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Abstract: Rational designing of electrode materials is of great interest for improving the performance
of battery-type supercapacitors. The bimetallic NiCo2S4 (NCS) and CoNi2S4 (CNS) electrode materials
have received much attention for supercapacitors due to their rich electrochemical characteristics.
However, the comparative electrochemical performances of NCS and CNS electrodes were never
studied for supercapacitor application. In this work, microsphere-like bimetallic NCS and CNS
structures were synthesized via a facile one-step hydrothermal method by controlling the molar ratio
of Ni and Co precursors. The physico-chemical results confirmed that microsphere-like structures
with cubic spinel-type NCS and CNS materials were successfully fabricated by this method. When
tested as the supercapacitor electrode materials, both NCS and CNS electrodes exhibited battery-type
behavior in a three-electrode configuration with outstanding electrochemical performances such as
specific capacity, rate performance and cycle stability. Impressively, the CNS electrode delivered
a high specific capacity of 430.1 C g−1 at 1 A g−1, which is higher than 345.9 C g−1 of the NCS
electrode. Furthermore, the NCS and CNS electrodes showed a decent cycling stability with 75.70
and 84.70% capacity retention after 10,000 cycles. Benefiting from the electrochemical advantage of
CNS microspheres, we fabricated a hybrid supercapacitor (HSC) device based on CNS microspheres
(positive electrode) and activated carbon (AC, negative electrode), which is named as CNS//AC. The
assembled CNS//AC HSC device showed a large energy density of 41.98 Wh kg−1 at a power density
of 800.04 W kg−1 and displayed a remarkable cycling stability with a capacity retention of 91.79% after
15,000 cycles. These excellent electrochemical performances demonstrate that both bimetallic NCS
and CNS microspheres may provide potential electrode materials for high performance battery-type
supercapacitors.

Keywords: transition metal sulfides; microspheres-like structures; battery-type supercapacitor; hy-
brid supercapacitor; energy density

1. Introduction

Recently, the battery-type supercapacitor draws much interest due to its fast charge/
discharge capability, high theoretical capacity, high-power density, and long-term cycle
stability [1–3]. Battery-type supercapacitor electrode materials store energy via a Faradaic
redox reaction, which involves a diffusion-controlled charge transfer between the electrode
and electrolyte interface [4,5]. Battery-type electrode materials with improved electro-
chemical characteristics such as richer Faradaic reactions, different valence states, and low
resistivity are required to attain a high specific capacity and high power/energy densities
of a hybrid supercapacitor (HSC) device [1–8]. In addition to that, rational designing of the
composition-controlled electrode materials is crucial to achieve a high power and energy
density of the HSC device [2,3,6–9].
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Among the various battery-type materials, metal sulfides are favorable energy storage
materials due to their high electrochemical properties such as intrinsic electronic con-
ductivity, favorable redox properties, low electronegativity, and lower resistance [9–11].
Compared to single metal sulfides, bimetallic sulfides exhibit variable oxidation states,
high electrical conductivity, and high redox properties [12–14]. Especially, NiCo2S4 (NCS)
and CoNi2S4 (CNS) are considered as the promising electrode materials for battery-type
supercapacitors because of higher electronic conductivity, high theoretical capacity, and
richer redox reaction chemistry [15–19]. The synthesis of bimetallic NCS and CNS electrode
materials with controllable stoichiometry composition were elaborately studied and most
of the synthesis methods reported elsewhere are hydrothermal or solvothermal [20–25].
Additionally, various morphologies of NCS and CNS have been synthesized successfully
such as mushroom-like [26], burl-like [27], nanotube arrays [15,28], hollow spheres [29],
nanoparticles [18,25], flaky arrays [24], 3D-flower-like [23], hollow cube [19], nanosheet
arrays [21], and nanoneedles [20]. Moreover, as-prepared different NCS and CNS mor-
phologies showed excellent electrochemical supercapacitor properties in a three-electrode
configuration [15,18–29]. For example, Pengfei et al. reported the synthesis of NiCo2S4
hollow cages, which displays a high specific capacitance of 1382 F g−1 at 1 A g−1 [30].
Recently, Souleymen et al. prepared ultrathin CoNi2S4 nanosheets and this battery-type
electrode exhibits a specific capacitance of 247 mAh g−1 at 8 A g−1 [31]. Wang et al. have
synthesized carbon-NiCo2S4 hetero-structured nanosheet arrays by two-step method (hy-
drothermal and CVD). This carbon-NiCo2S4 electrode shows ultrahigh specific capacitance
of 1893.2 F g−1 [32]. Three-dimensional flower-like CoNi2S4 was prepared by Lemu et al.
and exhibits a high areal capacitance of 6.528 F cm−2 at a current density of 6 mA cm−2 [23].
These previous findings indicate that the bimetallic NCS and CNS materials have large
potential in battery-type supercapacitor application due to their improved electrochemi-
cal properties.

Benefiting from the bimetallic NCS and CNS electrode materials, this work has been
concentrated to determine the effect of Ni/Co metals stoichiometry (1:2 and 2:1) on the
electrochemical performances of NCS and CNS materials for battery-type supercapacitor
application. We have successfully prepared the microspheres-like bimetallic NCS and CNS
electrode materials by a facile one-step hydrothermal method. A comparative electrochemi-
cal supercapacitor studies were carried out for the first time. The supercapacitor properties
of as-synthesized NCS and CNS electrodes revealed a good specific capacity, reasonable
rate capability, and excellent cyclic stability in a three-electrode system. Specifically, the
microspheres-like CNS electrode exhibited a maximum specific capacity (430.1 C g−1 at
1 A g−1) than NiCo2S4 electrode (345.9 C g−1 at 1 A g−1). In addition, an HSC device
fabricated by CNS microspheres as the positive electrode and activated carbon (AC) as
the negative electrode, labeled as CNS//AC. The CNS//AC HSC device delivered a high
specific energy (41.98 Wh kg−1) and specific power (800.04 W kg−1) with excellent cyclic
stability (91.79% capacitance retention after 15,000 charge/discharge cycles).

2. Experimental

Analytical grade chemicals such as nickel nitrate hexahydrate (Ni(NO3)2·6H2O), cobalt
nitrate hexahydrate (Co(NO3)2·6H2O), thioacetamide (C2H5NS), potassium hydroxide
(KOH), AC, acetylene black, poly(vinylidene fluoride) (PVDF), N-methyl-2-pyrrolidone,
and ethylene glycol (EG, HOCH2CH2OH) were procured from Sigma Aldrich, South Korea.
Ethanol (C2H5OH) was purchased from DUKSAN chemicals, South Korea. Deionized
water (DI H2O) was used throughout the experiments. Commercial nickel foam (Ni-foam)
was purchased from MTI, South Korea.

Microspheres-like NCS and CNS samples were synthesized via a facile one-step hydrother-
mal method. In a typical synthesis method of NCS microspheres, 5 mM Ni(NO3)2.6H2O, 10 mM
Co(NO3)2.6H2O, and 12 mM thioacetamide were dissolved in 40 mL EG solvent by con-
tinuous stirring to obtain a homogeneous solution. Next, the as-prepared light pink color
solution was transferred into 50 mL capacity autoclave. The autoclave was closed tightly,
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and the hydrothermal treatment was carried out in a muffle furnace (Wisd Laboratory
Instruments, South Korea) at 180 ◦C for 12 h. After the reaction completion, the black
color precipitates were collected and thoroughly washed with DI H2O and C2H5OH, and
then dried in an oven at 70 ◦C for overnight. The CNS microspheres were obtained by the
same synthesis process with 5 mM Co(NO3)2.6H2O, 10 mM Ni(NO3)2.6H2O, and 12 mM
thioacetamide. The materials characterization and electrochemical studies were given in
Supplementary Materials.

3. Results and Discussion

The crystalline phases of the as-prepared NCS and CNS samples were identified
by X-ray diffraction (XRD). As shown in Figure 1a,b, the crystalline peaks suggest that
both the samples were mainly composed of cubic spinel structures. All the characteristic
peaks identified at 16.3◦, 26.8◦, 31.6◦, 38.3◦, 47.4◦, 50.5◦, 55.3◦, 65.1◦, 69.3◦, and 77.91◦

can be respectively indexed into (111), (220), (311), (400), (422), (511), (440), (533), (444),
and (731) planes of the cubic spinel NiCo2S4 (JCPDS No: 43-1477) and CoNi2S4 (JCPDS
No: 24-0334) [17,18,24,33]. It is very difficult to differentiate the NiCo2S4 and CoNi2S4
crystalline phases due to their similar peak position. To better understand the difference
between NiCo2S4 and CoNi2S4 phases, we verified the space group and a primitive unit
cell value. Both NiCo2S4 and CoNi2S4 samples were belonging to the Fd-3m space group.
However, the primitive unit cell values of NiCo2S4 and CoNi2S4 were 9.4177 Å and 9.4279 Å,
respectively [24,25]. A small difference in the primitive unit cell values clearly distinguish
the crystalline phases of NiCo2S4 and CoNi2S4 in this work. In addition, no other peaks
found in the XRD patterns, suggesting the formation of pure cubic spinel NiCo2S4 and
CoNi2S4 phases. Moreover, the XRD results suggest that good crystalline NiCo2S4 and
CoNi2S4 phases were successfully prepared by our one-step hydrothermal method.
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Figure 1. (a,b) XRD patterns of the NCS and CNS samples, respectively.

The elemental oxidation states and surface chemical composition of as-synthesized
NCS and CNS materials were evaluated by X-ray photoelectron spectroscopy (XPS). The
survey scan spectrum of NCS and CNS samples (Figure 2a) indicates the presence of Ni,
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Co, and S peaks. The Ni 2p spectrum (Figure 2b) consists of two spin-orbit doublets (Ni2+

and Ni3+) and two shakeup satellites (identified as “sat.”). The two main peaks at 853.6 and
871.2 eV were ascribed to Ni2+, while other two best fitted peaks at 856.8 and 874.7 eV were
indexed to Ni3+ [34–38]. The deconvoluted Co 2p spectrum also (Figure 2c) shows two
spin−orbit doublets, which are characteristic peaks of Co(II) and Co(III). Specifically, the
fitted peaks at 778.5 and 793.5 eV were related to Co(II) ions. The remaining two fitted peaks
at 781.9 and 798.2 eV were attributed to Co(III) ions. Furthermore, two satellite peaks were
also identified at 855.7 and 873.1 eV [34–38]. As shown in Figure 2d, the S 2p spectrum can
be deconvoluted into two main peaks located at 162.5 and 163.6 eV, which correspond to S
2p3/2 and S 2p1/2 of metal-sulfur bonds in the NCS and CNS samples, respectively [34–38].
The other peak at 170.7 eV due to the shakeup satellite peak [24,33,34]. The XPS results
demonstrate that NCS and CNS samples have a mixed composition, containing Ni2+, Ni3+,
Co2+, Co3+ and S2−, which are in good accordance with the results reported for NiCo2S4
and CoNi2S4 in the literature [15,19,24,33].
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Figure 2. (a) The XPS survey scan spectrum of NCS and CNS samples. The deconvoluted spectra of
(b) Ni 2p, (c) Co 2p, and (d) S 2p.

The morphological, structural features, and elemental composition of the as-synthesized
NCS and CNS samples were studied by field-emission scanning electron microscopy
(FE-SEM), field-emission transmission electron microscopy (FE-TEM), high resolution
TEM (HRTEM), selected-area electron diffraction (SAED), and energy dispersive X-ray
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analysis (EDX). Figure 3 shows the typical FE-SEM images of NCS and CNS samples
synthesized by a simple one-step hydrothermal method. Even though, the molar ratio
of Ni and Co metals was different in NCS and CNS samples, the FE-SEM images in
Figure 3a–f expose that both sulfide materials were quite similar in morphology. The
low-magnification FE-SEM (Figure 3a,d) images show that the NCS and CNS samples
consist of many sphere-like structures with an average diameter of 2 µm. The NCS and
CNS microspheres surface was very rough and comprised of many nanoparticles, which
can be observed from high magnified FE-SEM images (Figure 3b,e). Figure 3c,f clearly
distinguish the morphology difference between NCS and CNS samples. The surface of
the NCS sample was flat and rough, while the CNS sample surface was made up of
roughed nanoparticles. It can be clearly noted that the nanoparticles attached to each
other and formed well-defined microsphere-like structures in CNS compared with that
of NCS sample. The elemental composition of the NCS and CNS samples is further
analyzed by FE-SEM-EDX. Figure 3g,i show the electron microscopy images of NCS and
CNS samples, respectively. The corresponding EDX patterns in Figure 3h,j indicates that
the as-synthesized microspheres were mainly comprised of Ni, Co, and S without any
other impurity elements. The calculated atomic percentages of Ni, Co and S were in the
ratio of 13.36:28.24:58.40 and the atomic percentages of Co, Ni and S were in the ratio of
14.13:27.58:58.29, which are close to the theoretical values of NiCo2S4 and CoNi2S4 (1:2:4).
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The detailed morphological and crystalline structures of the CNS sample were further
analyzed by TEM, HRTEM, and SAED. Typical low magnification TEM image in Figure 4a
apparently shows the microsphere-like morphology of CNS sample, which is consistent
with the SEM observation (Figure 3e). Notably, the magnified TEM result (Figure 4b) clearly
illustrates that as-prepared CNS sample composed of several nanoparticles, which are intact
each other to develop microsphere-like morphology. The corresponding SAED pattern
(Inset Figure 4b) displays well-defined rings, which can be indexed to the (111), (220), (311),
(222), (400), and (422) planes of CoNi2S4 phase, further confirms that the polycrystalline
nature of CoNi2S4 sample [21,37]. The interconnected nanoparticle’s structure was further
characterized by high magnified TEM (Figure 4c,d). These nanoparticles boundaries were
clear, and no amorphous layers were found on the high magnified TEM images, indicating
the high crystallinity of as-prepared microspheres-like CNS sample. Furthermore, a well
resolved lattice fringes can be observed on the atomic scale (Figure 4e) and the calculated
interplanar spacing is about 0.28 nm corresponding to the (311) lattice spacing of cubic
spinel CoNi2S4 [26,31,37]. The elemental mapping of the CNS sample was further analyzed
by high angle annular dark field (HAADF) scanning TEM (STEM). Figure 4f–i shows the
STEM-HAADF image and corresponding elemental maps of CNS sample. The results
clearly proved that Co, Ni and S elements were uniformly distributed within the CNS
sample, which further confirms the formation phase pure CoNi2S4.
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The intrinsic electrochemical properties of the as-prepared NCS and CNS electrode
materials were evaluated using the electrochemical impedance spectroscopy (EIS) and
electrochemical double-layer capacitance (Cdl) analyses. Figure 5a shows the EIS spectra of
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NCS and CNS electrodes. The Nyquist plots were fitted using the equivalent circuit model
in the inset Figure 5a and the resulting data were displayed in Table S1. Obviously, CNS
electrode delivers the low charge-resistance (0.72 Ω) and charge-transfer resistance (0.27 Ω)
than NCS electrode, indicating the high conductivity and efficient redox kinetics of the
CNS electrode. To evaluate the electrochemical surface area of the NCS and CNS electrodes,
the Cdl values were calculated by assessing the CV curves in the non-Faradaic region at
various scan rates from 50 to 250 mV s−1 (Figure S1). It is well known that the Cdl values
were directly related to the electrochemical surface areas of the corresponding electrode
materials. Figure 5b shows the plot of current density as a function of scan rates. From the
plot, the Cdl values of the NCS and CNS electrodes were determined to be 4.1 and 6.6 mF
cm−2, respectively (Figure 5b). This result indicates that CNS electrode had high number
of electroactive sites for the facile transport of electrolyte ions to the electrode surface than
the NCS electrode.
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The effect of Ni/Co metal ratio (1:2 and 2:1) on the electrochemical supercapacitor per-
formances were investigated by cyclic voltammetry (CV), galvanostatic charge-discharge
(GCD) and continuous charge/discharge stability studies. Figure 6a reveals the compar-
ative cyclic voltammograms of the NCS and CNS electrodes at the same sweep rate of
50 mV s−1 within the potential window of –0.2~0.5 V. Clearly, both the CV curves exhibit re-
dox peaks, indicating the intercalation and deintercalation of OH– ions follow the Faradaic
reaction. The broad and strong redox peaks further confirming the typical battery-type
behavior of NCS and CNS electrodes [3–8]. Moreover, the closed CV areas were different for
the NCS and CNS electrodes, indicating that both electrodes have different charge storage
capacity. The CV area of the CNS electrode is slightly higher than that of NCS electrode,
demonstrating that the well-deserved microsphere-like CNS sample has higher capacity
performance. The distinct redox peaks of the NCS and CNS electrodes can be associated
with the reversible Faradaic reactions of Co2+/Co3+/Co4+ and Ni2+/Ni3+ [31,33,35,37]. Fig-
ure 6b and c shows the CV curves of NCS and CNS electrodes recorded at a various sweep
rates of 10, 20, 30, 40 and 50 mV s−1, respectively. As the scan rate increases from 10 to
50 mV s−1, the CV areas and the anodic/cathodic peak currents were increased, indicating
the excellent reversible Faradaic behavior of these electrodes. In addition, the redox peak
shift also found with the increasing scan rate, which can be attributed to the polarization
and internal resistance of the electrodes [24,25,34,37]. Figure 6d shows the plot of square
root of the scan rate Vs. peak current. The plot clearly reveals a linear dependence of peak
currents with sweep rate, indicating the NCS and CNS electrodes are highly reversible, and
the redox reactions were diffusion-controlled process [39–41].
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The capacity performance of the NCS and CNS electrodes were estimated by GCD
measurement. Figure 7a present the GCD profile of NCS and CNS electrodes measured
at the same current density of 1 A g−1. The charge and discharge curves exhibit the clear
plateaus within the potential window of –0.1~0.4 V, further verifying the battery-type
characteristic of these electrodes, which is consistent with the CV results (Figure 6a–c).
The NCS electrode shows lower discharge time compared to CNS electrode. The specific
capacity values of the electrodes were calculated from the discharge curves according to the
Equation (S1). The calculated specific capacity values of NCS and CNS electrodes were 345.9
and 430.1 C g−1 at 1 A g−1, respectively. Table S2 compares the electrochemical performance
of the NCS and CNS electrode materials with sulfide-based electrode materials. From Table
S2, it is clear that the performances of NCS and CNS electrode were comparable to the
reported sulfide-based electrode materials for supercapacitor application. Compared to
other morphologies, the unique microspheres-like NCS and CNS electrodes were beneficial
for supercapacitor application. The CV integral area (Figure 6a) and specific capacity value
of the CNS electrode is larger than that of NCS electrode, which is possibly due to the
higher Ni concentration of CNS electrode [42,43]. Chen et al. have demonstrated the effect
of Ni2+ concentration on the electrochemical performance of Ni-Co-S nanosheets [42]. In
our previous work, we demonstrated the effect of Ni2+ and Co2+ concentration on the
battery-type supercapacitor performance of NiCo2Se4 and CoNi2Se4 materials [42]. From
the previous studies, it is found that the cobalt sulfides show higher redox potentials than
nickel sulfides due to their inherent electrochemical response [44–46]. Consequently, the
Ni-rich CoNi2S4 microspheres exhibited improved electrochemical properties than NiCo2S4
microspheres. The detailed GCD profiles of the NCS and CNS electrodes at diverse current
densities of 1, 2, 3, 4, 5, 10 and 20 A g−1 (Figure 7b,c), exhibit symmetrical GCD curves
at all the tested current densities, suggesting highly reversible behavior of oxidation and
reduction reactions. The CNS electrode delivered the specific capacity values of 430.1,
403.8, 384.9, 367.6, 352.5, 295.0, and 250.0 C g−1 at the current densities of 1, 2, 3, 4, 5, 10,
and 20 A g−1, respectively. Based on the discharge curves of NCS electrode, the calculated
specific capacity values were 345.9, 323.4, 310.8, 301.2, 292.5, 259.0, and 200.0 C g−1 at 1, 2,
3, 4, 5, 10, and 20 A g−1, respectively. Rate capability is one of the key factors to analyze the
supercapacitor performance. The rate capability curves (specific capacity values Vs. the
applied current density) of NCS and CNS electrodes were plotted in Figure 7d. Obviously,
the two samples delivered a reasonable specific capacity retention of 57.82% and 58.14%
for NCS and CNS electrodes, respectively. This result indicates that the NCS and CNS
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electrodes possess outstanding rate capability because of mass OH− ions diffusion at the
electrode–electrolyte interface [39–41].
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Figure 7. Galvanostatic charge discharge performance of NCS and CNS electrodes. (a) comparative
GCD profile, (b,c) detailed GCD curves of NCS and CNS electrodes at different current densities,
respectively. (d) The rate performance of NCS and CNS electrodes.

The long-term cyclic stability is another essential feature for battery-type supercapaci-
tor application. The cycling stability of NCS and CNS samples were assessed by continuous
charge/discharge test over 10,000 cycles at a constant current density of 40 A g−1. As shown
in Figure 8, the capacity retention of NCS and CNS electrodes remained 75.70 and 84.70%
after 10,000 cycles, demonstrating excellent cyclic stability of both sulfide-based electrodes.
As expected, CNS electrode shows a good cyclic stability than the NCS electrode, which is
good agreement with the CV and GCD results. The stable cycling performance of the NCS
and CNS electrodes can be related to the unique microspheres-like morphology and their
high reversible redox reactions. Furthermore, the Coulombic efficiency (η) of the NCS and
CNS electrodes was calculated from the charge and discharge times using the Equation (S2).
The Coulombic efficiency of the NCS and CNS electrodes was 100% over the 10,000 cycles
(blue line in Figure 8), demonstrating the remarkable reversibility of the Faradaic reactions.
To further examine the crystalline phase and morphology changes of CNS electrode after
stability study, the XRD and FE-SEM analyses were carried out. As shown in Figure S2, the
crystalline phase and surface morphology of the CNS electrode can be well preserved after
10,000 cycles, which further confirms the long-term durability of this CNS electrode mate-
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rial. The superior electrochemical performances of microspheres-like CNS electrode can
be attributed to the following characteristics: (1) The as-prepared microspheres-like CNS
electrode possesses high electrochemical surface area, which can offer numerous electroac-
tive sites for the intercalation and deintercalation of OH− ions. (2) The microspheres-like
morphology having interconnected CNS primary nanoparticles, which possibly increases
the efficient pathways for bulk diffusion of electrolyte ions. (3) The lower internal resistance
of the CNS electrode can reduce the ion diffusion path, leading to the fast electron transfer
between the electrode and electrolyte interface. (4) The microspheres-like morphology can
prevent the volume changes during the long-term stability due to the highly interconnected
CNS nanoparticles morphology.
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Figure 8. (a,b) Long–term cyclability of the NCS and CNS electrode at 40 A g−1 for 10,000 cycles,
respectively.

Inspired by the enhanced electrochemical properties of microspheres-like CNS elec-
trode, an HSC device was further assembled by utilizing CNS and AC as the positive and
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negative electrode, respectively. Prior to studying the HSC device, the electrochemical
properties of AC electrode were evaluated in a three-electrode system. Figure S3 shows
the CV and GCD profiles of AC analyzed using the 3M KOH electrolyte. The shape of the
CV curves at various scan rates from 10 to 50 mV s−1 was rectangular, indicating electrical
double-layer capacitance (EDLC) property [30,31]. In addition, negative electrode works
stable within the voltage of −1~0 V. The GCD curves show symmetrical profile, signifying
good capacitive behavior of the EDLC. The specific capacitance values of the negative elec-
trode were calculated according to the Equation (S3), and the specific capacitance values
were 178.8, 149.6, 95.5, and 42.0 F g−1 at 1, 2, 5, and 10 A g−1, respectively.

Afterward, an HSC device was constructed using CNS as the positive electrode, AC
as the negative electrode, and 3M KOH aqueous solution as the electrolyte to evaluate
the CNS electrode for real time application. The mass ratio of CNS and AC electrodes
was calculated using the traditional charge balance equation [47]. Based on the specific
capacitance values of positive and negative electrodes, the mass ratio between the CNS
and AC was calculated to be 0.15. The assembled HSC device was named as CNS//AC.
Figure 9a illustrates the CV curves of the CNS and AC electrodes measured in a three-
electrode system at a same sweep rate of 50 mV s−1. The EDLC type AC electrode operated
from −1 to 0 V and the battery-type CNS electrode works within the potential window
of −0.2~0.5 V. Figure 9b shows the CV curves of CNS//AC device at various voltage
windows (from 0−1.0 to 0−1.6 V) under a same scan rate of 50 mV s−1, which clearly
indicates that there is no noticeable polarization until the 1.6 V. Figure 9c shows the detailed
CV curves of the CNS//AC HSC device collected at various scan rates from 10 to 50 mV
s−1, which delivered the both battery-type and EDLC-type electrochemical properties.
As the scan rate increases, the shape of the CV curves was retained well, indicating the
excellent reversibility of the CNS//AC device. Further, Figure 9d demonstrates the GCD
curves of CNS//AC device measured at 1, 3, 5, 10, and 20 A g−1 within the potential
window of 0~1.6 V. The GCD curves with symmetric nature further demonstrate the charge
storage process in the CNS//AC HSC device is highly reversible [30,47]. Specific capacity
values of the HSC device were determined using to the Equation (S1) and the calculated
specific capacity values were high as 188.9, 171.0, 154.8, 130.0, and 84.0 C g−1 at 1, 3, 5,
10, and 20 A g−1, respectively. Remarkably, CNS//AC HSC device shows a high specific
capacity of 188.9 C g−1 at a current density of 1 A g−1, and an excellent capacity retention
of 68.82% was attained when the current density increased from 1 to 10 A g−1 (Figure 9e).
The cycling stability (Figure 9f) of the CNS//AC HSC device was evaluated by continuous
charge/discharge test over 15,000 cycles at 40 A g−1, and a remarkable specific capacity
of 91.79% was retained even after 15,000 cycles and showed a high columbic efficiency
of 99.3%.
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Figure 9. Hybrid supercapacitor performance of CNS//AC device. (a) CV curves of AC and CNS
electrodes at 50 mV s−1, (b) CV curves at different potential windows from 0−1.2 to 0−1.6 V, (c) CV
curves at different scan rates from 10 to 50 mV s−1, (d) GCD curves at different current densities,
(e) plot of specific capacities Vs. different current densities, and (f) long-term stability performance of
the HSC device for 15,000 cycles at 40 A g−1.

The energy density and power density values of the CNS//AC HSC device were
calculated from the discharge curves (Figure 9d) using the Equations (S4) and (S5). Re-
markably, the CNS//AC HSC device delivers a high energy density and power density of
41.98 Wh kg−1 and 800.04 W kg−1, respectively. The energy densities and power densities
of the CNS//AC HSC device, and the reported data for the sulfide-based HSC devices
were compared in a Ragone plot, as presented in Figure 10. The energy densities of the
CNS//AC HSC device were 41.98, 37.78, 34.4, 28.89, and 18.66 Wh kg−1 at the power densi-
ties of 800.04, 2386.11, 3200.0, 8000.0, and 15,944.29 W kg−1, respectively. These values were
greater to those of the previously reported sulfide-based HSC devices such as CNS-3//AC
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(29.66 Wh kg−1 and 1050.55 W kg−1) [48], NiCo2S4 nanotubes//RGO (31.5 Wh kg−1 and
156.6 W kg−1) [49], CoNi2S4 nanosheet arrays//AC (33.9 Wh kg−1 and 409 W kg−1) [21],
Ni1.77Co1.23S4//AC (42.7 Wh kg−1 and 190 W kg−1) [50], Ni0.32Co0.68S2//AC (37.0 Wh kg−1

and 800 W kg−1) [51], NiCo2S4//mesoporous carbon (22.8 Wh kg−1 and 160.0 W kg−1) [30],
NiCo2S4 hollow cages//AC (35.3 Wh kg−1 and 750 W kg−1) [35], NiCo2S4@Co(OH)2//AC
(35.89 Wh kg−1 and 400 W kg−1) [52], NCS-graphene//AC (30.29 Wh kg−1 and 400 W kg−1) [53],
Co9S8-NSA//AC (20.0 Wh kg−1 and 828.5 W kg−1) [54], and NiS//AC (31.0 Wh kg−1

and 900 W kg−1) [55]. For a practical application presentation, the CNS//AC HSC device
was assembled into coin cells to demonstrate the durability in real-time applications. The
images of serially accompanied two-coin cells and the “YU” LEDs pattern prior connecting
with HSCs are shown in Figure 11a,b. Figure 11c,d validates the coin cells can light up
“YU” pattern made up of 14 commercially available green LEDs connected in parallel. This
superior HSC performance suggests that CNS//AC HSC device is suitable candidate for
the next-generation energy storage applications.
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4. Conclusions

In summary, we have demonstrated the facile one-step hydrothermal method to
synthesize microsphere-like NCS and CNS electrode materials for efficient battery-type su-
percapacitor applications. The as-prepared both NCS and CNS bimetallic sulfide electrodes
delivered excellent electrochemical properties such as specific capacity, rate capability, and
long cycle stability in a three electrode-system. Surprisingly, the CNS electrode displayed a
high specific capacity (430.1 C g−1 at a current density of 1 A g−1), better rate capability
(58.14% capacity retention after 20 A g−1), and excellent long-term cycle stability (capacity
retention of 84.7% after 10,000 cycles) than NCS electrode material. Afterward, a high-
performance HSC device was fabricated with CNS as a positive electrode and AC as a
negative electrode. The assembled CNS//AC HSC device delivered a high energy density
of 41.98 Wh kg−1 at a power density of 800.04 W kg−1. Besides, our HSC device maintained
91.79% capacity retention even after 15,000 continuous GCD cycles. These electrochemical
results suggest that the as-prepared NCS and CNS electrode materials are highly suitable
for high-performance battery-type supercapacitors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12244435/s1, The details of materials and electrochemical
characterization; Figure S1: Cyclic voltammetry curves of (a) NCS and (b) CNS electrodes in the non-
Faradaic region at different scan rates from 50 to 250 mV s−1; Figure S2: Crystalline phase and surface
morphology of the CNS electrode after 10000 cycles (a) XRD pattern and (b, c) FE-SEM images; Figure
S3: Supercapacitor performance of negative electrode in the three-electrode system: (a) CV curves at
various scan rates and (b) GCD curves at different current densities; Table S1: EIS fitted parameters
for NCS and CNS electrodes; Table S2: Electrochemical performance comparison of the NCS and CNS
electrode materials with sulfide-based electrode materials. References [17,22,25,38,46,47,52,56–60] are
cited in the Supplementary Materials.
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