Experimental Study on the Quenching Behavior of a Copper Cube in the Cellulose Nanofiber Solution
Abstract
:1. Introduction
2. Experimental Approach
3. Results and Discussion
3.1. Effect of Oxidation Layer during Quenching in DI Water
3.2. Quenching Behavior with Increasing Concentration of CNF Solution
3.3. Gelation and Damages on Oxidation Layer during Quenching
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bolukbasi, A.; Ciloglu, D. Investigation of heat transfer by means of pool film boiling on vertical cylinders in gravity. Heat Mass Transf. 2007, 44, 141–148. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, S.M.; Park, S.D.; Bang, I.C. Study on the cooling performance of sea salt solution during reflood heat transfer in a long vertical tube. Int. J. Heat Mass Transf. 2013, 60, 105–113. [Google Scholar] [CrossRef]
- Park, H.S.; Shiferaw, D.; Sehgal, B.R.; Kim, D.K.; Muhammed, M. Film Boiling Heat Transfer on a High Temperature Sphere in Nanofluid. Heat Transf. Summer Conf. 2004, 46938, 469–476. [Google Scholar]
- Kim, H.; DeWitt, G.; McKrell, T.; Buongiorno, J.; Hu, L.W. On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles. Int. J. Multiph. Flow 2006, 35, 427–438. [Google Scholar] [CrossRef]
- Ciloglu, D.; Bolukbasi, A. The quenching behavior of aqueous nanofluids around rods with high temperature. Nucl. Eng. Des. 2011, 241, 2519–2527. [Google Scholar] [CrossRef]
- Khoshmehr, H.H.; Saboonchi, A.; Shafii, M.B. The quenching of silver rod in boiling carbon nano tube–water nanofluid. Int. J. Therm. Sci. 2014, 75, 95–104. [Google Scholar] [CrossRef]
- Bolukbasi, A.; Ciloglu, D. Pool boiling heat transfer characteristics of vertical cylinder quenched by SiO2–water nanofluids. Int. J. Therm. Sci. 2011, 50, 1013–1021. [Google Scholar] [CrossRef]
- Lee, C.Y.; Chun, T.H.; In, W.K. Effect of change in surface condition induced by oxidation on transient pool boiling heat transfer of vertical stainless steel and copper rodlets. Int. J. Heat Mass Transf. 2014, 79, 397–407. [Google Scholar] [CrossRef]
- Prasher, R.; Evans, W.; Meakin, P.; Fish, J.; Phelan, P.; Keblinski, P. Effect of aggregation on thermal conduction in colloidal nanofluids. Appl. Phys. Lett. 2006, 89, 143119. [Google Scholar] [CrossRef] [Green Version]
- Hwang, W.-K.; Choy, S.; Song, S.L.; Lee, J.; Hwang, D.S.; Lee, K.-Y. Enhancement of nanofluid stability and critical heat flux in pool boiling with nanocellulose. Carbohydr. Polym. 2019, 213, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.; Lee, K.-Y. Experimental Study on Confinement Effect of Two-Phase Closed Thermosyphon and Heat Transfer Enhancement using Cellulose Nanofluid. Appl. Therm. Eng. 2020, 183, 116247. [Google Scholar] [CrossRef]
- Choi, D.; Jun, G.; Hwang, W.; Lee, K.-Y. Heat Transfer Enhancement of Small-Diameter Two-Phase Closed Thermosyphon Using Cellulose Nanofiber and Hydrophilic Surface Modification. Nanomaterials 2021, 11, 647. [Google Scholar] [CrossRef] [PubMed]
- Bergman, T.L.; Incropera, F.P.; DeWitt, D.P.; Lavine, A.S. Fundamentals of Heat and Mass Transfer; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 2011, 3, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Lin, M.C.; Wang, C. Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system. Nanoscale Res. Lett. 2011, 6, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, S.-H.; Ho, Y.-H.; Ho, M.-X.; Wang, J.-C.; Pan, C. On the formation of vapor film during quenching in de-ionized water and elimination of film boiling during quenching in natural sea water. Int. J. Heat Mass Transf. 2015, 86, 65–71. [Google Scholar] [CrossRef]
- Zhang, K.; Barhoum, A.; Xiaoqing, C.; Li, H.; Samyn, P. Cellulose Nanofibers: Fabrication and Surface Functionalization Techniques; Barhoum, A., Bechelany, M., Makhlouf, A., Eds.; Springer: Cham, Switzerland, 2019; pp. 409–449. [Google Scholar]
- Kiliyankil, V.A.; Fugetsu, B.; Sakata, I.; Wang, Z.; Endo, M. Aerogels from copper (II)-cellulose nanofibers and carbon nanotubes as absorbents for the elimination of toxic gases from air. J. Colloid Interface Sci. 2020, 582, 950–960. [Google Scholar] [CrossRef] [PubMed]
Solution | Unit | 1st | 2nd | 3rd | Average | vs. DI Water |
---|---|---|---|---|---|---|
DI water | [s] | 81.0 | 94.2 | 104 | 93.1 | - |
CNF 0.01% | [s] | 86.2 | 88.4 | 98.8 | 91.1 | −2.0(2%) |
CNF 0.1% | [s] | 66.8 | 79.8 | 73.0 | 73.2 | −24.6(26%) |
CNF 0.5% | [s] | 51.4 | 64.2 | 79.2 | 64.9 | −28.2(30%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.; Jeong, S.; Lee, K.-Y. Experimental Study on the Quenching Behavior of a Copper Cube in the Cellulose Nanofiber Solution. Nanomaterials 2022, 12, 1033. https://doi.org/10.3390/nano12061033
Choi H, Jeong S, Lee K-Y. Experimental Study on the Quenching Behavior of a Copper Cube in the Cellulose Nanofiber Solution. Nanomaterials. 2022; 12(6):1033. https://doi.org/10.3390/nano12061033
Chicago/Turabian StyleChoi, Hundong, Subin Jeong, and Kwon-Yeong Lee. 2022. "Experimental Study on the Quenching Behavior of a Copper Cube in the Cellulose Nanofiber Solution" Nanomaterials 12, no. 6: 1033. https://doi.org/10.3390/nano12061033
APA StyleChoi, H., Jeong, S., & Lee, K. -Y. (2022). Experimental Study on the Quenching Behavior of a Copper Cube in the Cellulose Nanofiber Solution. Nanomaterials, 12(6), 1033. https://doi.org/10.3390/nano12061033