Gel Point as Measurement of Dispersion Degree of Nano-Cellulose Suspensions and Its Application in Papermaking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Determination of Gel Point in Suspensions
2.2.2. Transmission Electron Microscopy
2.2.3. Preparation and Characterization of Reinforced Cardboard Sheets
3. Results and Discussion
3.1. Evaluation of the Dispersion Degree of CMF/CNF Suspensions
3.2. Validation of Gel Point Methodology to Quantify Nanocellulose Dispersion
3.3. Effect of CNF Dispersion on the Mechanical and Physical Properties of Paper
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beck, S.; Walker, C.; Batchelor, W. Priorities for development of standard test methods to support the commercialization of cellulose nanomaterials. In Proceedings of the International Conference on Nanotechnology for Renewable Materials 2019, Chiba, Japan, 7 June 2019; pp. 1041–1048. [Google Scholar]
- Blanco, A.; Monte, M.C.; Campano, C.; Balea, A.; Merayo, N.; Negro, C. Nanocellulose for Industrial Use: Cellulose Nanofibers (CNF), Cellulose Nanocrystals (CNC), and Bacterial Cellulose (BC). In Handbook of Nanomaterials for Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 74–126. [Google Scholar]
- Isogai, A.; Zhou, Y. Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: Nanonetworks, nanofibers, and nanocrystals. Curr. Opin. Solid State Mater. Sci. 2019, 23, 101–106. [Google Scholar] [CrossRef]
- Trache, D.; Tarchoun, A.F.; Derradji, M.; Mehelli, O.; Hussin, M.H.; Bessa, W. Cellulose fibers and nanocrystals: Preparation, characterization, and surface modification. In Functionalized Nanomaterials I; CRC Press: Boca Raton, FL, USA, 2020; pp. 171–190. [Google Scholar]
- Osong, S.H.; Norgren, S.; Engstrand, P. Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: A review. Cellulose 2016, 23, 93–123. [Google Scholar] [CrossRef]
- Raj, P.; Batchelor, W.; Blanco, A.; de la Fuente, E.; Negro, C.; Garnier, G. Effect of polyelectrolyte morphology and adsorption on the mechanism of nanocellulose flocculation. J. Colloid Interface Sci. 2016, 481, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Siró, I.; Plackett, D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 2010, 17, 459–494. [Google Scholar] [CrossRef]
- Sanchez-Salvador, J.L.; Campano, C.; Negro, C.; Monte, M.C.; Blanco, A. Increasing the Possibilities of TEMPO-Mediated Oxidation in the Production of Cellulose Nanofibers by Reducing the Reaction Time and Reusing the Reaction Medium. Adv. Sustain. Syst. 2021, 5, 2000277. [Google Scholar] [CrossRef]
- Ahola, S.; Myllytie, P.; Österberg, M.; Teerinen, T.; Laine, J. Effect of polymer adsorption on cellulose nanofibril water binding capacity and aggregation. Bioresources 2008, 3, 1315–1328. [Google Scholar] [CrossRef]
- Balea, A.; Sanchez-Salvador, J.L.; Monte, M.C.; Merayo, N.; Negro, C.; Blanco, A. In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production. Molecules 2019, 24, 1800. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Salvador, J.L.; Balea, A.; Monte, M.C.; Negro, C.; Miller, M.; Olson, J.; Blanco, A. Comparison Of Mechanical And Chemical Nanocellulose As Additives To Reinforce Recycled Cardboard. Sci. Rep. 2020, 10, 3778. [Google Scholar] [CrossRef] [PubMed]
- Bharimalla, A.; Deshmukh, S.; Vigneshwaran, N.; Patil, P.; Prasad, V. Nanocellulose-polymer composites for applications in food packaging: Current status, future prospects and challenges. Polym. Plast. Technol. Eng. 2017, 56, 805–823. [Google Scholar] [CrossRef]
- Ghaderi, M.; Mousavi, M.; Yousefi, H.; Labbafi, M. All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohyd. Polym. 2014, 104, 59–65. [Google Scholar] [CrossRef]
- Niu, X.; Liu, Y.; Song, Y.; Han, J.; Pan, H. Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid/chitosan composite film for food packaging. Carbohyd. Polym. 2018, 183, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Curvello, R.; Raghuwanshi, V.S.; Garnier, G. Engineering nanocellulose hydrogels for biomedical applications. Adv. Colloid Interface Sci. 2019, 267, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Dufresne, A. Nanocellulose in biomedicine: Current status and future prospect. Eur. Polym. J. 2014, 59, 302–325. [Google Scholar] [CrossRef] [Green Version]
- Moohan, J.; Stewart, S.A.; Espinosa, E.; Rosal, A.; Rodríguez, A.; Larrañeta, E.; Donnelly, R.F.; Domínguez-Robles, J. Cellulose nanofibers and other biopolymers for biomedical applications. A review. Appl. Sci. 2020, 10, 65. [Google Scholar] [CrossRef] [Green Version]
- Balea, A.; Monte, M.C.; Fuente, E.; Sanchez-Salvador, J.L.; Blanco, A.; Negro, C. Cellulose nanofibers and chitosan to remove flexographic inks from wastewaters. Environ. Sci. Water Res. Technol. 2019, 5, 1558–1567. [Google Scholar] [CrossRef]
- Ma, H.; Burger, C.; Hsiao, B.S.; Chu, B. Ultra-fine cellulose nanofibers: New nano-scale materials for water purification. J. Mater. Chem. 2011, 21, 7507–7510. [Google Scholar] [CrossRef]
- Balea, A.; Blanco, A.; Negro, C. Nanocelluloses: Natural-Based Materials for Fiber-Reinforced Cement Composites. A Critical Review. Polymers 2019, 11, 518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balea, A.; Blanco, A.; Delgado-Aguilar, M.; Monte, M.C.; Tarres, Q.; Mutjé, P.; Negro, C. Nanocellulose Characterization Challenges. Bioresources 2021, 16, 526. [Google Scholar] [CrossRef]
- Balea, A.; Fuente, E.; Concepcion Monte, M.; Merayo, N.; Campano, C.; Negro, C.; Blanco, A. Industrial Application of Nanocelluloses in Papermaking: A Review of Challenges, Technical Solutions, and Market Perspectives. Molecules 2020, 25, 526. [Google Scholar] [CrossRef] [Green Version]
- Foster, E.J.; Moon, R.J.; Agarwal, U.P.; Bortner, M.J.; Bras, J.; Camarero-Espinosa, S.; Chan, K.J.; Clift, M.J.; Cranston, E.D.; Eichhorn, S.J. Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev. 2018, 47, 2609–2679. [Google Scholar] [CrossRef] [Green Version]
- Serra-Parareda, F.; Tarrés, Q.; Sanchez-Salvador, J.L.; Campano, C.; Pèlach, M.À.; Mutjé, P.; Negro, C.; Delgado-Aguilar, M. Tuning morphology and structure of non-woody nanocellulose: Ranging between nanofibers and nanocrystals. Ind. Crop. Prod. 2021, 171, 113877. [Google Scholar] [CrossRef]
- Balea, A.; Merayo, N.; Fuente, E.; Delgado-Aguilar, M.; Mutje, P.; Blanco, A.; Negro, C. Valorization of Corn Stalk by the Production of Cellulose Nanofibers to Improve Recycled Paper Properties. Bioresources 2016, 11, 3416–3431. [Google Scholar] [CrossRef] [Green Version]
- Campano, C.; Merayo, N.; Balea, A.; Tarres, Q.; Delgado-Aguilar, M.; Mutje, P.; Negro, C.; Blanco, A. Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose 2018, 25, 269–280. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, Y.; Chen, W.; Liu, Y.; Wang, Q.; Li, J.; Yu, H. Homogeneous dispersion of cellulose nanofibers in waterborne acrylic coatings with improved properties and unreduced transparency. ACS Sustain. Chem. Eng. 2016, 4, 3766–3772. [Google Scholar] [CrossRef]
- Raj, P.; Mayahi, A.; Lahtinen, P.; Varanasi, S.; Garnier, G.; Martin, D.; Batchelor, W. Gel point as a measure of cellulose nanofibre quality and feedstock development with mechanical energy. Cellulose 2016, 23, 3051–3064. [Google Scholar] [CrossRef]
- Kumagai, A.; Endo, T.; Adachi, M. Evaluation of Cellulose Nanofi bers by Using Sedimentation Method. Jpn. Tappi J. 2019, 73, 461–469. [Google Scholar] [CrossRef] [Green Version]
- Derakhshandeh, B.; Kerekes, R.; Hatzikiriakos, S.; Bennington, C. Rheology of pulp fibre suspensions: A critical review. Chem. Eng. Sci. 2011, 66, 3460–3470. [Google Scholar] [CrossRef]
- Nasser, M.; James, A. The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions. Sep. Purif. Technol. 2006, 52, 241–252. [Google Scholar] [CrossRef]
- Sanchez-Salvador, J.L.; Monte, M.C.; Batchelor, W.; Garnier, G.; Negro, C.; Blanco, A. Characterizing highly fibrillated nanocellulose by modifying the gel point methodology. Carbohyd Polym. 2020, 227, 115340. [Google Scholar] [CrossRef]
- Mosse, W.K.; Boger, D.V.; Simon, G.P.; Garnier, G. Effect of cationic polyacrylamides on the interactions between cellulose fibers. Langmuir 2012, 28, 3641–3649. [Google Scholar] [CrossRef]
- Tiller, F.M.; Khatib, Z. The theory of sediment volumes of compressible, particulate structures. J. Colloid Interface Sci. 1984, 100, 55–67. [Google Scholar] [CrossRef]
- Martinez, D.; Buckley, K.; Jivan, S.; Lindstrom, A.; Thiruvengadaswamy, R.; Olson, J.; Ruth, T.; Kerekes, R. Characterizing the mobility of papermaking fibres during sedimentation. In Proceedings of the The Science of Papermaking: Transactions of the 12th Fundamental Research Symposium, Oxford, UK, September 2001; The Pulp and Paper Fundamental Research Society: Bury, UK, 2001; pp. 225–254. [Google Scholar]
- Zhang, L.; Batchelor, W.; Varanasi, S.; Tsuzuki, T.; Wang, X. Effect of cellulose nanofiber dimensions on sheet forming through filtration. Cellulose 2012, 19, 561–574. [Google Scholar] [CrossRef]
- Varanasi, S.; He, R.; Batchelor, W. Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose 2013, 20, 1885–1896. [Google Scholar] [CrossRef]
- Raj, P.; Varanasi, S.; Batchelor, W.; Garnier, G. Effect of cationic polyacrylamide on the processing and properties of nanocellulose films. J. Colloid Interface Sci. 2015, 447, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Salvador, J.L.; Monte, M.C.; Negro, C.; Batchelor, W.; Garnier, G.; Blanco, A. Simplification of gel point characterization of cellulose nano and microfiber suspensions. Cellulose 2021, 28, 6995–7006. [Google Scholar] [CrossRef]
- Celzard, A.; Fierro, V.; Kerekes, R. Flocculation of cellulose fibres: New comparison of crowding factor with percolation and effective-medium theories. Cellulose 2009, 16, 983–987. [Google Scholar] [CrossRef]
- Kerekes, R.; Schell, C. Regimes by a crowding factor. J. Pulp. Pap. Sci. 1992, 18, J32–J38. [Google Scholar]
- Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 2007, 8, 2485–2491. [Google Scholar] [CrossRef]
- Kaushal, M.; Sirohiya, V.; Rathore, R. Corrugated board structure: A review. Int. J. Appl. Eng. Technol. 2015, 2, 228–234. [Google Scholar]
- ISO 5263-1:2004. Pulps—Laboratory Wet Disintegration—Part 1: Disintegration of Chemical Pulps; ISO: Geneva, Switzerland, 2004. [Google Scholar]
- ISO 5269-2:2004. Pulps—Preparation of Laboratory Sheets for Physical Testing—Part 2: Rapid-Köthen Method; ISO: Geneva, Switzerland, 2004. [Google Scholar]
- ISO 1924-3:2005. Paper and Board—Determination of Tensile Properties—Part 3: Constant Rate of Elongation Method (100 mm/min); ISO: Geneva, Switzerland, 2005. [Google Scholar]
- ISO 2759:2014. Board—Determination of Bursting Strength; ISO: Geneva, Switzerland, 2014. [Google Scholar]
- TAPPI T826 om-21. Short Span Compressive Strength of Containerboard; TAPPI: Geneva, Switzerland, 2021. [Google Scholar]
- ISO 1974:2012. Paper—Determination of Tearing Resistance—Elmendorf Method; ISO: Geneva, Switzerland, 2012. [Google Scholar]
- ISO 5636-3:2013. Paper and Board—Determination of Air Permeance (Medium Range)—Part 3: Bendtsen Method; ISO: Geneva, Switzerland, 2013. [Google Scholar]
- ISO 534:2011. Paper and Board—Determination of Thickness, Density and Specific Volume; ISO: Geneva, Switzerland, 2011. [Google Scholar]
- ISO 536:2019. Paper and Board—Determination of Grammage; ISO: Geneva, Switzerland, 2019. [Google Scholar]
- Sanchez-Salvador, J.L.; Campano, C.; Lopez-Exposito, P.; Tarrés, Q.; Mutjé, P.; Delgado-Aguilar, M.; Monte, M.C.; Blanco, A. Enhanced Morphological Characterization of Cellulose Nano/Microfibers through Image Skeleton Analysis. Nanomater. Basel 2021, 11, 2077. [Google Scholar] [CrossRef]
- Balea, A.; Blanco, A.; Monte, M.C.; Merayo, N.; Negro, C. Effect of Bleached Eucalyptus and Pine Cellulose Nanofibers on the Physico-Mechanical Properties of Cartonboard. Bioresources 2016, 11, 8123–8138. [Google Scholar] [CrossRef] [Green Version]
- Campano, C.; Merayo, N.; Negro, C.; Blanco, Á. Low-fibrillated bacterial cellulose nanofibers as a sustainable additive to enhance recycled paper quality. Int. J. Biol. Macromol. 2018, 114, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Ramdhonee, A.; Jeetah, P. Production of wrapping paper from banana fibres. J. Environ. Chem. Eng. 2017, 5, 4298–4306. [Google Scholar] [CrossRef]
- Petroudy, S.R.D.; Sheikhi, P.; Ghobadifar, P. Sugarcane bagasse paper reinforced by cellulose nanofiber (CNF) and bleached softwood kraft (BSWK) pulp. J. Polym. Environ. 2017, 25, 203–213. [Google Scholar] [CrossRef]
C-CMF | R-CMF | R-CNF | E-CNF | |
---|---|---|---|---|
Dry composition | ||||
Cellulose (%) | >99.9 | 56 ± 1 | 50 ± 1 | 72 ± 1 |
Hemicellulose (%) | - | 13 ± 1 | 18 ± 1 | 18 ± 1 |
Soluble lignin (%) | - | 4.3 ± 0.5 | 10.0 ± 0.5 | 6.0 ± 0.5 |
Insoluble lignin (%) | - | 12.5 ± 0.5 | 5.3 ± 0.5 | - |
Extractives (%) | - | 1.8 ± 0.1 | 2.0 ± 0.2 | 0.3 ± 0.1 |
Ashes (%) | <0.1 * | 12.5 ± 0.3 | 14.0 ± 0.5 | 3.0 ± 0.5 |
Chemical parameters | ||||
Carboxyl Groups (mmol/g) | 0.06 | 0.07 | 0.81 | 0.59 |
Superficial cationic demand (meq/g) | 0.06 | 0.04 | 0.62 | 0.80 |
Morphological parameters | ||||
Transmittance 400 nm (%) | 2.1 | 1.8 | 15.4 | 83.5 |
Transmittance 800 nm (%) | 9.2 | 8.7 | 35.7 | 94.8 |
Polymerization Degree (monomeric units) | 229 | 703 | 201 | 440 |
Nanofibrillation Yield (%) | <5 | 39 | 78 | 89 |
Diameter (average) | ~5 μm | 44 nm | 19 nm | 28 nm |
Velocity Gradient (s−1) | Geometric Mean of Diameter (nm) | Diameter Median (nm) | Diameter D(0.95) (nm) | Number of Samples Measured (Fibers) | Length (µm) | ||
---|---|---|---|---|---|---|---|
95% Confidence Interval | Mean | CN | EMT | ||||
R-CNF | |||||||
3 | (17.4, 20.3) | 18.8 | 18.9 | 50.7 | 261 | 1.89 | 1.67 |
70 | (14.4, 16.5) | 15.4 | 15.3 | 38.0 | 237 | 1.72 | 1.53 |
125 | (14.0, 15.9) | 14.9 | 14.1 | 39.0 | 311 | 1.64 | 1.46 |
500 | (11.8, 13.6) | 12.6 | 11.8 | 40.7 | 366 | 1.17 | 1.02 |
2500 | (9.9, 11.5) | 10.7 | 10.9 | 27.4 | 242 | <0.9 * | <0.8 * |
R-CMF | |||||||
50 | (39.0, 49.5) | 43.9 | 40.0 | 379 | 316 | 5.44 | 4.93 |
500 | (29.5, 36.4) | 32.8 | 31.5 | 145 | 259 | 4.77 | 4.41 |
900 | (29.7, 35.3) | 32.4 | 33.9 | 136 | 366 | 4.34 | 3.98 |
2500 | (27.4, 32.4) | 29.8 | 26.8 | 111 | 295 | <3.2 * | <2.9 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Salvador, J.L.; Balea, A.; Negro, C.; Monte, M.C.; Blanco, A. Gel Point as Measurement of Dispersion Degree of Nano-Cellulose Suspensions and Its Application in Papermaking. Nanomaterials 2022, 12, 790. https://doi.org/10.3390/nano12050790
Sanchez-Salvador JL, Balea A, Negro C, Monte MC, Blanco A. Gel Point as Measurement of Dispersion Degree of Nano-Cellulose Suspensions and Its Application in Papermaking. Nanomaterials. 2022; 12(5):790. https://doi.org/10.3390/nano12050790
Chicago/Turabian StyleSanchez-Salvador, Jose Luis, Ana Balea, Carlos Negro, Maria Concepcion Monte, and Angeles Blanco. 2022. "Gel Point as Measurement of Dispersion Degree of Nano-Cellulose Suspensions and Its Application in Papermaking" Nanomaterials 12, no. 5: 790. https://doi.org/10.3390/nano12050790
APA StyleSanchez-Salvador, J. L., Balea, A., Negro, C., Monte, M. C., & Blanco, A. (2022). Gel Point as Measurement of Dispersion Degree of Nano-Cellulose Suspensions and Its Application in Papermaking. Nanomaterials, 12(5), 790. https://doi.org/10.3390/nano12050790