Moreover, some slight effects of activation
by NOx cannot be crossed out.
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The pore size distributions presented in Figure 10B,E show the narrowing of the
small pores in the BP samples upon the modifications, with a bimodal distribution in
the range of micropores. Large mesopores of the BP sample with sizes of about 30 nm
significantly decreased in their volume. BAX carbons, although micro/mesopores, have
sizes of mesopores reaching only 10 nm and this spatial constraint can be responsible for a
marked decrease in their sizes due to the deposition of the inorganic species. For this carbon
the ultramicropores increased in size with a marked increase in their volume. Overall, the
resulting sizes of ultramicropores are much smaller in the case of the BP samples, and
they might favor oxygen adsorption. A large volume of mesopores with the inorganic
particles of polar nature promote the transport of the electrolyte with dissolved oxygen to
the catalytic centers located on the surface/in small pores.

Another factor to consider as affecting the efficiency of the ORR process is the con-
ductivity of the samples which significantly differs between the two categories of carbons
tested. The BP series is much more conductive than the BAX series (measured resistivity for
BP, BP-Ni, BP-Co, and BP-NiCo is 11 Ω, 12 Ω, 10 Ω, and 10 Ω, respectively, while that for
BAX, BAX-Ni, BAX-Co, and BAX-NiCo is 1.4 MΩ, 0.2 kΩ, 0.3 kΩ, and 9 kΩ, respectively)
and this certainly is related to the level of carbon aromatization/graphitization and the
nature/amount of oxygen groups. The increased graphitization level of the carbon matrix
by the heat treatment at 850 ◦C combined with the deposition of the metallic particles might
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explain an increase in the conductivity of BAX-Ni and BAX-Co, which positively affects the
performance of these catalysts.

The trend in oxygen adsorption from its saturated solution upon the addition of the
catalyst is presented in Figure 10D,F. As expected, based on the distribution of the pore
sizes and their volume, there are not marked differences in the maximum of the amount
of oxygen adsorbed within series. The BAX samples adsorb less oxygen than do the BP
ones, which might contribute to their overall lower catalytic activity [41], and which is in
agreement with the differences in the volume and sizes of ultramicropores. Interestingly,
the differences are seen in the kinetics of the process where BP-Co and BAX-Co show
prolonged adsorption of O2 upon its time-dependent dissolution in water. This might be
related to the small sizes of cobalt Co+2 particles (other than Co3O4) on these samples,
which might be undergoing oxidation to Co3O4, and those in situ formed catalytic centers
(also during the ORR process) might be responsible for the higher stability of these samples
compared to their Ni-containing and BP-based counterparts.

The analysis of the differences in the surface features of our samples that are indicated
in the literature as important to ORR, and discussed above, allow us to provide a plausible
explanation of not only the good catalytic activity of the BP series and especially that of
BP-Co, but also to suggest the surface features of the BAX series which result in its inferior
behavior. The conductivity of the BP series is certainly their important asset, elevating the
current compared to that on the BAX series. Another important feature of the BP series is
the presence of nitrogen on the surface. Even in small amounts, that nitrogen, when incorpo-
rated to the carbon rings was indicated as enhancing ORR [12,17,19,20,28,34,35,38,42,52,72].
The XPS results showed that the thermal treatment in the presence of metallic species
increased the contribution of this specific nitrogen, and thus a nitrogen coordination to
metals and the creation of single metal catalytic centers cannot be crossed out [77,78,81].
The BP series have also much smaller ultramicropores than those in the BAX series and
this factor is expected to contribute to ORR via strong adsorption of oxygen, followed by
its bond splitting [27,34–41]. Additionally, this factor might also contribute to the better
performance of the initial BAX carbon than some of its modified counterparts, owing to its
much higher porosity. A support for the role of micropores is also the larger number of
electrons transferred for all BP samples than those for BAX.

Nevertheless, among the BP samples marked differences in the performance still exist,
and BP-Co has been found to be the best catalyst, with the current density higher than
that on Pt/C. Since the porosities and conductivities of the BP series are similar to each
other, that effect can only be linked to the chemistry of the metal species deposited on the
surfaces, in addition to the presence of those hypothesized above catalytic centers based on
metal–nitrogen bonds. Since the analyses indicated that Co3O4 is the predominant species
on the surface of BP-Co, we link the excellent performance of this sample to these species,
which were also reported in the literature as catalytically active [52,57]. Support for the
hypothesized effect of single metal atoms in coordination with nitrogen is the second-best
performance of BP-Ni, and these N-M coordinated metals are also expected in the case of
nickel modification. The highly dispersed metal particles might also bring the catalytic
activity to the Ni-containing samples [85].

As also observed for the BP series, the BAX samples do not differ markedly in the
porosity, and the difference in the performance between the samples in this series is expected
to be predominantly governed by their surface chemistry. Here, the performance of both
nickel-containing samples, BAX-Ni and BAX-NiCo, in terms of the onset potential is similar
to that of the BP series, and taking into account all other features of these samples bringing
catalytic disadvantages, this suggests that for this quantity the chemistry of the catalytic
species is a predominant factor. In addition, the results imply here that the predominant
feature governing the onset potential could be highly dispersed nickel and cobalt metal
nanoparticles [59,83]. Moreover, the overall performance of BAX-NiCo in terms of the
onset potential is better than that of BP-NiCo owing to its higher content of the Co3O4
catalyst; however, on this carbon the catalytic action of these species is inhibited owing
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to overpowering effects of other factors contributing negatively to the efficiency of these
series of carbons. The catalytic activity of Co3O4 has been previously linked to the coupling
between the carbon surface and this species [86]. Moreover, the specific facets of the crystals
might also play a role, as indicated by Liu et al. [87] based on the DFT calculations of the
Co3O4 activity in an acidic electrolyte.

4. Conclusions

The results collected show the significant effect of carbon matrix properties on the
surface features of the catalysts, and thus on the catalytic performance of Ni- and/or Co-
modified carbons influenced by them. The exact same modification procedure resulted in
differences in the chemistries of the deposited species, in the sizes of the particles, and in
the porosity of the materials. A more oxidized carbon surface, owing to the high density of
oxygen groups attracting metal salts during impregnation, led to the high dispersion of
metal species of small particle sizes, and thus promoted the formation of metal nanoparticles
thorough reduction process, especially in the case of the modification with nickel, where
the metal particles were found as promoting ORR. When cobalt was used as a modifier,
Co3O4 was formed and it provided excellent catalytic activity, especially for the BP carbon
sample whose surface was poor in dissociating groups. In that case an oxidizing action of
NOx was directed mainly to oxidize cobalt and to form spinel Co3O4. The ORR catalytic
efficiency of highly porous carbon black modified with cobalt was only inferior to Pt/C
in the slightly lower onset potential, while the current density was much higher than
that on Pt/C and the number of electrons transferred reached four with a high catalytic
stability. The excellent performance of that carbon black was also linked to its high electric
conductivity and porosity. The latter, by the high volume of ultramicropores, enhanced
oxygen adsorption and thus provided a pseudocatalytic action complementing the overall
influence of catalytic metal-based sites, and especially that of the Co3O4 particles. These
results show promise in the application of commodity carbon blacks as ORR catalysts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12244432/s1, Figure S1: Ring and disk currents at different
rotation (0–2000rpm) of the different samples: BP (A), BP-Ni (B), BP-Co (C), BP-NiCo (D), BAX (E),
BAX-Ni (F), BAX-Co (G) and BAX-NiCo (H); Figure S2: TG (A,C) and DTG (B,D) curves measured
in air of the BP series (A,B) and of the BAX series (C,D); Figure S3: DTG curves measured in argon of
the BP series (A) and of the BAX series (B); Table S1: the atomic content of elements on the surface (in
bold) and the deconvolution results of collected core energy level spectra.
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