Review of Highly Mismatched III-V Heteroepitaxy Growth on (001) Silicon
Abstract
:1. Introduction
2. Basic Challenges of III-V Hetero-Epitaxy on Si (001)
2.1. Lattice Mismatch
2.2. Thermal Expansion Coefficient Mismatch
2.3. Anti-Phase Boundary
2.4. Threading Dislocation Density
2.5. Stacking Faults
3. Defect Solution for III-V Hetero-Epitaxy on (001) Silicon Wafer
3.1. Surface Treatment for Si Substrate
3.2. Process Optimization for III-V Heteroepitaxy Growth
3.2.1. Miscut Si Substrate
3.2.2. Bulk Hetero-Epitaxial Growth of III-V Thin Films on Si Substrate
3.2.3. Selective Epitaxial Growth (SEG)
4. Latest Approach of Heteroepitaxy of Si-Based III-V Group Materials
4.1. III-V Thin Films Hetero-Epitaxial Grow on Si Wafer-Scale
4.1.1. APB-Free of III-V on Miscut Ge/Si Substrates
4.1.2. TDD-Reduction of III-V by Inserting Buffer Layers
4.1.3. TDD-Reduction of III-V by Thermal Annealing
4.1.4. TDD-Reduction of III-V by Multi-Step Epitaxial Growth
4.1.5. TDD-Reduction of III-V by Inserting Strained-Layer Superlattices Layer
4.2. III-V Thin Films Selective Epitaxial Growth on Si Wafer-Scale
4.2.1. Aspect Ratio Trapping Technology (ART)
4.2.2. Epitaxial Lateral Overgrowth (ELO)
5. Conclusions and Outlooks
Author Contributions
Funding
Conflicts of Interest
References
- Radamson, H.H.; Zhu, H.L.; Wu, Z.H.; He, X.B.; Lin, H.X.; Liu, J.B.; Xiang, J.J.; Kong, Z.Z.; Xiong, W.; Li, J.; et al. State of the Art and Future Perspectives in Advanced CMOS Technology. Nanomaterials 2020, 10, 1555. [Google Scholar] [CrossRef] [PubMed]
- Fisher, G.; Seacrist, M.R.; Standley, R.W. Silicon Crystal Growth and Wafer Technologies. Proc. IEEE 2012, 100, 1454–1474. [Google Scholar] [CrossRef]
- Radamson, H.H.; Luo, J.; Simoen, E.; Zhao, C. CMOS Past, Present and Future; Woodhead Publishing: Cambridge, UK, 2018; ISBN 9780081021392. [Google Scholar]
- Wang, T.; Zhang, J.J.; Liu, H.T. Quantum dot lasers on silicon substrate for silicon photonic integration and their prospect. Acta. Phys. Sin. 2015, 20, 64. [Google Scholar] [CrossRef]
- Riel, H.; Wernersson, L.E.; Hong, M.; Alamo, J.A. III-V compound semiconductor transistors-from planar to nanowire structures. MRS Bull. 2014, 39, 668–677. [Google Scholar] [CrossRef] [Green Version]
- Convertino, C.; Zota, C.; Schmid, H.; Ionescu, A.M.; Moselund, K. III-V heterostructure tunnel field-effect transistor. J. Phys. Condens. Matter 2018, 30, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Alamo, J.A. Scaling behavior of In0.7Ga0.3As HEMTs for logic. In Proceedings of the 2006 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 11–13 December 2006; pp. 1–4. [Google Scholar] [CrossRef]
- Suemitsu, T. GaAs- and InP-Based High-Electron-Mobility Transistors. In Comprehensive Semiconductor Science and Technology; Elsevier, Ltd.: Amsterdam, The Netherlands, 2011; Volume 5, pp. 85–109. ISBN 978-0-444-53153-7. [Google Scholar]
- Aggerstam, T.; Lourdudoss, S.; Radamson, H.H.; Sjödin, M.; Lorenzini, P.; Look, D.C. Investigation of the interface properties of MOVPE grown AlGaN/GaN high electron mobility transistor (HEMT) structures on sapphire. Thin Solid Film. 2006, 515, 705–707. [Google Scholar] [CrossRef]
- Deshpande, V.; Djara, V.; O’Connor, E.; Hashemi, P.; Morf, T.; Balakrishnan, K.; Caimi, D.; Sousa, M.; Fompeyrine, J.; Czornomaz, L. Three-dimensional monolithic integration of III-V and Si (Ge) FETs for hybrid CMOS and beyond. Jpn. J. Appl. Phys. 2017, 56, 04CA05. [Google Scholar] [CrossRef] [Green Version]
- Kosten, E.D.; Atwater, J.H.; Parsons, J.; Polman, A.; Atwater, H.A. Highly efficient GaAs solar cells by limiting light emission angle. Light Sci. Appl. 2013, 2, e45. [Google Scholar] [CrossRef]
- Sobolev, M.M.; Soldatenkov, F.Y.; Shul’pina, I.L. Misfit dislocation–related deep levels in InGaAs/GaAs and GaAsSb/GaAs p–i–n heterostructures and the effect of these on the relaxation time of nonequilibrium carriers. J. Appl. Phys. 2018, 123, 161588. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, Q.M.; Luo, W.; Yao, W.; Yan, S.Y.; Shen, J. InGaAs/graphene infrared photodetectors with enhanced responsivity. Mater. Res. Express. 2019, 6, 116208. [Google Scholar] [CrossRef]
- Abouzaid, O.; Mehdi, H.; Martin, M.; Moeyasrt, J.; Salem, B.; David, S.; Souifi, A.; Chauvin, N.; Hartmann, J.M.; Bouraoui, L.; et al. O-Band Emitting InAs Quantum Dots Grown by MOCVD on a 300 mm Ge-Buffered Si (001) Substrate. Nanomaterials 2020, 10, 2450. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Moeen, M.; Toprak, M.S.; Wang, G.; Luo, J.; Ke, X.; Li, Z.; Liu, D.; Wang, W.; Zhao, C.; et al. Design impact on the performance of Ge PIN photodetectors. JMSE 2020, 31, 18–25. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, G.; Lin, H.; Du, Y.; Luo, X.; Kong, Z.; Su, J.; Li, J.; Xiong, W.; Miao, Y.; et al. High Performance pin Photodetectors on Ge-on-Insulator Platform. Nanomaterials 2021, 11, 1125. [Google Scholar] [CrossRef]
- Miao, Y.; Wang, G.; Kong, Z.; Xu, B.; Zhao, X.; Luo, X.; Lin, H.; Dong, Y.; Lu, B.; Dong, L.; et al. Review of Si-Based GeSn CVD Growth and Optoelectronic Applications. Nanomaterials 2021, 11, 2556. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Bhattacharya, P.; Mi, Z.; Qin, G.X.; Ma, Z.Q. Quantum dot lasers and integrated optoelectronics on silicon platform. Chin. Opt. Lett. 2008, 6, 727–731. [Google Scholar] [CrossRef]
- Lourdudoss, S. Heteroepitaxy and selective area heteroepitaxy for silicon photonics. Curr. Opin. Solid State Mater. Sci. 2012, 16, 91–99. [Google Scholar] [CrossRef]
- Yang, V.K.; Groenert, M.; Leitz, C.W.; Pitera, A.J.; Currie, M.T.; Fitzgerald, E.A. Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates. J. Appl. Phys. 2003, 93, 3859–3865. [Google Scholar] [CrossRef]
- Tang, M.C.; Park, J.S.; Wang, Z.C.; Chen, S.M.; Jurczak, P.; Seeds, A.; Liu, H.Y. Integration of III-V lasers on Si for Si photonics. Prog. Quantum Electrons 2019, 66, 1–18. [Google Scholar] [CrossRef]
- Georgakilas, A.; Stoemenos, J.; Tsagaraki, K.; Komninou, P.; Flevaris, N.; Panayotatos, P.; Christou, A. Generation and annihilation of antiphase domain boundaries in GaAs on Si grown by molecular beamepitaxy. J. Mater. Res. 1993, 8, 1908–1921. [Google Scholar] [CrossRef]
- Fang, S.F.; Adomi, K.; Iyer, S.; Morkoç, H.; Zabel, H.; Choi, C.; Otsuka, N. Gallium arsenide and other compound semiconductors on silicon. J. Appl. Phys. 1990, 8, 1908–1921. [Google Scholar] [CrossRef]
- Keyvaninia, S.; Muneeb, M.; Stankovi, S.; Van Veldhoven, P.J.; Van Thourhout, D.; Roelkens, G. Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Opt. Mater. Express 2013, 3, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Stankovic, S.; Jones, R.; Sysak, M.N.; Heck, J.M.; Roelkens, G.; Thourhout, D.V. Hybrid III-V/Si distributed-Feedback Laser Based on Adhesive Bonding. IEEE Photonics Technol. Lett. 2012, 24, 2155–2158. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, M.; Iida, R.; Ikku, Y.; Kim, S.; Takagi, H.; Yasuda, T.; Yamada, H.; Osamu, L.; Fukuhara, N.; Hata, M. Formation of III-V-on-insulators structures on Si by direct wafer bonding. Semicond. Sci. Technol. 2013, 28, 094009. [Google Scholar] [CrossRef]
- Tanabe, K.; Watanabe, K.; Arakawa, Y. III-V/Si hybrid photonic devices by direct fusion bonding. Sci. Rep. 2012, 2, 349. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Lin, L.; Najafi, K. Localized silicon fusion and eutectic bonding for MEMS fabrication and packaging. J. Microelectromechanical Syst. 2000, 9, 3–8. [Google Scholar] [CrossRef]
- Jones, R.; Doussiere, P.; Driscoll, J.B.; Lin, W.; Yu, H.; Akulova, Y.; Komljinovic, T. Heterogeneously Integrated InP/Silicon Photonics: Fabricating fully functional transceivers. IEEE Nanotechnol. Mag. 2019, 13, 17–26. [Google Scholar] [CrossRef]
- Isenberg, J.; Warta, W. Free carrier absorption in heavily doped silicon layers. Appl. Phys. Lett. 2004, 84, 2265–2267. [Google Scholar] [CrossRef]
- Richardson, C.J.K.; Lee, M.L. Metamorphic epitaxial materials. MRS Bull. 2016, 41, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.W.; Hannon, J.B. New materials for post-Si computing. MRS Bull. 2014, 39, 658–662. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.Y.; Cardona, M. Fundamentals of Semiconductors; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-662-03313-5. [Google Scholar]
- Holt, D.B.; Yacobi, B.G. Extended Defects in Semiconductors; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Staudinger, P.; Mauthe, S.; Moselund, K.; Schmid, H. Concurrent Zinc-Blende and Wurtzite Film Formation by Selection of Confined Growth planes. Nano Lett. 2018, 18, 7856–7862. [Google Scholar] [CrossRef] [Green Version]
- Staudinger, P.; Moselund, K.E.; Schmid, H. Exploring the Size imitations of Wurtzite III-V Film Growth. Nano Lett. 2020, 20, 686–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.; Sun, H.; Ren, F.; Ng, K.W.; Tran, T.T.; Chen, R.; Chang-Hasnain, C.J. Tailoring the Optical Characteristics of Microsized InP Nano needles Directly Grown on Silicon. Nano Lett. 2014, 14, 183–190. [Google Scholar] [CrossRef] [PubMed]
- De, A.; Pryor, C.E. Predicted band structures of III-V semiconductors in the wurtzite phase. Phys. Rev. B 2010, 81, 155210. [Google Scholar] [CrossRef] [Green Version]
- Assali, S.; Zardo, I.; Plissard, S.; Kriener, D.; Verheijen, M.A.; Bauer, G.; Meijerink, A.; Belabbes, A.; Bechstedt, F.; Haverkort, J.E.M.; et al. Direct Band Gap Wurtzite Gallium phosphide Nanowires. Nano Lett. 2013, 13, 1559–1563. [Google Scholar] [CrossRef]
- Wu, P.H.; Huang, Y.S.; Hsu, H.P.; Li, C.; Huang, S.H.; Tiong, K.K. The study of temperature dependent strain in Ge epilayer with SiGe/Ge buffer layer on Si substrate with different thickness. Appl. Phys. Lett. 2014, 104, 241605. [Google Scholar] [CrossRef]
- Yang, J.J.; Jurczak, P.; Cui, F.; Li, K.S.; Tang, M.C.; Billiald, L.; Beanland, R.; Sanchez, R.; Liu, H.Y. Thin Ge buffer layer on silicon for integration of III-V on silicon. J. Cryst. Growth 2019, 514, 109–113. [Google Scholar] [CrossRef]
- Kroemer, H. Polar-on-nonpolar epitaxy. J. Cryst. Growth 1987, 81, 193–204. [Google Scholar] [CrossRef]
- Li, Y.; Lazzarini, L.; Giling, L.J.; Salviati, G. On the sublattice location of GaAs grown on Ge. J. Appl. Phys. 1994, 76, 5748. [Google Scholar] [CrossRef]
- Faucher, J.; Masuda, T.; Lee, M.L. Initiation strategies for simultaneous control of antiphase domains and stacking faults in GaAs solar cells on Ge. J. Vac. Sci. Technol. B 2016, 34, 041203. [Google Scholar] [CrossRef]
- Niehle, M.; Trampert, A.; Rodriguez, J.B.; Cerutti, L.; Tournié, E. Electron tomography on III-Sb heterostructures on vicinal Si(001) substrates: Anti-phase boundaries as a sink for threading dislocations. Scripta. Mater. 2017, 132, 5–8. [Google Scholar] [CrossRef]
- Brammertz, G.; Mols, Y.; Degroote, S.; Motsnyi, V.; Leys, M.; Borghs, G.; Caymax, M. Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates. J. Appl. Phys. 2006, 99, 093514. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Xu, B.Q.; Wang, G.L.; Gu, S.H.; Kong, Z.Z.; Li, B.; Yu, J.H.; Bai, G.B.; Wang, W.W.; Radamson, H.H.; et al. Growth of high-quality epitaxy of GaAs on Si with engineered Ge buffer using MOCVD. J. Mater. Sci. 2021, 32, 6425–6437. [Google Scholar] [CrossRef]
- Linder, K.K.; Philips, J.; Qasaimeh, O.; Bhattacharya, P.; Jiang, J.C. In(Ga)As/GaAs self-organized quantum dot light emitters grown on silicon substrates. J. Cryst. Growth 1999, 201/202, 1186–1189. [Google Scholar] [CrossRef]
- Wang, T.; Liu, H.Y.; Lee, A.; Pozzi, F.; Seeds, A. 1.3 μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt. Express 2011, 19, 11381–11386. [Google Scholar] [CrossRef]
- Kunert, B.; Mols, Y.; Baryshniskova, M.; Waldron, N.; Schulze, A.; Langer, R. How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si: A critical review on current approaches. Semicond. Sci. Technol. 2018, 33, 093002. [Google Scholar] [CrossRef]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices; Wiley-Interscience: New York, NY, USA, 2006; ISBN 9780471143239. [Google Scholar]
- Yamaguchi, M.; Amano, C. Efficiency calculations of thin-film GaAs solar cells on Si substrates. J. Appl. Phys. 1985, 58, 3601. [Google Scholar] [CrossRef]
- Clawson, A. Guide to references on III-V semiconductor chemical etching. Mater. Sci. Eng. Rep. 2001, 31, 1–438. [Google Scholar] [CrossRef]
- Radamson, H.H.; Hallstedt, J. Application of high-resolution X-ray diffraction for detecting defects in SiGe(C) materials. J. Phys. Condes. Matter 2005, 17, S2315–S2322. [Google Scholar] [CrossRef]
- Radamson, H.H.; Joelsson, K.B.; Ni, W.-X.; Hultman, L.; Hansson, G.V. Characterization of highly boron-doped Si, Si1-x Gex and Ge layers by high-resolution transmission electron microscopy. J. Cryst. Growth 1995, 157, 80. [Google Scholar] [CrossRef]
- Madiomanana, K.; Bahri, M.; Rodriguez, J.B.; Largeau, L.; Cerutti, L.; Mauguin, O.; Castellano, A.; Patriarche, G.; Tournie, E. Silicon surface preparation for III-V molecular beam epitaxy. J. Cryst. Growth 2015, 413, 17–24. [Google Scholar] [CrossRef]
- Houdre, R.; Morko, H. Properties of GaAs on Si grown by molecular beam epitaxy. Crit. Rev. Solid State Mater. Sci. 1990, 16, 91–114. [Google Scholar] [CrossRef]
- Choi, D.; Harris, J.S.; Kim, E.; Mclntyre, P.C.; Cagnon, J.; Stemmer, S. High-quality III-V semiconductor MBE growth on Ge/Si virtual substrates for metal-oxide-semiconductor device fabrication. J. Cryst. Growth 2009, 311, 1962–1971. [Google Scholar] [CrossRef]
- Swartzentruber, B.S.; Kitamura, N.; Lagally, M.G.; Webb, M.B. Behavior of steps on Si(001) as a function of vicinality. Phys. Rev. B 1993, 47, 13432. [Google Scholar] [CrossRef]
- Laracuente, A.R.; Whitman, L.J. Step structure and surface morphology of hydrogen-terminated silicon: (001) to (114). Surf. Sci. 2003, 545, 70–84. [Google Scholar] [CrossRef]
- Sakamoto, T.; Hashiguchi, G. Si (001)-2×1 single-domain structure obtained by high temperature annealing. Jpn. J. Appl. Phys. 1986, 25, 1A:L78. [Google Scholar] [CrossRef]
- Kawabe, M.; Ueda, T. Self-annihilation of antiphase boundary in GaAs on Si (100) grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 1987, 26, 944–946. [Google Scholar] [CrossRef]
- Masami, T.; Hidefumi, M.; Mitsuru, S.; Yoshio, I. Continuous GaAs Film Growth on Epitaxial Si Surface in Initial Stage of GaAs/Si Heteroepitaxy. Jpn. J. Appl. Phys. 1993, 32, L1252–L1255. [Google Scholar] [CrossRef]
- Yu, H.W.; Chang, E.Y.; Yananoto, Y.; Tillack, B.; Wang, W.C.; Kuo, C.I.; Wong, Y.Y.; Nguyen, H.Q. Effect of graded-temperature arsenic prelayer on quality of GaAs on Ge/Si substrates by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 2011, 99, 171908. [Google Scholar] [CrossRef] [Green Version]
- Bolkhovityanov, Y.B.; Pchelyakov, O.P. GaAs epitaxy on Si substrates: Modern status of research and engineering. Physics-Uspekhi 2008, 51, 437–456. [Google Scholar] [CrossRef]
- Buzynin, Y.; Shengurov, V.; Zvonkov, B.; Buzynin, A.; Denisov, S.; Baidus, N.; Drozdov, M.; Pavlov, D.; Yunin, P. GaAs/Ge/Si epitaxial substrates: Development and characteristics. AIP Adv. 2017, 7, 015304. [Google Scholar] [CrossRef] [Green Version]
- Radamson, H.H.; Noroozi, M.; Jamshidi, A.; Thompson, P.E.; Östling, M. Strain engineering in GeSnSi materials. ECS Trans. 2013, 50, 527. [Google Scholar] [CrossRef]
- Komatsu, Y.; Hosotani, K.; Fuyuki, T.; Matsunami, H. Heteroepitaxial growth of InGaP on Si with InGaP/GaPstep-graded buffer layers. Jpn. J. Appl. Phys. 1997, 36, 5425–5430. [Google Scholar] [CrossRef]
- Groenert, M.E.; Leitz, C.W.; Pitera, A.J.; Yang, V.; Lee, H.; Ram, R.J.; Fitzgerald, E.A. Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers. J. Appl. Phys. 2003, 93, 362–367. [Google Scholar] [CrossRef]
- Benediktovitch, A.; Ulyanenkov, A.; Rinaldi, F.; Saito, K.; Kaganer, V.K. Concentration and relaxation depth profiles of InxGa1−xAs/GaAs and GaAs1-xPx/GaAs graded epitaxial films studied by x-ray diffraction. Phys. Rev. B. 2011, 84, 035302. [Google Scholar] [CrossRef]
- Soga, T.; Hattori, S.; Takeyasu, M.; Μmeno, M. Characterization of epitaxially grown GaAs on Si substrates with III-V compounds intermediate layers by metalorganic chemical vapor deposition. J. Appl. Phys. 1985, 57, 4578. [Google Scholar] [CrossRef]
- Peach, M.O.; Koehler, J.S. Forces exerted on dislocations and the stress fields produced by them. Phys. Rev. 1950, 80, 436–439. [Google Scholar] [CrossRef]
- Yang, J.; Bhattacharya, P.; Mi, Z. High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters. IEEE Trans. Electron Devices 2007, 54, 2849–2855. [Google Scholar] [CrossRef]
- Shi, B.; Li, Q.; Lau, K.M. Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si. J. Cryst. Growth 2017, 464, 28–32. [Google Scholar] [CrossRef]
- Lee, J.W.; Shichijo, H.; Tsai, H.; Matyi, R.J. Defect reduction by thermal annealing of GaAs layers grown by molecular beam epitaxy on Si substrates. Appl. Phys. Lett. 1986, 50, 31–33. [Google Scholar] [CrossRef]
- Choi, C.; Otsuka, N.; Munns, G.; Houdre, R.; Morkoc, H. Effect of in situ and ex situ annealing on dislocations in GaAs on Si substrates. Appl. Phys. Lett. 1987, 50, 992–994. [Google Scholar] [CrossRef]
- Bogumilowicz, Y.; Hartmann, J.M.; Rochat, N.; Salaun, A.; Martin, M.; Bassani, F.; Baron, T.; David, S.; Bao, X.Y.; Sanchez, E. Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates. J. Cryst. Growth 2016, 453, 180–187. [Google Scholar] [CrossRef]
- Okamoto, H.; Watanabe, Y.; Kadota, Y.; Ohmachi, Y. Dislocation Reduction in GaAs on Si by Thermal Cycles and InGaAs/GaAs Strained-Layer Superlattices. Jpn. J. Appl. Phys. 1987, 26, 1950–1952. [Google Scholar] [CrossRef]
- Li, J.Z.; Bai, J.; Park, J.S.; Adekore, B.; Fox, K.; Carroll, M.; Lochtefeid, A.; Shellenbarger, Z. Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping. Appl. Phys. Lett. 2007, 91, 021114. [Google Scholar] [CrossRef]
- Sun, Y.T.; Lourdudoss, S. Effect of growth conditions on epitaxial lateral overgrowth InP on InP/Si (001) substrate by hydride vapor phase epitaxy. Photonics Packag. Integr. III 2003, 4997, 221–231. [Google Scholar]
- Olsson, F.; Xie, M.; Lourdudoss, S.; Prieto, I.; Postigo, P.A. Epitaxial lateral overgrowth of InP on Si from nano-openings: Theoretical and experimental indication for defect filtering throughout the grown layer. J. Appl. Phys. 2008, 104, 093112. [Google Scholar] [CrossRef] [Green Version]
- Kawabe, M.; Ueda, T. Molecular Beam Epitaxy of Controlled Single Domain GaAs on Si (100). Jpn. J. Appl. Phys. 1986, 25, L285. [Google Scholar] [CrossRef]
- Lo, Y.H.; Wu, M.C.; Lee, H.; Wang, S. Dislocation microstructures on flat and stepped Si surfaces: Guidance for growing high-quality GaAs on (100) Si substrates. Appl. Phys. Lett. 1988, 52, 1386. [Google Scholar] [CrossRef]
- Posthill, J.B.; Tarn, J.; Das, K.; Humphreys, T.; Parikh, N.R. Observation of antiphase domain boundaries in GaAs on silicon by transmission electron microscopy. Appl. Phys. Lett. 1988, 53, 1207. [Google Scholar] [CrossRef]
- Strite, S.; UnIO, M.S.; Adomi, K.; Gao, G.-B.; Agarwal, A.; Rockett, A.; Morko, H. GaAs/Ge/GaAs heterostructures by molecular beam epitaxy. J. Vac. Sci. Technol. B 1990, 8, 1131. [Google Scholar] [CrossRef]
- Yonezu, H. Control of structural defects in group III-V–N alloys grown on Si. Semicond. Sci. Technol. 2002, 17, 762–768. [Google Scholar] [CrossRef]
- Wanarattikan, P.; Sakuntam, S.; Denchitcharoen, S.; Uesugi, K.; Kuboya, S.; Onabe, K. Influences of two-step growth and off-angle Ge substrate on crystalline quality of GaAs buffer layers grown by MOVPE. J. Cryst. Growth 2015, 414, 15–20. [Google Scholar] [CrossRef]
- Alcotte, R.; Martin, M.; Moeyaert, J.; Cipro, R.; David, S.; Bassani, F.; Ducroquet, F.; Bogumilowicz, Y.; Sanchez, E.; Ye, Z.; et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metal organic chemical vapour deposition with high mobility. APL Mater. 2016, 4, 046101. [Google Scholar] [CrossRef] [Green Version]
- Grundmann, M.; Krost, A.; Bimberg, D. Observation of the first-order phase transition from single to double stepped Si (001) in metal organic chemical vapor deposition of InP on Si. J. Vac. Sci. Technol. B 1991, 9, 2158. [Google Scholar] [CrossRef]
- Akiyama, M.; Kawarada, Y.; Kaminishi, K. Growth of single domain GaAs layer on (100)-Oriented Si substrate by MOCVD. Jpn. J. Appl. Phys. 1984, 23, 11. [Google Scholar] [CrossRef]
- Zhou, X.L.; Pan, J.Q.; Liang, R.R.; Wang, J.; Wang, W. Epitaxy of GaAs thin film with low defect density and smooth surface on Si substrate. J. Semicond. 2014, 35, 073002. [Google Scholar] [CrossRef]
- Du, Y.; Kong, Z.Z.; Toprak, M.S.; Wang, G.L.; Miao, Y.H.; Xu, B.Q.; Yu, J.H.; Li, B.; Lin, H.X.; Radamson, H.H.; et al. Investigation of the Heteroepitaxial Process Optimization of Ge Layers on Si (001) by RPCVD. Nanomaterials 2021, 11, 928. [Google Scholar] [CrossRef]
- Andre, C.L.; Carlin, J.A.; Boeckl, J.J. Investigations of high-performance GaAs solar cells grown on Ge-Si1-x/Gex-Si substrates. IEEE Trans. Electron Devices 2005, 52, 1055–1060. [Google Scholar] [CrossRef]
- Ting, S.M.; Fitzgerald, E.A. Metal-organic chemical vapor deposition of single domain GaAs on Ge/GexSi1−x/Si and Ge substrates. J. Appl. Phys. 2000, 87, 2618–2628. [Google Scholar] [CrossRef]
- Chen, K.P.; Yoon, S.F.; Ng, T.K.; Hanoto, H.; Lew, K.L.; Dohrman, C.L.; Fitzgeraid, E.A. Study of surface microstructure origin and evolution for GaAs grown on Ge/Si1−xGex/Si substrate. J. Phys. D Appl. Phys. 2009, 42, 035303. [Google Scholar] [CrossRef]
- Samavedam, S.B.; Fitzgerald, E.A. Novel dislocation structure and surface morphology effects in relaxed Ge/Si-Ge (graded)/Si structures. J. Appl. Phys. 1997, 81, 3108–3116. [Google Scholar] [CrossRef]
- Currie, M.T.; Samavedam, S.B.; Langdo, T.A.; Leitz, C.W.; Fitzgerald, E.A. Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Appl. Phys. Lett. 1998, 72, 1718–1720. [Google Scholar] [CrossRef]
- Ayers, J.E.; Schowalter, L.J.; Ghandhi, S.K. Post-growth thermal annealing of GaAs on Si(001) grown by organometallic vapor phase epitaxy. J. Cryst. Growth 1992, 125, 329–335. [Google Scholar] [CrossRef]
- Jung, D.; Callahan, P.G.; Shin, B.; Mukherjee, K.; Gossard, A.C.; Bowers, J.E. Low threading dislocation density GaAs growth on on-axis GaP/Si (001). J. Appl. Phys. 2017, 122, 225703. [Google Scholar] [CrossRef] [Green Version]
- Cho, N.-H.; Carter, C.B. Formation, faceting, and interaction behaviors of antiphase boundaries in GaAs thin films. J. Mater. Sci. 2001, 36, 4209–4222. [Google Scholar] [CrossRef]
- Barrett, C.S.; Atassi, A.; Kennonet, E.L.; Weinrich, Z.; Haynes, K.; Bao, X.-Y.; Martin, P.; Jones, K.S. Dissolution of antiphase domain boundaries in GaAs on Si(001) via post-growth annealing. J. Mater. Sci. 2019, 54, 7028–7703. [Google Scholar] [CrossRef]
- Shang, C.; Selvidge, J.; Hughes, E.; Norman, J.C.; Taylor, A.A.; Gossard, A.C.; Mukherjee, K.; Bowers, J.E. A Pathway to Thin GaAs Virtual Substrate on On-Axis Si (001) with Ultralow Threading Dislocation Density. Phys. Status Solidi A 2020, 218, 2000402. [Google Scholar] [CrossRef]
- Ababou, Y.; Desjardins, P.; Chennouf, A. Structural and optical characterization of InP grown on Si (111) by metalorganic vapor phase epitaxy using thermal cycle growth. J. Appl. Phys. 1996, 80, 4997–5005. [Google Scholar] [CrossRef]
- Tran, C.A.; Masut, R.A.; Cova, P.; Brebner, J.L.; Leonelli, R. Growth and characterization of InP on silicon by MOCVD. J. Cryst. Growth 1992, 121, 365–372. [Google Scholar] [CrossRef]
- Wang, Y.F.; Wang, Q.; Jia, Z.G.; Li, X.Y.; Deng, C.; Ren, X.M.; Cai, S.W.; Huang, Y.Q. Three-step growth of metamorphic GaAs on Si(001) by low-pressure metal organic chemical vapor deposition. J. Vac. Sci. Technol. B 2013, 31, 051211. [Google Scholar] [CrossRef]
- Hayafuji, N.; Miyashita, M.; Nishimura, T.; Kadoiwa, K.; Kumabe, H.; Murotani, T. Effect of Employing Positions of Thermal Cyclic Annealing and Strained-Layer Superlattice on Defect Reduction in GaAs-on-Si. Jpn. J. Appl. Phys. 1990, 29, 2371–2375. [Google Scholar] [CrossRef]
- Shi, B.; Klamkin, J. Defect engineering for high quality InP epitaxially grown on on-axis (001) Si. J. Appl. Phys. 2020, 127, 033102. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Nishioka, T.; Sugo, M. Analysis of strained-layer superlattice effects on dislocation density reduction in GaAs on Si substrates. Appl. Phys. Lett. 1989, 54, 24–26. [Google Scholar] [CrossRef]
- Qian, W.; Skowronski, M.; Kaspi, R. Dislocation density reduction in GaSb films grown on GaAs substrates by molecular beam epitaxy. J. Electrochem. Soc. 1997, 144, 1430–1434. [Google Scholar] [CrossRef]
- Nozawa, K.; Horikoshi, Y. Low threading dislocation density GaAs on Si(100) with InGaAs/GaAs strained-layer superlattice grown by migration-enhanced epitaxy. J. Electron. Mater. 1992, 21, 641–645. [Google Scholar] [CrossRef]
- Aleshkin, V.Y.; Baidus, N.V.; Dubinov, A.A.; Fefelov, A.G.; Krasilnik, A.F.; Kudryavteev, E.v.; Nekorkin, S.M.; Novikov, A.V.; Pavlov, D.A.; Samartsev, I.V.; et al. Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si(001) substrate. Appl. Phys. Lett. 2016, 109, 061111. [Google Scholar] [CrossRef]
- George, I.; Becagli, F.; Liu, H.Y.; Wu, J.; Tang, M.; Beanland, R. Dislocation filters in GaAs on Si. Semicondutor Sci. Technol. 2015, 30, 114004. [Google Scholar] [CrossRef]
- Jung, D.; Norman, J.; Kennedy, M.; Herrick, R.; Shang, C.; Jan, C.; Gossard, A.C.; Bowers, J.E. Low Threshold Current 1.3 μm Fabry-Perot III-V quantum dot Lasers on (001) Si with Superior Reliability. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 1–15 March 2018; Optical Society of America: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Dalfors, J.; Lundstrom, T.; Holtz, P.O.; Radamson, H.H.; Monemar, B. The effective masses in strained InGaAs/InP quantum wells deduced from magnetoexcitation spectroscopy. Appl. Phys. Lett. 1997, 71, 503–505. [Google Scholar] [CrossRef]
- Tang, M.; Chen, S.; Wu, J.; Jiang, Q.; Dorogan, V.G.; Benamara, M.; Mazur, Y.I.; Salamo, G.J.; Seeds, A.; Liu, H. 1.3-µm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers. Opt. Express 2014, 22, 11528–11535. [Google Scholar] [CrossRef]
- Tang, M.; Chen, S.; Wu, J.; Jiang, Q.; Kennedy, K.; Jurczak, P.; Liao, M.Y.; Beanland, R.; Seeds, A.; Liu, H.Y. Optimizations of Defect Filter Layers for 1.3-µm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Prost, W.; Khorenko, V.; Mofor, A.; Bakin, A.; Khorenko, E.; Ehrich, S.; Wehmann, H.-H.; Schlachetzki, A.; Tegude, F.-J. High-speed InP-based resonant tunneling diode on silicon substrate. In Proceedings of the 35th European Solid-State Device Research Conference, Grenoble, France, 12–16 September 2005; pp. 257–260. [Google Scholar] [CrossRef]
- Shi, B.; Li, Q.; Wan, Y.; Ng, K.W.; Zou, X.B.; Tang, C.W.; Lau, K.M. InAlGaAs/InAlAs MQWs on Si Substrate. IEEE Photonics Technol. Lett. 2015, 27, 748–751. [Google Scholar] [CrossRef] [Green Version]
- Shi, B.; Li, Q.; Lau, K. Epitaxial growth of high quality InP on Si substrates: The role of InAs/InP quantum dots as effective dislocation filters. J. Appl. Phys. 2018, 123, 193104. [Google Scholar] [CrossRef] [Green Version]
- Norman, J.; Kennedy, M.J.; Selvidge, J.; Li, Q.; Wan, Y.; Liu, A.Y.; Callahan, P.G.; Echlin, M.P.; Pollock, T.M.; Lau, K.M.; et al. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si. Opt. Express 2017, 25, 3927–3934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FITZGERALD, E.A.; CHAND, N. Epitaxial necking in GaAs grown on pre-patterned Si substrates. J. Electron. Mater. 1991, 20, 839–853. [Google Scholar] [CrossRef]
- Langdo, T.A.; Leitz, C.W.; Currie, M.T.; Fitzgerald, E.A. High quality Ge on Si by epitaxial necking. Appl. Phys. Lett. 2000, 76, 3700–3702. [Google Scholar] [CrossRef]
- Li, J.Z.; Bai, J.; Major, C.; Carroll, M.; Lochtefeld, A.; Shellenbarger, Z. Defect reduction of GaAs/Si epitaxy by aspect ratio trapping. J. Appl. Phys. 2008, 103, 106102. [Google Scholar] [CrossRef]
- Li, J.Z.; Bai, J.; Hydrick, J.M.; Park, J.S.; Major, C.; Carroll, M.; Fiorenza, J.G.; Lochtefeld, A. Growth and characterization of GaAs layers on polished Ge/Si by selective aspect ratio trapping. J. Cryst. Growth 2009, 311, 133–3137. [Google Scholar] [CrossRef]
- Wang, G.; Leys, M.R.; Loo, R.; Richard, O.; Bender, H.; Waldron, N.; Brammertz, G.; Dekoster, J.; Wang, W.; Seefeidt, M.; et al. Selective area growth of high quality InP on Si (001) substrates. Appl. Phys. Lett. 2010, 97, 121913. [Google Scholar] [CrossRef]
- Paladugu, M.; Merckling, C.; Loo, R.; Richard, O.; Bender, H.; Dekoster, J.; Vandervorst, W.; Caymax, M.; Heyns, M.M. Site Selective Integration of III−V Materials on Si for Nanoscale Logic and Photonic Devices. Cryst. Growth Des. 2012, 12, 4696–4702. [Google Scholar] [CrossRef]
- Guo, W.; Date, L.; Pena, V.; Bao, X.; Merckling, C.; Waldron, N.; Collasert, N.; Caymax, M.; Sanchez, E.; Vancoille, E.; et al. Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si (001). Appl. Phys. Lett. 2014, 105, 062101. [Google Scholar] [CrossRef]
- Orzali, T.; Vert, A.; O’Brien, B.; Herman, J.; Vivekanand, S.; Hill, R.J.; Karim, Z. GaAs on Si epitaxy by aspect ratio trapping: Analysis and reduction of defects propagating along the trench direction. J. Appl. Phys. 2015, 118, 105307. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Ng, K.W.; Lau, K.M. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon. Appl. Phys. Lett. 2015, 106, 072105. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.Q.; Qi, F.; Wang, Z.H.; Wang, T.; Zhang, J.J. Perspective: Optically-pumped III-V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates. J. Semicond. 2019, 40, 101303. [Google Scholar] [CrossRef]
- Tang, G.P.; Lubnow, A.; Wehmann, H.; Zwinge, G.; Schlachetzki, A. Antiphase-Domain-Free InP on (100) Si. Jpn. J. Appl. Phys. 1992, 31, L1126–L1128. [Google Scholar] [CrossRef]
- Loo, R.; Wang, G.; Orzali, T.; Waldron, N.; Merckling, C.; Leys, M.R.; Richard, O.; Bender, H.; Eyben, P.; Vandervoust, W. Selective Area Growth of InP on On-Axis Si (001) Substrates with Low Antiphase Boundary Formation. J. Electrochem. Soc. 2012, 159, H260–H265. [Google Scholar] [CrossRef]
- Li, J.Z.; Bai, J.; Hydrick, J.M.; Fiorenza, J.M.; Major, C.; Carroll, M.; Shellenbarger, Z.; Lochtefeld, A. Thin Film InP Epitaxy on Si (001) using Selective Aspect Ratio Trapping. ECS Trans. 2009, 18, 887–894. [Google Scholar] [CrossRef]
- Merckling, C.; Waldron, N.; Jiang, S.; Guo, W.; Collaert, N.; Caymax, M.; Vancoille, E.; Barla, K.; Thean, A.; Heyns, M.; et al. Heteroepitaxy of InP on Si (001) by selective-area metal organic vapor-phase epitaxy in sub-50nm width trenches: The role of the nucleation layer and the recess engineering. J. Appl. Phys. 2014, 115, 023710. [Google Scholar] [CrossRef]
- Tommaso, O.; Vert, A.; Kim, T.W.; Hung, P.Y.; Herman, J.L.; Vivekanand, S.; Huang, G.; Kelman, M.; Karim, Z.; Hill, R.; et al. Growth and characterization of an In0.53Ga0.47As-based Metal-Oxide-Semiconductor Capacitor (MOSCAP) structure on 300 mm on-axis Si (001) wafers by MOCVD. J. Crys. Growth 2015, 427, 72–79. [Google Scholar] [CrossRef]
- Li, S.; Zhou, X.; Li, M.; Kong, X.; Mi, J.; Wang, M.; Pan, J. Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si(001) substrate. Appl. Phys. Lett. 2016, 108, 021902. [Google Scholar] [CrossRef]
- Saravanan, S.; Hayashi, Y.; Soga, T.; Jimbo, T. Growth and characterization of GaAs epitaxial layers on Si/porous Si/Si substrate by chemical beam epitaxy. J. Appl. Phys. 2001, 89, 5215–5218. [Google Scholar] [CrossRef]
- Takano, Y.; Kururi, T.; Kuwahara, K.; Fuke, S. Residual strain and threading dislocation density in InGaAs layers grown on Si substrates by metalorganic vapor-phase epitaxy. Appl. Phys. Lett. 2001, 78, 93–95. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Wei, W.-Q.; Wang, J.-H.; Cong, H.; Feng, Q.; Wang, Z.-H.; Wang, T.; Zhang, J.-J. Epitaxial growth of InAs/GaAs quantum dots on {113}-faceted Ge/Si (001) hollow substrate. Opt. Mater. Express 2020, 10, 1045. [Google Scholar] [CrossRef]
- Du, Y.; Wang, G.; Miao, Y.; Xu, B.; Li, B.; Kong, Z.; Yu, J.; Zhao, X.; Lin, H.; Radamson, H.H.; et al. Strain Modulation of Selectively and/or Globally Grown Ge Layers. Nanomaterials 2021, 11, 1421. [Google Scholar] [CrossRef] [PubMed]
- Kohen, D.; Bao, S.Y.; Lee, K.H.; Tan, C.S.; Yoon, S.F.; Fitzgerald, E.A. The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD—Application to a 200 mm GaAs virtual substrate. J. Cryst. Growth 2015, 421, 58–65. [Google Scholar] [CrossRef]
- Fiorenza, J.G.; Park, J.S.; Hydrick, J.; Li, J.; Li, J.Z.; Curtin, M.; Lochtefeld, A. Aspect ratio trapping: A unique technology for integrating Ge and III-Vs with silicon CMOS. ECS Trans. 2010, 33, 963–976. [Google Scholar] [CrossRef]
- Han, Y.; Xue, Y.; Laua, K.M. Selective lateral epitaxy of dislocation-free InP on silicon-on-insulator. Appl. Phys. Lett. 2019, 114, 192105. [Google Scholar] [CrossRef]
- Ujiie, Y.; Nishinaga, T. Epitaxial Lateral Overgrowth of GaAs on a Si Substrate. Jpn. J. Appl. Phys. 1989, 28, L337–L339. [Google Scholar] [CrossRef]
- Sakawa, S.; Nishinaga, T. Effect of Si Doping on Epitaxial Lateral Overgrowth of GaAs on GaAs-Coated Si Substrate. Jpn. J. Appl. Phys. 1992, 31, L359–L361. [Google Scholar] [CrossRef]
- Tsaur, B.-Y.; McClelland, R.W.; John, C.C.; Gale, R.P.; Salerno, J.P.; Vojak, B.A.; Bozler, C.O. Low-dislocation-density GaAs epilayers grown on Ge-coated Si substrates by means of lateral epitaxial overgrowth. Appl. Phys. Lett. 1982, 41, 347–349. [Google Scholar] [CrossRef]
- He, Y.R.; Wang, J.; Hu, H.Y.; Wang, Q.; Huang, Y.Q.; Ren, X.M. Coalescence of GaAs on (001) Si nano-trenches based on three-stage epitaxial lateral Overgrowth. Appl. Phys. Lett. 2015, 106, 20. [Google Scholar] [CrossRef]
- Naritsuka, S.; Nishinaga, T. Epitaxial lateral overgrowth of InP by liquid phase epitaxy. J. Cryst. Growth 1995, 146, 314–318. [Google Scholar] [CrossRef]
- Naritsuka, S.; Nishinaga, T. Spatially resolved photoluminescence of laterally overgrown InP on InP-coated Si substrates. J. Cryst. Growth 1997, 174, 622–629. [Google Scholar] [CrossRef]
- Kochiya, T.; Oyama, Y.; Kimura, T.; Suto, K.; Nishizawa, J. Dislocation-free large area InP ELO layers by liquid phase epitaxy. J. Cryst. Growth 2005, 281, 263–274. [Google Scholar] [CrossRef]
- Metaferia, W.; Junesand, C.; Gau, M.-H.; Lo, I.; Pozina, G.; Hultman, L.; Lourdudoss, S. Morphological evolution during epitaxial lateral overgrowth of indium phosphide on silicon. J. Cryst. Growth. 2011, 332, 27–33. [Google Scholar] [CrossRef]
- Han, Y.; Lau, K.M. III-V lasers selectively grown on (001) silicon. J. Appl. Phys. 2020, 128, 200901. [Google Scholar] [CrossRef]
- Parillaud, O.; Gil-Lafon, E. High quality InP on Si by conformal growth. Appl. Phys. Lett. 1996, 68, 2654. [Google Scholar] [CrossRef]
- Metaferia, W.; Kataria, H.; Sun, Y.T.; Lourdudoss, S. Growth of InP directly on Si by corrugated epitaxial lateral overgrowth. J. Phys. D Appl. Phys. 2015, 48, 045102. [Google Scholar] [CrossRef]
- Omanakuttan, G.; Sacristán, O.M.; Marcinkevičius, S.; Uždavinys, T.; Jiménez, J.; Ali, H.; Lourdudoss, S.; Sun, Y.T. Optical and interface properties of direct InP/Si heterojunction formed by corrugated epitaxial lateral overgrowth. Opt. Mater. Express 2019, 9, 1488–1500. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, M.; Nagahama, S.; Iwasa, N.; Yamada, T.; Matsushita, T.; Kiyoku, H.; Suginoto, Y.; Kozaki, T.; Umemoto, H.; et al. Present status of InGaN/GaN/AlGaN-based laser diodes. J. Cryst. Growth 1998, 189, 820–825. [Google Scholar] [CrossRef]
- Deura, M.; Kondo, Y.; Takenaka, M.; Takagi, S.; Nakano, Y.; Sugiyama, M. Twin free InGaAs thin layer on Si by multi-step growth using micro-channel selective-area MOVPE. J. Cryst. Growth 2010, 312, 1353–1358. [Google Scholar] [CrossRef]
- Chuang, L.C.; Moewe, M.; Chase, C.; Kobayashi, N.P.; Hasnain, C.C. Critical diameter for III-V nanowires grown on lattice-mismatched substrates. Appl. Phys. Lett. 2007, 90, 043115. [Google Scholar] [CrossRef] [Green Version]
- Ghalamestani, S.G.; Johansson, S.; Borg, B.M.; Lind, E.; Dick, K.A.; Wernersson, L.-E. Uniform and position-controlled InAs nanowires on 2″ Si substrates for transistor applications. Nanotechnology 2012, 23, 015302. [Google Scholar] [CrossRef] [PubMed]
- Hertenberger, S.; Rudolph, D.; Bichler, M.; Finley, J.J.; Abstreiter, G.; Koblmuller, G. Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy. J. Appl. Phys. 2010, 108, 114316. [Google Scholar] [CrossRef] [Green Version]
- Björk, M.T.; Schmid, H.; Breslin, C.M.; Gignac, L.; Riel, H. InAs nanowire growth on oxide-masked <111> silicon. J. Cryst. Growth 2012, 344, 31–37. [Google Scholar] [CrossRef]
- Grégoire, G.; Zeghouane, M.; Goosney, C.; Goktas, N.I.; Staudinger, P.; Schmid, H.; Moselund, K.E.; Taliercio, T.; Tournie, E.; Trassoudaine, A.; et al. Selective Area Growth by Hydride Vapor Phase Epitaxy and Optical Properties of InAs Nanowire Arrays. Cryst. Growth Des. 2021, 21, 5151–5163. [Google Scholar] [CrossRef]
- Nishi, K.; Yokoyama, M.; Yokoyama, H.; Takenaka, M.; Takagi, S. Thin Body GaSb-OI P-MOSFETs on Si Wafers Fabricated by Direct Wafer Bonding. In Proceedings of the IEEE International Conference on Indium Phosphide and Related Materials (IPRM), Montpellier, France, 11−15 May 2014; pp. 14–15. [Google Scholar] [CrossRef]
- Takei, K.; Madsen, M.; Fang, H.; Kapadia, R.; Chuang, S.; Kim, H.S.; Liu, C.H.; Nah, J.; Krishna, S.; Chueh, Y.L.; et al. Nanoscale InGaSb Heterostructure Membranes on Si Substrates for High Hole Mobility Transistors. Nano Lett. 2012, 12, 2060–2066. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Han, N.; Fang, M.; Lin, H.; Cheung, H.Y.; Yip, S.; Wang, E.; Hung, T.; Wong, C.Y.; Ho, J. Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires. Nat. Commun. 2014, 5, 55249. [Google Scholar] [CrossRef] [Green Version]
- Schmid, H.; Borg, M.; Moselund, K.; Gignac, L.; Breslin, C.M.; Bruley, J.; Cutaia, D.; Riel, H. Template-assisted selective epitaxy of III-V nanoscale devices for co-planar heterogeneous integration with Si. Appl. Phys. Lett. 2015, 106, 233101. [Google Scholar] [CrossRef]
- Borg, M.; Schmid, H.; Gooth, J.; Rossell, M.; Cutaia, D.; Knoedler, M.; Bologna, N.; Wirths, S.; Moselund, K.E.; Riel, H. High-Mobility GaSb Nanostructures Cointegrated with InAs on Si. ACS Nano 2017, 11, 2554–2560. [Google Scholar] [CrossRef] [Green Version]
Samples | Growth Procedure | DCXRD ω−Scan FWHM (arcsec) | RMS Roughness in 10 × 10 μm2 (nm) | TDD (cm−2) |
---|---|---|---|---|
A1 | Two−step growth | 327.5 | 2.9 | 4.4 × 107 |
A2 | Two−step growth + one TCA step | 210.2 | 2.5 | 1.9 × 107 |
B1 | Three−step growth | 298.2 | 2.4 | 3.7 × 107 |
B2 | Three−step growth + one TCA step | 184.3 | 2.0 | 1.4 × 107 |
B3 | Three−step growth + two TCA steps | 164.2 | 1.8 | 1.1 × 107 |
Year | Substrate | Epitaxy Method | Buffer | Procedure | III-V Materials | TDD (cm−2) | RMS (nm) | Refs. |
---|---|---|---|---|---|---|---|---|
2011 | 0° Si | Global | Ge | two-step growth | GaAs | 2 × 107 | 1.1 | [70] |
2011 | 4° Si | Global | Ge | two-step growth | GaAs | 1.8 × 107 | ― | [64] |
2013 | 0° Si | Global | ― | three-step growth+ TCA | GaAs | 1.1 × 107 | 0.73 | [113] |
2014 | Ge | Global | ― | two-step growth | GaA | 2.7 × 107 | 0.7 | [93] |
2015 | 6° Ge | Global | ― | two-step growth | GaAs | ― | 0.6 | [97] |
2016 | 0° Si | Global | Ge | two-step growth | GaAs | 3 × 107 | 0.5 | [98] |
2018 | 0° Si | Global | Ge | In0.18Ga0.82As/GaAs SLSs | GaAs | 2.3 × 106 | ― | [121] |
2019 | 0° Si | ART | Si | (111)-faceted Si hollow | GaAs | 7.0 × 10 6 | 1.3 | [138] |
2020 | 0° Si | ART | Ge | {113}-faceted Ge/Si hollow substrate. | GaAs | 5.7 × 106 | 0.67 | [145] |
2021 | 0° Si | Global | CMP-Ge | three-step growth | GaAs | 7.4 × 107 | 1.27 | [53] |
2018 | 0° Si | Global | Ge | InAs/InP QD DFLs | InP | 3 × 108 | 2.88 | [127] |
2011 | 0° Si | ELO | ― | two-step growth | InP | 4 × 108 | ― | [158] |
2019 | 0° Si | CELOG | ― | two-step growth | InP | 3 × 108 | 2.95 | [162] |
2020 | 0° Si | Global | ― | In0.73Ga0.27As/InP SLSs | InP | 4.5 × 107 | 2.38 | [115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Xu, B.; Wang, G.; Miao, Y.; Li, B.; Kong, Z.; Dong, Y.; Wang, W.; Radamson, H.H. Review of Highly Mismatched III-V Heteroepitaxy Growth on (001) Silicon. Nanomaterials 2022, 12, 741. https://doi.org/10.3390/nano12050741
Du Y, Xu B, Wang G, Miao Y, Li B, Kong Z, Dong Y, Wang W, Radamson HH. Review of Highly Mismatched III-V Heteroepitaxy Growth on (001) Silicon. Nanomaterials. 2022; 12(5):741. https://doi.org/10.3390/nano12050741
Chicago/Turabian StyleDu, Yong, Buqing Xu, Guilei Wang, Yuanhao Miao, Ben Li, Zhenzhen Kong, Yan Dong, Wenwu Wang, and Henry H. Radamson. 2022. "Review of Highly Mismatched III-V Heteroepitaxy Growth on (001) Silicon" Nanomaterials 12, no. 5: 741. https://doi.org/10.3390/nano12050741
APA StyleDu, Y., Xu, B., Wang, G., Miao, Y., Li, B., Kong, Z., Dong, Y., Wang, W., & Radamson, H. H. (2022). Review of Highly Mismatched III-V Heteroepitaxy Growth on (001) Silicon. Nanomaterials, 12(5), 741. https://doi.org/10.3390/nano12050741