Excellent Energy Storage Performance in Bi(Fe0.93Mn0.05Ti0.02)O3 Modified CaBi4Ti4O15 Thin Film by Adjusting Annealing Temperature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, F.; Huang, K.W.; Jiang, T.; Zhou, X.F.; Shi, Y.J.; Ge, G.L.; Shen, B.; Zhai, J.W. Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Storage Mater. 2020, 30, 392–400. [Google Scholar] [CrossRef]
- Yao, Z.H.; Song, Z.; Hao, H.; Yu, Z.Y.; Cao, M.; Zhang, S.; Lanagan, M.T.; Liu, H.X. Homogeneous/Inhomogeneous-Structured Dielectrics and Their Energy-Storage Performances. Adv. Mater. 2017, 29, 1601727. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Shi, Y.J.; Zhou, X.F.; Zhu, K.; Shen, B.; Zhai, J.W. Optimization of polarization and electric field of bismuth ferrite-based ceramics for capacitor applications. Chem. Eng. J. 2021, 417, 127945. [Google Scholar] [CrossRef]
- Silva, J.P.B.; Silva, J.M.B.; Oliveira, M.J.S.; Weingärtner, T.; Sekhar, K.C.; Pereira, M.; Gomes, M.J.M. High-Performance Ferroelectric-Dielectric Multilayered Thin Films for Energy Storage Capacitors. Adv. Funct. Mater. 2018, 29, 1807196. [Google Scholar] [CrossRef]
- Wang, W.W.; Qian, J.; Geng, C.H.; Fan, M.J.; Yang, C.H.; Lu, L.C.; Cheng, Z.X. Flexible Lead-Free Ba0.5Sr0.5TiO3/0.4BiFeO3-0.6SrTiO3 Dielectric Film Capacitor with High Energy Storage Performance. Nanomaterials 2021, 11, 3065. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Lu, Z.L.; Li, Y.; Li, L.H.; Ji, H.F.; Feteira, A.; Zhou, D.; Wang, D.W.; Zhang, S.J.; Reaney, I.M. Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives. Chem. Rev. 2021, 121, 6124–6172. [Google Scholar] [CrossRef] [PubMed]
- Palneedi, H.; Peddigari, M.; Hwang, G.-T.; Jeong, D.-Y.; Ryu, J. High-Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook. Adv. Funct. Mater. 2018, 28, 1803665. [Google Scholar] [CrossRef]
- Qian, J.; Han, Y.J.; Yang, C.H.; Lv, P.P.; Zhang, X.F.; Feng, C.; Lin, X.J.; Huang, S.F.; Cheng, X.; Cheng, Z.X. Energy storage performance of flexible NKBT/NKBT-ST multilayer film capacitor by interface engineering. Nano Energy 2020, 74, 104862. [Google Scholar] [CrossRef]
- Chu, B.J.; Zhou, X.; Ren, K.L.; Neese, B.; Lin, M.; Wang, Q.; Bauer, F.; Zhang, Q.M. A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed. Science 2006, 313, 334–336. [Google Scholar] [CrossRef]
- Fan, Z.J.; Li, L.L.; Mei, X.S.; Zhao, F.; Li, H.J.; Zhuo, X.S.; Zhang, X.F.; Lu, Y.; Zhang, L.; Liu, M. Multilayer ceramic film capacitors for high performance energy storage: Progress and outlook. J. Mater. Chem. A 2021, 9, 946. [Google Scholar] [CrossRef]
- Dang, Z.M. Dielectric Polymer Materials for High-Density Energy Storage; William Andrew: Norwich, NY, USA, 2018. [Google Scholar]
- Yang, B.B.; Guo, M.Y.; Tang, X.W.; Wei, R.H.; Hu, L.; Yang, J.; Song, W.H.; Dai, J.M.; Lou, X.J.; Zhu, X.B.; et al. Lead-free A2Bi4Ti5O18 thin film capacitors (A = Ba and Sr) with large energy storage density, high efficiency, and excellent thermal stability. J. Mater. Chem. C 2019, 7, 1888–1895. [Google Scholar] [CrossRef]
- Yang, B.B.; Guo, M.Y.; Jin, L.H.; Tang, X.W.; Wei, R.H.; Hu, L.; Yang, J.; Song, W.H.; Dai, J.M.; Lou, X.J.; et al. Ultrahigh energy storage in lead-free BiFeO3/Bi3.25La0.75Ti3O12 thin film capacitors by solution processing. Appl. Phys. Lett. 2018, 112, 033904. [Google Scholar] [CrossRef]
- Chen, P.; Chu, B.J. Improvement of dielectric and energy storage properties in Bi(Mg1/2Ti1/2)O3-modified (Na1/2Bi1/2)0.92Ba0.08TiO3 ceramics. J. Eur. Ceram. Soc. 2016, 36, 81–88. [Google Scholar] [CrossRef]
- Burn, I.; Smyth, D.M. Energy Storage in Ceramic Dielectrics. J. Mater. Sci. 1972, 7, 339–343. [Google Scholar] [CrossRef]
- Lv, P.P.; Yang, C.H.; Qian, J.; Wu, H.T.; Huang, S.F.; Cheng, X.; Cheng, Z.X. Flexible Lead-Free Perovskite Oxide Multilayer Film Capacitor Based on (Na0.8K0.2)0.5Bi0.5TiO3/Ba0.5Sr0.5(Ti0.97Mn0.03)O3 for High-Performance Dielectric Energy Storage. Adv. Energy Mater. 2020, 10, 1904229. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Q.; Gao, J.; Zhang, S.; Li, J.F. Lead-Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance. Adv. Mater. 2017, 29, 1701824. [Google Scholar] [CrossRef]
- Li, Y.Z.; Lin, J.L.; Bai, Y.; Li, Y.X.; Zhang, Z.D.; Wang, Z.J. Ultrahigh-Energy Storage Properties of (PbCa)ZrO3 Antiferroelectric Thin Films via Constructing a Pyrochlore Nanocrystalline Structure. ACS Nano 2020, 14, 6857–6865. [Google Scholar] [CrossRef]
- Qi, H.; Xie, A.; Tian, A.; Zuo, R. Superior Energy-Storage Capacitors with Simultaneously Giant Energy Density and Efficiency Using Nanodomain Engineered BiFeO3-BaTiO3-NaNbO3 Lead-Free Bulk Ferroelectrics. Adv. Energy Mater. 2020, 10, 1903338. [Google Scholar] [CrossRef]
- Kato, K.; Zheng, C.; Finder, J.M.; Dey, S.K. Sol-Gel Route to Ferroelectric Layer-Structured Perovskite SrBi2Ta2O9 and SrBi2Nb2O9 Thin Films. J. Am. Ceram. Soc. 1998, 81, 1869–1875. [Google Scholar] [CrossRef]
- Osaka, T.; Sakakibara, A.; Seki, T.; Ono, S.; Koiwa, I.; Hashimoto, A. Phase Transition in Ferroelectric SrBi2Ta2O9 Thin Films with Change of Heat-treatment Temperature. Jpn. J. Appl. Phys. 1998, 37, 597–601. [Google Scholar] [CrossRef]
- Cheng, C.-M.; Chen, K.-H.; Tsai, J.-H.; Wu, C.-L. Solution-based fabrication and electrical properties of CaBi4Ti4O15 thin films. Ceram. Int. 2012, 38, S87–S90. [Google Scholar] [CrossRef]
- Dubey, S.; Kurchania, R. Study of dielectric and ferroelectric properties of five-layer Aurivillius oxides: A2Bi4Ti5O18 (A = Ba, Pb and Sr) synthesized by solution combustion route. Bull. Mater. Sci. 2015, 38, 1881–1889. [Google Scholar] [CrossRef] [Green Version]
- Park, B.H.; Kang, B.S.; Bu, S.D.; Noh, T.W.; Lee, J.; Jo, W. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 1999, 401, 682–684. [Google Scholar] [CrossRef]
- Scott, J.F.; Ross, F.M.; Paz de Araujo, C.A.; Scott, M.C.; Huffman, M. Structure and Device Characteristics of SrBi2Ta2O9-Based Nonvolatile Random-Access Memories. MRS Bull. 1996, 21, 33–39. [Google Scholar] [CrossRef]
- Shet, T.; Bhimireddi, R.; Varma, K.B.R. Grain size-dependent dielectric, piezoelectric and ferroelectric properties of Sr2Bi4Ti5O18 ceramics. J. Mater. Sci. 2016, 51, 9253–9266. [Google Scholar] [CrossRef]
- Yang, B.B.; Guo, M.Y.; Song, D.P.; Tang, X.W.; Wei, R.H.; Hu, L.; Yang, J.; Song, W.H.; Dai, J.M.; Lou, X.J.; et al. Bi3.25La0.75Ti3O12 thin film capacitors for energy storage applications. Appl. Phys. Lett. 2017, 111, 183903. [Google Scholar] [CrossRef]
- Pan, Z.B.; Wang, P.; Hou, X.; Yao, L.M.; Zhang, G.Z.; Wang, J.; Liu, J.J.; Shen, M.; Zhang, Y.J.; Jiang, S.L.; et al. Fatigue-Free Aurivillius Phase Ferroelectric Thin Films with Ultrahigh Energy Storage Performance. Adv. Energy Mater. 2020, 10, 2001536. [Google Scholar] [CrossRef]
- Tomar, M.S.; Melgarejo, R.E.; Hidalgo, A.; Mazumder, S.B.; Katiyar, R.S. Structural and ferroelectric studies of Bi3.44La0.56Ti3O12 films. Appl. Phys. Lett. 2003, 83, 341. [Google Scholar] [CrossRef]
- Do, D.; Kim, S.S.; Kim, J.W.; Lee, Y.I.; Bhalla, A.S. Orientation Dependence of Ferroelectric and Dielectric Properties in CaBi4Ti4O15 Thin Films. Integr. Ferroelectr. 2009, 105, 99–106. [Google Scholar] [CrossRef]
- Kato, K.; Suzuki, K.; Nishizawa, K.; Miki, T. Ferroelectric properties of alkoxy-derived CaBi4Ti4O15 thin films on Pt-passivated Si. Appl. Phys. Lett. 2001, 78, 1119. [Google Scholar] [CrossRef]
- Kato, K.; Fu, D.; Suzuki, K.; Tanaka, K.; Nishizawa, K.; Miki, T. Ferro- and piezoelectric properties of polar-axis-oriented CaBi4Ti4O15 films. Appl. Phys. Lett. 2004, 84, 3771. [Google Scholar] [CrossRef]
- Kato, K.; Tanaka, K.; Suzuki, K.; Kimura, T.; Nishizawa, K.; Miki, T. Impact of oxygen ambient on ferroelectric properties of polar-axis-oriented CaBi4Ti4O15 films. Appl. Phys. Lett. 2005, 86, 112901. [Google Scholar] [CrossRef]
- Kim, S.S.; Kim, W.-J. Electrical properties of sol-gel derived pyrochlore-type bismuth magnesium niobate Bi2(Mg1/3Nb2/3)2O7 thin films. J. Cryst. Growth 2005, 281, 432–439. [Google Scholar] [CrossRef]
- Kim, S.S.; Park, M.H.; Chung, J.K.; Kim, W.-J. Structural study of a sol-gel derived pyrochlore Bi2Ti2O7 using a Rietveld analysis method based on neutron scattering studies. J. Appl. Phys. 2009, 105, 061641. [Google Scholar] [CrossRef]
- Cho, S.Y.; Choi, G.P.; Jeon, D.H.; Johnson, T.A.; Lee, M.K.; Lee, G.J.; Bu, S.D. Effects of excess Bi2O3 on grain orientation and electrical properties of CaBi4Ti4O15 ceramics. Curr. Appl. Phys. 2015, 15, 1332–1336. [Google Scholar] [CrossRef]
- kato, k.; Suzuki, k.; tanaka, k.; Fu, D.; Nishizawa, k.; Miki, T. Effect of amorphous TiO2 buffer layer on the phase formation of CaBi4Ti4O15 ferroelectric thin films. Appl. Phys. A 2005, 81, 861–864. [Google Scholar] [CrossRef]
- Jiao, L.L.; Liu, Z.M.; Hu, G.D.; Cui, S.G.; Jin, Z.J.; Wang, Q.; Wu, W.B.; Yang, C.H. Low-Temperature Fabrication and Enhanced Ferro- and Piezoelectric Properties of Bi3.7Nd0.3Ti3O12 Films on Indium Tin Oxide/Glass Substrates. J. Am. Ceram. Soc. 2009, 92, 1556–1559. [Google Scholar] [CrossRef]
- Zheng, X.J.; Yang, Z.Y.; Zhou, Y.C. Residual stresses in Pb(Zr0.52Ti0.48)O3 thin films deposited by metal organic decomposition. Scr. Mater. 2003, 49, 71–76. [Google Scholar] [CrossRef]
- Hu, G.D. Orientation dependence of ferroelectric and piezoelectric properties of Bi3.15Nd0.85Ti3O12 thin films on Pt(100)/TiO2/SiO2/Si substrates. J. Appl. Phys. 2006, 100, 096109. [Google Scholar] [CrossRef]
- Yan, J.; Hu, G.D.; Liu, Z.M.; Fan, S.H.; Zhou, Y.; Yang, C.H.; Wu, W.B. Enhanced ferroelectric properties of predominantly (100)-oriented CaBi4Ti4O15 thin films on Pt/Ti/SiO2/Si substrates. J. Appl. Phys. 2008, 103, 056109. [Google Scholar] [CrossRef]
- Hu, G.L.; Ma, C.R.; Wei, W.Z.; Sun, X.; Lu, L.; Mi, S.B.; Liu, M.; Ma, B.H.; Wu, J.; Jia, C.L. Enhanced energy density with a wide thermal stability in epitaxial Pb0.92La0.08Zr0.52Ti0.48O3 thin films. Appl. Phys. Lett. 2016, 109, 193904. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Trolier-McKinstry, S.; Ren, W.; Xu, B.M.; Xie, Z.-L.; Hemker, K.J. Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films. J. Appl. Phys. 2001, 89, 1336–1348. [Google Scholar] [CrossRef]
- Cruz, J.P.D.L.; Joanni, E.; Vilarinho, P.M.; Kholkin, A.L. Thickness effect on the dielectric, ferroelectric, and piezoelectric properties of ferroelectric lead zirconate titanate thin films. J. Appl. Phys. 2010, 108, 114106. [Google Scholar] [CrossRef] [Green Version]
- Weibull, W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 1951, 73, 293–297. [Google Scholar] [CrossRef]
- Tunkasiri, T.; Rujijanagul, G. Dielectric Strength of Fine Grained Barium Titanate Ceramics. J. Mater. Sci. Lett. 1996, 15, 1767–1769. [Google Scholar] [CrossRef]
- Waser, R. TrI4: The Role of Grain Boundaries in Conduction and Breakdown of Perovskite-Type Titanates. Ferroelectrics 1992, 133, 109–114. [Google Scholar] [CrossRef]
- Frey, M.H.; Xu, Z.; Han, P.; Payne, D.A. The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics. Ferroelectrics 1998, 206, 337. [Google Scholar] [CrossRef]
- Hoshina, T.; Furuta, T.; Kigoshi, Y.; Hatta, S.; Horiuchi, N.; Takeda, H.; Tsurumi, T. Size Effect of Nanograined BaTiO3 Ceramics Fabricated by Aerosol Deposition Method. Jpn. J. Appl. Phys. 2010, 49, 09MC02. [Google Scholar] [CrossRef]
- Deng, X.Y.; Wang, X.H.; Wen, H.; Chen, L.L.; Chen, L.; Li, L.T. Ferroelectric properties of nanocrystalline barium titanate ceramics. Appl. Phys. Lett. 2006, 88, 252905. [Google Scholar] [CrossRef]
- Sarkar, S.; Jana, P.K.; Chaudhuri, B.K. Colossal internal barrier layer capacitance effect in polycrystalline copper (II) oxide. Appl. Phys. Lett. 2008, 92, 022905. [Google Scholar] [CrossRef]
- Yang, C.H.; Feng, C.; Lv, P.P.; Qian, J.; Han, Y.J.; Lin, X.J.; Huang, S.F.; Cheng, X.; Cheng, Z.X. Coexistence of giant positive and large negative electrocaloric effects in lead-free ferroelectric thin film for continuous solid-state refrigeration. Nano Energy 2021, 88, 106222. [Google Scholar] [CrossRef]
- Wang, X.Z.; Huan, Y.; Zhao, P.Y.; Liu, X.M.; Wei, T.; Zhang, Q.W.; Wang, X.H. Optimizing the grain size and grain boundary morphology of (K,Na) NbO3-based ceramics: Paving the way for ultrahigh energy storage capacitors. J. Mater. 2021, 7, 780–789. [Google Scholar] [CrossRef]
- Chao, X.L.; Ren, X.D.; Zhang, X.S.; Peng, Z.H.; Wang, J.J.; Liang, P.F.; Wu, D.; Yang, Z.P. Excellent optical transparency of potassium-sodium niobate-based lead-free relaxor ceramics induced by fine grains. J. Eur. Ceram. Soc. 2019, 39, 3684–3692. [Google Scholar] [CrossRef]
- Watson, J.; Castro, G. High-Temperature Electronics Pose Design and Reliability Challenges. Analog Dialog. 2012, 46, 1–9. [Google Scholar]
- Johnson, R.W.; Evans, J.L.; Jacobsen, P.; Thompson, J.R.; Christopher, M. The Changing Automotive Environment: High-Temperature Electronics. IEEE Trans. Electron. Packag. Manuf. 2005, 27, 164–176. [Google Scholar] [CrossRef]
- Li, Q.; Chen, L.; Gadinski, M.R.; Zhang, S.H.; Zhang, G.Z.; Li, H.U.; Iagodkine, E.; Haque, A.; Chen, L.-Q.; Jackson, T.N.; et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015, 523, 576–579. [Google Scholar] [CrossRef]
- Yan, J.; Wang, Y.L.; Wang, C.M.; Ouyang, J. Boosting energy storage performance of low-temperature sputtered CaBi2Nb2O9 thin film capacitors via rapid thermal annealing. J. Adv. Ceram. 2021, 10, 627–635. [Google Scholar] [CrossRef]
- Yang, B.B.; Guo, M.Y.; Song, D.P.; Tang, X.W.; Wei, R.H.; Hu, L.; Yang, J.; Song, W.H.; Dai, J.M.; Lou, X.J.; et al. Energy storage properties in BaTiO3-Bi3.25La0.75Ti3O12 thin films. Appl. Phys. Lett. 2018, 113, 183902. [Google Scholar] [CrossRef]
- Tang, Z.; Chen, J.Y.; Yang, B.; Zhao, S.F. Energy storage performances regulated by layer selection engineering for doping in multi-layered perovskite relaxor ferroelectric films. Appl. Phys. Lett. 2019, 114, 163901. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Wang, W.; Qian, J.; Li, Q.; Fan, M.; Yang, C.; Huang, S.; Lu, L. Excellent Energy Storage Performance in Bi(Fe0.93Mn0.05Ti0.02)O3 Modified CaBi4Ti4O15 Thin Film by Adjusting Annealing Temperature. Nanomaterials 2022, 12, 730. https://doi.org/10.3390/nano12050730
Liu T, Wang W, Qian J, Li Q, Fan M, Yang C, Huang S, Lu L. Excellent Energy Storage Performance in Bi(Fe0.93Mn0.05Ti0.02)O3 Modified CaBi4Ti4O15 Thin Film by Adjusting Annealing Temperature. Nanomaterials. 2022; 12(5):730. https://doi.org/10.3390/nano12050730
Chicago/Turabian StyleLiu, Tong, Wenwen Wang, Jin Qian, Qiqi Li, Mengjia Fan, Changhong Yang, Shifeng Huang, and Lingchao Lu. 2022. "Excellent Energy Storage Performance in Bi(Fe0.93Mn0.05Ti0.02)O3 Modified CaBi4Ti4O15 Thin Film by Adjusting Annealing Temperature" Nanomaterials 12, no. 5: 730. https://doi.org/10.3390/nano12050730
APA StyleLiu, T., Wang, W., Qian, J., Li, Q., Fan, M., Yang, C., Huang, S., & Lu, L. (2022). Excellent Energy Storage Performance in Bi(Fe0.93Mn0.05Ti0.02)O3 Modified CaBi4Ti4O15 Thin Film by Adjusting Annealing Temperature. Nanomaterials, 12(5), 730. https://doi.org/10.3390/nano12050730