Reinforcing Poly(methyl methacrylate) with Bacterial Cellulose Nanofibers Chemically Modified with Methacryolyl Groups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Modifying the Nanofibrillated Bacterial Nanocellulose (NFBC) Surface: Preparing 3-(Methacryloyloxy)Propyltrimethoxysilylated Nanocellulose (MPC)
2.3. Structures and Morphologies of the MPC Samples
2.3.1. Fourier-Transform Infrared (FTIR) Spectroscopy
2.3.2. Solid-State 13C Nuclear Magnetic Resonance (NMR) Spectroscopy
2.3.3. X-ray Diffractometry (XRD)
2.3.4. Thermal Gravimetry (TG)/Differential Thermal Analysis (DTA)
2.3.5. Microscopy
2.4. Transparency Testing
2.5. Preparing Poly(Methyl Methacrylate) (PMMA)/MPC Composites and Measuring Their Transparencies
2.6. Tensile Mechanical Testing
3. Results and Discussion
3.1. Characterizing the MPC Structures
3.1.1. FTIR Spectroscopy
3.1.2. Solid-State 13C Nuclear Magnetic Resonance (NMR) Spectroscopy
3.1.3. X-ray Diffraction (XRD)
3.1.4. Thermal Properties
3.2. MPC Sample Morphologies
3.3. Dispersion States of the Silane-Modified NFBC Samples in Water and Chloroform
3.4. Composites with PMMA
3.5. Mechanical Properties of the PMMA Composites
3.6. Interaction between the MPC Surface and PMMA at the Molecular Level
3.7. Applying NFBCs Surface-Modified with Organosilanes
3.8. Silicon Atom States on the MPC Surface
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, U.; Karim, K.J.B.A.; Buang, N.A. A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Aldegheishem, A.; AlDeeb, M.; Al-Ahdal, K.; Helmi, M.; Alsagob, E.I. Influence of reinforcing agents on the mechanical properties of denture base resin: A systematic review. Polymers 2021, 13, 3083. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.S. Prosthodontic applications of polymethyl methacrylate (PMMA): An update. Polymers 2021, 13, 2299. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.M.; Fouda, S.M.; A Al-Harbi, F.; Näpänkangas, R.; Raustia, A. PMMA denture base material enhancement: A review of fiber, filler, and nanofiller addition. Int. J. Nanomed. 2017, 12, 3801–3812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, J.; Han, S. Mechanical properties of glass-fibre mat/PMMA functionally gradient composite. Compos. Part A Appl. Sci. Manuf. 1999, 30, 1045–1053. [Google Scholar] [CrossRef]
- Salih, S.I.; Al.gabban, A.M.; Abdalsalam, A.H. Preparation and characterization of PMMA-HDPE and HDPE-PMMA binary polymer blends. J. Eng. Technol. 2017, 35, 311–317. [Google Scholar]
- He, X.; Qu, Y.; Peng, J.; Peng, T.; Qian, Z. A novel botryoidal aramid fiber reinforcement of a PMMA resin for a restorative biomaterial. Biomater. Sci. 2017, 5, 808–816. [Google Scholar] [CrossRef]
- Tumnantong, D.; Rempel, G.L.; Prasassarakich, P. Preparation of poly(methyl methacrylate)-Silica nanoparticles via differential microemulsion polymerization and physical properties of NR/PMMA-SiO2 hybrid membranes. Polym. Eng. Sci. 2018, 58, 759–766. [Google Scholar] [CrossRef]
- Wildner, W.; Drummer, D. The mechanical andoptical properties of injection-moulded PMMA, filled with glass particles of a matching refractive index. Polym. Polym. Compos. 2017, 25, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, K.; Malmos, K.; Holm, A.H.; Pedersen, S.U.; Daasbjerg, K.; Hinge, M. Improved adhesion between PMMA and stainless steel modified with PMMA brushes. ACS Appl. Mater. Interfaces 2014, 6, 21308–21315. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H.; Hwang, S.W.; Jung, B.N.; Kang, D.; Shim, J.K.; Seo, K.H. Effect of PMMA/Silica hybrid particles on interfacial adhesion and crystallization properties of poly(lactic acid)/block acrylic elastomer composites. Polymers 2020, 12, 2231. [Google Scholar] [CrossRef] [PubMed]
- Yanli, C. Enhanced interfacial adhesion between PMMA and carbon fiber by graphene oxide coating. Compos. Interfaces 2019, 26, 41–51. [Google Scholar] [CrossRef]
- Kono, H.; Uno, T.; Tsujisaki, H.; Matsushima, T.; Tajima, K. Nanofibrillated bacterial cellulose modified with (3-Aminopropyl)trimethoxysilane under aqueous conditions: Applications to poly(methyl methacrylate) fiber-reinforced nanocomposites. ACS Omega 2020, 5, 29561–29569. [Google Scholar] [CrossRef] [PubMed]
- Karbhari, V.M.; Strassler, H. Effect of fiber architecture on flexural characteristics and fracture of fiber-reinforced dental composites. Dent. Mater. 2007, 23, 960–968. [Google Scholar] [CrossRef]
- Uyar, T.; Çökeliler, D.; Doğan, M.; Koçum, I.C.; Karatay, O.; Denkbaş, E.B. Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach. Mater. Sci. Eng. C 2016, 62, 762–770. [Google Scholar] [CrossRef]
- Park, S.Y.; Yook, S.; Goo, S.; Im, W.; Youn, H.J. Preparation of transparent and thick CNF/epoxy composites by controlling the properties of cellulose nanofibrils. Nanomaterials 2020, 10, 625. [Google Scholar] [CrossRef] [Green Version]
- Barari, B.; Ellingham, T.K.; Qamhia, I.; Pillai, K.M.; El-Hajjar, R.; Turng, L.-S.; Sabo, R. Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process. Compos. Part B Eng. 2016, 84, 277–284. [Google Scholar] [CrossRef]
- Isogai, A. Cellulose Nanofibers: Recent progress and future prospects. J. Fiber Sci. Technol. 2020, 76, 310–326. [Google Scholar] [CrossRef]
- Wang, J.; Tavakoli, J.; Tang, Y. Bacterial cellulose production, properties and applications with different culture methods—A review. Carbohydr. Polym. 2019, 219, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Swingler, S.; Gupta, A.; Gibson, H.; Kowalczuk, M.; Heaselgrave, W.; Radecka, I. Recent advances and applications of bacterial cellulose in biomedicine. Polymers 2021, 13, 412. [Google Scholar] [CrossRef]
- Poddar, M.K.; Dikshit, P.K. Recent development in bacterial cellulose production and synthesis of cellulose based conductive polymer nanocomposites. Nano Sel. 2021, 2, 1605–1628. [Google Scholar] [CrossRef]
- Tajima, K.; Tahara, K.; Ohba, J.; Kusumoto, R.; Kose, R.; Kono, H.; Matsushima, T.; Fushimi, K.; Isono, T.; Yamamoto, T.; et al. Detailed structural analyses of nanofibrillated bacterial cellulose and its application as binder material for a display device. Biomacromolecules 2019, 21, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Tajima, K.; Kusumoto, R.; Kose, R.; Kono, H.; Matsushima, T.; Isono, T.; Yamamoto, T.; Satoh, T. One-step production of amphiphilic nanofibrillated cellulose using a cellulose-producing bacterium. Biomacromolecules 2017, 18, 3432–3438. [Google Scholar] [CrossRef] [PubMed]
- Kose, R.; Sunagawa, N.; Yoshida, M.; Tajima, K. One-step production of nanofibrillated bacterial cellulose (NFBC) from waste glycerol using Gluconacetobacter intermedius NEDO-01. Cellulose 2013, 20, 2971–2979. [Google Scholar] [CrossRef]
- Kono, H.; Uno, T.; Tsujisaki, H.; Anai, H.; Kishimoto, R.; Matsushima, T.; Tajima, K. Nanofibrillated bacterial cellulose surface modified with methyltrimethoxysilane for fiber-reinforced composites. ACS Appl. Nano Mater. 2020, 3, 8232–8241. [Google Scholar] [CrossRef]
- Missoum, K.; Belgacem, M.N.; Bras, J. Nanofibrillated cellulose surface modification: A review. Materials 2013, 6, 1745–1766. [Google Scholar] [CrossRef] [Green Version]
- Tortorella, S.; Buratti, V.V.; Maturi, M.; Sambri, L.; Franchini, M.C.; Locatelli, E. Surface-modified nanocellulose for application in biomedical engineering and nanomedicine: A review. Int. J. Nanomed. 2020, ume 15, 9909–9937. [Google Scholar] [CrossRef]
- Kono, H.; Tsukamoto, E.; Tajima, K. Facile post-carboxymethylation of cellulose nanofiber surfaces for enhanced water dispersibility. ACS Omega 2021, 6, 34107–34114. [Google Scholar] [CrossRef]
- Delgado, A.H.S.; Young, A.M. Methacrylate peak determination and selection recommendations using ATR-FTIR to investigate polymerisation of dental methacrylate mixtures. PLoS ONE 2021, 16, e0252999. [Google Scholar] [CrossRef]
- Kono, H.; Yunoki, S.; Shikano, T.; Fujiwara, M.; Erata, T.; Takai, M. CP/MAS 13C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS 13C NMR spectrum of the native cellulose. J. Am. Chem. Soc. 2002, 124, 7506–7511. [Google Scholar] [CrossRef]
- Ek, S.; Iiskola, A.E.I.; Niinistö, L.; Vaittinen, J.; Pakkanen, T.T.; Root, A. A 29Si and 13C CP/MAS NMR study on the surface species of gas-phase-deposited γ-aminopropylalkoxysilanes on heat-treated silica. J. Phys. Chem. B 2004, 108, 11454–11463. [Google Scholar] [CrossRef]
- Sirovica, S.; Solheim, J.H.; Skoda, M.W.A.; Hirschmugl, C.J.; Mattson, E.C.; Aboualizadeh, E.; Guo, Y.; Chen, X.; Kohler, A.; Romanyk, D.L.; et al. Origin of micro-scale heterogeneity in polymerisation of photo-activated resin composites. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joyee, E.B.; Lu, L.; Pan, Y. Analysis of mechanical behavior of 3D printed heterogeneous particle-polymer composites. Compos. Part B Eng. 2019, 173, 106840. [Google Scholar] [CrossRef]
- Johanson, K.; Harper, L.; Johnson, M.; Warrior, N. Heterogeneity of discontinuous carbon fibre composites: Damage initiation captured by Digital Image Correlation. Compos. Part A Appl. Sci. Manuf. 2015, 68, 304–312. [Google Scholar] [CrossRef]
- Bee, S.-L.; Abdullah, M.; Mamat, M.; Sin, L.T.; Hui, D.; Rahmat, A. Characterization of silylated modified clay nanoparticles and its functionality in PMMA. Compos. Part B Eng. 2017, 110, 83–95. [Google Scholar] [CrossRef]
- Chaijareenont, P.; Takahashi, H.; Nishiyama, N.; Arksornnukit, M. Effects of silane coupling agents and solutions of different polarity on PMMA bonding to alumina. Dent. Mater. J. 2012, 31, 610–616. [Google Scholar] [CrossRef] [Green Version]
- Chaijareenont, P.; Takahashi, H.; Nishiyama, N.; Arksornnukit, M. Effect of different amounts of 3-methacryloxypropyltrimethoxysilane on the flexural properties and wear resistance of alumina reinforced PMMA. Dent. Mater. J. 2012, 31, 623–628. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Zhao, J.; Zhu, J.; Guo, X.; Chen, P.; Duan, G.; Liu, X.; Li, Y. A mussel-inspired polydopamine-filled cellulose aerogel for solar-enabled water remediation. ACS Appl. Mater. Interfaces 2021, 13, 7617–7624. [Google Scholar] [CrossRef]
- Fatima, A.; Yasir, S.; Khan, M.S.; Manan, S.; Ullah, M.W.; Ul-Islam, M. Plant extract-loaded bacterial cellulose composite membrane for potential biomedical applications. J. Bioresour. Bioprod. 2021, 6, 26–32. [Google Scholar] [CrossRef]
- Deeksha, B.; Sadanand, V.; Hariram, N.; Rajulu, A.V. Preparation and properties of cellulose nanocomposite fabrics with in situ generated silver nanoparticles by bioreduction method. J. Bioresour. Bioprod. 2021, 6, 75–81. [Google Scholar] [CrossRef]
- Mäkilä, E.; Bimbo, L.M.; Kaasalainen, M.; Herranz, B.; Airaksinen, A.; Heinonen, M.; Kukk, E.; Hirvonen, J.T.; Santos, H.A.; Salonen, J. Amine modification of thermally carbonized porous silicon with silane coupling chemistry. Langmuir 2012, 28, 14045–14054. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Hill, C.A.; Xiao, Z.; Militz, H.; Mai, C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 806–819. [Google Scholar] [CrossRef]
APC 1 Concentration/wt% | Tension Strain Limit/% | Tension Stress Limit/MPa | Young’s Modulus/GPa |
---|---|---|---|
0 1 | 2.3 ± 0.3 | 22.1 ± 0.6 | 1.7 ± 0.1 |
0.05 | 2.7 ± 0.5 | 28.6 ± 0.7 | 2.4 ± 0.2 |
0.10 | 2.8 ± 0.4 | 34.2 ± 0.9 | 3.1 ± 0.2 |
0.25 | 2.4 ± 0.4 | 31.2 ± 1.1 | 2.9 ± 0.2 |
0.50 | 2.3 ± 0.4 | 24.0 ± 1.0 | 2.1 ± 0.2 |
1.0 | 2.2 ± 0.5 | 19.8 ± 0.6 | 1.6 ± 0.1 |
2.0 | 1.9 ± 0.7 | 16.2 ± 1.4 | 1.4 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kono, H.; Tsujisaki, H.; Tajima, K. Reinforcing Poly(methyl methacrylate) with Bacterial Cellulose Nanofibers Chemically Modified with Methacryolyl Groups. Nanomaterials 2022, 12, 537. https://doi.org/10.3390/nano12030537
Kono H, Tsujisaki H, Tajima K. Reinforcing Poly(methyl methacrylate) with Bacterial Cellulose Nanofibers Chemically Modified with Methacryolyl Groups. Nanomaterials. 2022; 12(3):537. https://doi.org/10.3390/nano12030537
Chicago/Turabian StyleKono, Hiroyuki, Haruto Tsujisaki, and Kenji Tajima. 2022. "Reinforcing Poly(methyl methacrylate) with Bacterial Cellulose Nanofibers Chemically Modified with Methacryolyl Groups" Nanomaterials 12, no. 3: 537. https://doi.org/10.3390/nano12030537
APA StyleKono, H., Tsujisaki, H., & Tajima, K. (2022). Reinforcing Poly(methyl methacrylate) with Bacterial Cellulose Nanofibers Chemically Modified with Methacryolyl Groups. Nanomaterials, 12(3), 537. https://doi.org/10.3390/nano12030537