pH-Responsive Emission of Novel Water-Soluble Polymeric Iridium(III) Complexes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. Synthesis of Compounds
3. Results
3.1. Synthesis and Characterization of Compounds
3.2. Optical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reddy, M.L.P.; Bejoymohandas, K.S. Evolution of 2,3-bipyridine class of cyclometalating ligands as efficient phosphorescent iridium(III) emitters for applications inorganic light emitting diodes. J. Photochem. Photobiol. C Photochem. Rev. 2016, 29, 29–47. [Google Scholar] [CrossRef]
- Whittell, G.R.; Manners, I. Metallopolymers: New Multifunctional Materials. Adv. Mater. 2007, 19, 3439–3468. [Google Scholar] [CrossRef]
- Yersin, H. (Ed.) Highly Efficient OLEDs with Phosphorescent Materials; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; ISBN 978-3-527-40594-7. [Google Scholar]
- Lo, K.K.; Li, S.P. Utilization of the photophysical and photochemical properties of phosphorescent transition metal complexes in the development of photofunctional cellular sensors, imaging reagents, and cytotoxic agents. RSC Adv. 2014, 4, 10560–10585. [Google Scholar] [CrossRef]
- Polosan, S.; Radu, I. Mechanisms of the charge transfer in IrQ(ppy)2-5Cl dual-emitter compound. J. Nanosci. Nanotechnol. 2013, 13, 5203–5208. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Liu, Y.; Qu, X.; Wu, Z. Theoretical study on electronic structures and optical properties of blue phosphorescent iridium(III) complexes witn C^N and N^N ligands. J. Lumin. 2013, 143, 402–408. [Google Scholar] [CrossRef]
- Martir, D.R.; Zysman-Colman, E. Supramolecular iridium(III) assemblies. Coord. Chem. Rev. 2018, 364, 86–117. [Google Scholar] [CrossRef] [Green Version]
- Kozhevnikov, V.N.; Zheng, Y.; Clough, M.; Al-Attar, H.A.; Griffiths, G.C.; Abdullah, K.; Raisys, S.; Jankus, V.; Bryce, M.R.; Monkman, A.P. Cyclometalated iridium(III) complexes for high-efficiency solution-processable blue PhOLEDs. Chem. Mater. 2013, 25, 2352–2358. [Google Scholar] [CrossRef]
- Park, G.; Seo, J.; Kim, Y.; Kim, Y.S. Iridium(III) complexes with 6-pentafluorophenyl-2,4-diphenylquinolines for red OLEDs. Mol. Cryst. Liq. Cryst. 2007, 471, 293–303. [Google Scholar] [CrossRef]
- Lai, W.; Levell, J.; Jackson, A.; Lo, S.; Bernhardt, P.; Samuel, I.; Burn, P. A phosphorescent poly(dendrimer) containing iridium(III) complexes: Synthesis and light-emitting properties. Macromolecules 2010, 43, 6986–6994. [Google Scholar] [CrossRef]
- Zysman-Colman, E. (Ed.) Iridium(III) in Optoelectronic and Photonics Applications, 1st ed.; John Wiley & Sons Ltd.: Chichester, West Sussex, UK, 2017. [Google Scholar]
- Ma, Υ.; Liu, S.; Yang, H.; Wu, Y.; Yang, C.; Liu, X.; Zhao, Q.; Wu, H.; Liang, J.; Li, F.; et al. Water-Soluble phosphorescent iridium(III) complexes as multicolor probes for imaging of homocysteine and cysteine in living cells. J. Mater. Chem. 2011, 21, 18974–18982. [Google Scholar] [CrossRef]
- Shiu, H.-Y.; Chong, H.-C.; Leung, Y.-C.; Zu, T.; Che, C.-M. Phosphorescent proteins for bio-imaging and site selective bio-conjugation of peptides and proteins with luminescent cyclometalated iridium(III) complexes. Chem. Commun. 2014, 50, 4375–4378. [Google Scholar] [CrossRef] [PubMed]
- Caporale, C.; Massi, M. Cyclometalated iridium(III) complexes for life science. Coord. Chem. Rev. 2018, 363, 71–91. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Li, Z.; Zhao, Y.; Qi, H.; Zhang, C. Aldehyde bearing bis-cyclometalated Ir(III) complex as selective photoluminescence turn-on probe for imaging intracellular homocysteine. Sens. Actuators B. 2017, 245, 853–859. [Google Scholar] [CrossRef] [Green Version]
- Yip, A.M.-H.; Lo, K.K.-W. Luminescent rhenium(I), ruthenium(II), and iridium(III) polypyridine complexes containing a poly(ethylene glycol) pendant or bioorthogonal reaction group as biological probes and photocytotoxic agents. Coord. Chem. Rev. 2018, 361, 138–163. [Google Scholar] [CrossRef]
- Zhai, T.L.; Wang, C.C.; Cui, L.L.; Du, J.; Zhou, Z.G.; Yang, H.; Yang, S.P. Hollow Bimetallic Complex Nanoparticles for Trimodality Imaging and Photodynamic Therapy In Vivo. ACS Appl. Mater. Interfaces 2020, 12, 37470–37476. [Google Scholar] [CrossRef]
- Gupta, A.; Prasad, P.; Shalini, G.; Sasmal, P.K. Simultaneous Ultrasensitive Detection and Elimination of Drug-Resistant Bacteria by Cyclometalated Iridium(III) Complexes. ACS Appl. Mater. Interfaces 2020, 12, 35967–35976. [Google Scholar] [CrossRef]
- Lalevee, J.; Tehfe, M.; Dumur, F.; Gigmes, D.; Blanchard, N.; Morlet-Savary, F.; Fouassier, J. Iridium photocatalysts in free radical photopolymerization under visible lights. ACS Macro Lett. 2012, 1, 286–290. [Google Scholar] [CrossRef]
- Lalevee, J.; Dumur, F.; Mayer, C.; Gigmes, D.; Nasr, G.; Tehfe, M.; Telitel, S.; Morlet-Savary, F.; Graff, B.; Fouassier, J. Photopolymerization of N-Vinylcarbazole using visible-light harvesting iridium complexes as photoinitiators. Macromolecules 2012, 45, 4134–4141. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, Y.; Chen, J.; Huang, C.; Tu, T. Robust Iridium Coordination Polymers: Highly Selective, Efficient, and Recyclable Catalysts for Oxidative Conversion of Glycerol to Potassium Lactate with Dihydrogen Liberation. ACS Catal. 2015, 5, 6573–6578. [Google Scholar] [CrossRef]
- Ainembabazi, D.; Wang, K.; Finn, M.; Ridenour, J.; Voutchkova-Kostal, A. Efficient transfer hydrogenation of carbonate salts from glycerol using water-soluble iridium N-heterocyclic carbene catalysts. Green Chem. 2020, 22, 6093–6104. [Google Scholar] [CrossRef]
- van Lier, R.C.W.; de Bruijn, A.D.; Roelfes, G. A Water-Soluble Iridium Photocatalyst for Chemical Modification of Dehydroalanines in Peptides and Proteins. Chem. Eur. J. 2021, 27, 1430–1437. [Google Scholar] [CrossRef] [PubMed]
- Schaferling, M. The art of fluorescence imaging with chemical sensors. Angew. Rev. 2012, 51, 3532–3554. [Google Scholar] [CrossRef] [PubMed]
- Tian, N.; Lenkeit, D.; Pelz, S.; Fischer, L.; Escudero, D.; Scchiewek, R.; Klink, D.; Schmitz, O.; Gonzalez, L.; Schaferling, M.; et al. Structure-property relationship of red- and green- emmiting iridium (III) complexes with respect to their temperature and oxygen sensitivity. Eur. J. Inorg. Chem. 2010, 2010, 4875–4885. [Google Scholar] [CrossRef]
- Chan, D.S.-H.; Fu, W.-C.; Wang, M.; Liu, L.-J.; Leung, C.-H.; Ma, D.-L. A highly selective and non-reaction based chemosensor for the detection of Hg2+ ions using a luminescent iridium(III) complex. PLoS ONE 2013, 8, e60114. [Google Scholar] [CrossRef] [Green Version]
- Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, Z.B. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, M. A profluorescent ratiometric probe for intracellular pH imaging. Talanta 2015, 131, 666–671. [Google Scholar] [CrossRef]
- Tobita, S.; Yoshihara, T. Intracellular and in vivo oxygen sensing using phosphorescent iridium(III) complexes. Curr. Opin. Chem. Biol. 2016, 33, 39–45. [Google Scholar] [CrossRef]
- Liu, S.; Wei, L.; Guo, S.; Jiang, J.; Zhang, P.; Han, J.; Ma, Y.; Zhao, Q. Anionic iridium(III) complexes and their conjugated polymer soft salts for time-resolved luminescent detection of intracellular oxygen levels. Sens. Actuators B 2018, 262, 436–443. [Google Scholar] [CrossRef]
- You, Y.; Cho, S.; Nam, W. Cyclometalated Iridium(III) Complexes for Phosphorescence Sensing of Biological Metal Ions. Inorg. Chem. 2014, 53, 1804–1815. [Google Scholar] [CrossRef]
- Smith, R.A.; Stokes, E.C.; Langdon-Jones, E.E.; Platts, J.A.; Kariuki, B.M.; Hallett, A.J.; Pope, S.J.A. Cyclometalated cinchophen ligands on iridium(III): Towards water-soluble complexes with visible luminescence. Dalton Trans. 2013, 42, 10347–10357. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-J.; Jiao, P.; Lin, M.; He, W.; Chen, G.-N.; Chen, X. High electrochemiluminescence of a new water-soluble iridium(III) complex for determination of antibiotics. Analyst 2011, 136, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Gao, Y.; Sun, Y.; Ding, F.; Xu, Y.; Bian, Z.; Li, F.; Bian, J.; Huang, C. Zwitterionic Iridium Complexes: Synthesis, Luminescent Properties, and Their Application in Cell Imaging. Inorg. Chem. 2010, 49, 3252–3260. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Huang, Z.; Liu, Y.; Zhou, M. Photophysics, electrochemistry and electrochemiluminescence of water-soluble biscyclometalated iridium (III) complexes. J. Organomet. Chem. 2012, 718, 14–21. [Google Scholar] [CrossRef]
- Fan, Y.; Zhao, J.; Yan, Q.; Chen, P.R.; Zhao, D. Water-Soluble Triscyclometalated Organoiridium Complex: Phosphorescent Nanoparticle Formation, Nonlinear Optics, and Application for Cell Imaging. ACS Appl. Mater. Interfaces 2014, 6, 3122–3131. [Google Scholar] [CrossRef] [PubMed]
- Solomatina, A.I.; Su, S.-H.; Lukina, M.M.; Dudenkova, V.V.; Shcheslavskiy, V.I.; Wu, C.-H.; Chelushkin, P.S.; Chou, P.-T.; Koshevoy, I.O.; Tunik, S.P. Water-soluble cyclometalated platinum(II) and iridium(III) complexes: Synthesis, tuning of the photophysical properties, and in vitro and in vivo phosphorescence lifetime imaging. RSC Adv. 2018, 8, 17224–17236. [Google Scholar] [CrossRef] [Green Version]
- Erten-Ela, S.; Ocakoglu, K. Iridium dimer complex for dye sensitized solar cells using electrolyte combinations with different ionic liquids. Mater. Sci. Semicond. 2014, 27, 532–540. [Google Scholar] [CrossRef]
- Jaina, N.; Alamb, P.; Laskar, I.R.; Panwar, J. Aggregation Induced Phosphorescence’ Active Iridium(III) Complexes for Integrated Sensing and Inhibition of Bacteria in Aqueous Solution. RSC Adv. 2015, 5, 61983–61988. [Google Scholar] [CrossRef]
- Scarpelli, F.; Ionescu, A.; Ricciardi, L.; Plastina, P.; Aiello, I.; La Deda, M.; Crispini, A.; Ghedini, M.; Godbert, N. A Novel Route Towards Water-Soluble Luminescent Iridium(III) Complexes via a Hydroxy-bridged Dinuclear Precursor. Dalton Trans. 2016, 45, 17264–17273. [Google Scholar] [CrossRef]
- Zanarini, S.; Rampazzo, E.; Bonacchi, S.; Juris, R.; Marcaccio, M.; Montalti, M.; Paolucci, F.; Prodi, L. Iridium Doped Silica-PEG Nanoparticles: Enabling Electrochemiluminescence of Neutral Complexes in Aqueous Media. J. Am. Chem. Soc. 2009, 131, 14208–14209. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, S.; Yang, H.; Wu, Y.; Sun, H.; Wang, J.; Zhao, Q.; Li, F.; Huang, W. A water-soluble polymer for time-resolved assay and bioimaging of cysteine/homocysteine. J. Mater. Chem. B 2013, 1, 319–329. [Google Scholar] [CrossRef]
- Maggioni, D.; Galli, M.; D’Alfonso, L.; Inverso, D.; Dozzi, M.V.; Sironi, L.; Iannacone, M.; Collini, M.; Ferruti, P.; Ranucci, E.; et al. A Luminescent Poly(amidoamine)−Iridium Complex as a New Singlet-Oxygen Sensitizer for Photodynamic Therapy. Inorg. Chem. 2015, 54, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Lu, X.; Fan, Q.; Zhang, Z.; Song, W.; Li, B.; Huang, L.; Peng, J.; Huang, W. Water-Soluble Iridium(III)-Containing Conjugated Polyelectrolytes with Weakened Energy Transfer Properties for Multicolor Protein Sensing Applications. Macromolecules 2011, 44, 8763–8770. [Google Scholar] [CrossRef]
- Metera, K.L.; Hänni, K.D.; Zhou, G.; Nayak, M.K.; Bazzi, H.S.; Juncker, D.; Sleiman, H.F. Luminescent Iridium(III)-Containing Block Copolymers: Self-Assembly into Biotin-Labeled Micelles for Biodetection Assays. ACS Macro Lett. 2012, 1, 954–959. [Google Scholar] [CrossRef]
- Liu, S.; Qiao, W.; Cao, G.; Chen, Y.; Ma, Y.; Huang, Y.; Liu, X.; Xu, W.; Zhao, Q.; Huang, W. Smart Poly(N-isopropylacrylamide) Containing Iridium(III) Complexes as Water-Soluble Phosphorescent Probe for Sensing and Bioimaging of Homocysteine and Cysteine. Macromol. Rapid Commun. 2013, 34, 81–86. [Google Scholar] [CrossRef]
- Hou, H.; Sun, P.; Fan, Q.; Lu, X.; Xue, C.; Zhang, Y.; Tian, S.; Huang, W. Synthesis of Water-Soluble Iridium (III)-Containing Nanoparticles for Biological Applications. J. Chem. 2015, 2015, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Itsuno, S.; Hashimoto, Y.; Haraguchi, N. Synthesis of chiral iridium complexes immobilized on amphiphilic polymers and their application to asymmetric catalysis. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 3037–3044. [Google Scholar] [CrossRef]
- Sun, P.; Wang, G.; Hou, H.; Yuan, P.; Deng, W.; Wang, C.; Lu, X.; Fan, Q.; Huang, W. A water-soluble phosphorescent conjugated polymer brush for tumor-targeted photodynamic therapy. Polym. Chem. 2017, 8, 5836–5844. [Google Scholar] [CrossRef]
- Chen, Z.; Meng, X.; Xie, M.; Shi, Y.; Zou, L.; Guo, S.; Jiang, J.; Liu, S.; Zhao, Q. A self-calibrating phosphorescent polymeric probe for measuring pH fluctuations in subcellular organelles and the zebrafish digestive tract. J. Mater. Chem. C 2020, 8, 2265–2271. [Google Scholar] [CrossRef]
- Kalogianni, A.; Pefkianakis, E.; Stefopoulos, A.; Bokias, G.; Kallitsis, J.K. pH-responsive photoluminescence properties of a water-soluble copolymer containing quinoline groups in aqueous solution. J. Polym. Sci. Part B Polym. Phys. 2010, 48, 2078–2083. [Google Scholar] [CrossRef]
- Lu, L.; Jenekhe, S. Poly(vinyl diphenylquinoline): A New pH-Tunable Light-Emitting and Charge-Transport Polymer Synthesized by a Simple Modification of Polystyrene. Macromolecules 2001, 34, 6249–6254. [Google Scholar] [CrossRef]
- Zhang, X.; Shetty, A.; Jenekhe, S. Electroluminescence and Photophysical Properties of Polyquinolines. Macromolecules 1999, 32, 7422–7429. [Google Scholar] [CrossRef]
- Moutsiopoulou, A.; Andreopoulou, A.K.; Lainioti, G.; Bokias, G.; Voyiatzis, G.; Kallitsis, J.K. Quinoline-functionalized cross-linked poly(vinyl acetate) andpoly(vinyl alcohol) nanoparticles as potential pH-responsive luminescent sensors. Sens. Actuators B 2015, 211, 235–244. [Google Scholar] [CrossRef]
- Thivaios, I.; Kakogianni, S.; Bokias, G. A library of quinoline-labeled water-soluble copolymers with pH-tunable fluorescence response in the acidic pH region. Macromolecules 2016, 49, 3526–3534. [Google Scholar] [CrossRef]
- Kougia, E.; Tselepi, M.; Vasilopoulos, G.; Lainioti, G.C.; Koromilas, N.D.; Druvari, D.; Bokias, G.; Vantarakis, A.; Kallitsis, J.K. Evaluation of antimicrobial efficiency of new polymers comprised by covalently attached and/or electrostatically bound bacteriostatic species, based on quaternary ammonium compounds. Molecules 2015, 20, 21313–21327. [Google Scholar] [CrossRef] [PubMed]
- Thivaios, I.; Koukoumtzis, V.; Kallitsis, J.K.; Bokias, G. Quinoline-labeled poly(N-isopropylacrylamide): A selective polymeric luminescent sensor of cationic surfactants. Sens. Actuators B 2016, 233, 127–135. [Google Scholar] [CrossRef]
- Iatridi, Z.; Vamvakidis, K.; Tsougos, I.; Vassiou, K.; Dendrinou-Samara, C.; Bokias, G. Multifunctional Polymeric Platform of Magnetic Ferrite Colloidal Superparticles for Luminescence, Imaging, and Hyperthermia Applications. ACS Appl. Mater. Interfaces 2016, 8, 35059–35070. [Google Scholar] [CrossRef]
- Gioti, M.; Tselekidou, D.; Panagiotidis, L.; Kyriazopoulos, V.; Simitzi, K.; Andreopoulou, A.K.; Kalitsis, J.K.; Gravalidis, C.; Logothetidis, S. Optical characterization of organic light-emitting diodes with selective red emission. Mater. Today Proc. 2021, 37, A39–A45. [Google Scholar] [CrossRef]
- Andrikopoulos, K.; Anastasopoulos, C.; Kallitsis, J.K.; Andreopoulou, A.K. Bis-Tridendate Ir(III) Polymer-Metallocomplexes: Hybrid, Main-Chain Polymer Phosphors for Orange—Red Light Emission. Polymers 2020, 12, 2976. [Google Scholar] [CrossRef]
- Margariti, A.; Papakonstantinou, V.D.; Stamatakis, G.; Demopoulos, C.A.; Schnakenburg, G.; Andreopoulou, A.K.; Giannopoulos, P.; Kallitsis, J.K.; Philippopoulos, A.I. Substituted pyridine-quinoline ligands as building blocks for neutral rhodium(III) complexes. Synthesis, structural characterization studies and anti-platelet activity towards the Platelet-Activating Factor (PAF). Polyhedron 2020, 178, 114336. [Google Scholar] [CrossRef]
- Economopoulos, S.; Andreopoulou, A.K.; Gregoriou, V.; Kallitsis, J. Synthesis and Optical Properties of New End-Functionalized Polyquinolines. Chem. Mater. 2005, 17, 1063–1071. [Google Scholar] [CrossRef]
- Kappaun, S.; Eder, S.; Sax, S.; Mereiter, K.; List, E.; Slugove, C. Organoiridium Quinolinolate Complexes: Synthesis, Structures, Thermal Stabilities and Photophysical Properties. Eur. J. Inorg. Chem. 2007, 2007, 4207–4215. [Google Scholar] [CrossRef]
- Donato, L.; McCusker, C.; Castellano, F.; Colman, E. Mono- and dinuclera cationic iridium(II) complexes bearing a 2,5-dipyridylpyrazine (2,5-bpp) ligand. Inorg. Chem. 2013, 52, 8495–8504. [Google Scholar] [CrossRef] [PubMed]
- Park, G.Y.; Kim, Y.S. Synthesis and photophysical study of iridium(III) complex with 6-pentafluorophenyl-2,4-diphenylquinolines. Colloids Surf. A Physicochem. Eng. Asp. 2008, 313–314, 435–438. [Google Scholar] [CrossRef]
- Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.-E.; Adachi, C.; Burrows, P.E.; Forrest, S.R.; Thompson, M.E. Highly phosphorescent bis-cyclometalated iridium complexes: Synthesis, photophysical characterization, and use in organic light emitting diodes. J. Am. Chem. Soc. 2001, 123, 4304–4312. [Google Scholar] [CrossRef]
- Stefopoulos, A.A.; Kourkouli, S.N.; Economopoulos, S.; Ravani, F.; Andreopoulou, A.; Siokou, A.; Papaggelis, K.; Kallitsis, J.K. Polymer and hybrid electron accepting materials based on a semiconducting perfluorophenylquinoline. Macromolecules 2010, 43, 4827–4828. [Google Scholar] [CrossRef]
- Pefkianakis, E.; Tzanetos, N.; Kallitsis, J. Synthesis and characterization of a Novel Vinyl-2,2′-bipyridine monomer and its homopolymeric/copolymeric metal complexes. Chem. Mater. 2008, 20, 6254–6262. [Google Scholar] [CrossRef]
- Aivali, S.; Kakogianni, S.; Anastasopoulos, C.; Andreopoulou, A.K.; Kallitsis, J.K. Copolymers and Hybrids Based on Carbazole Derivatives and Their Nanomorphology Investigation. Nanomaterials 2019, 9, 133. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsakaraki, D.; Andreopoulou, A.K.; Bokias, G. pH-Responsive Emission of Novel Water-Soluble Polymeric Iridium(III) Complexes. Nanomaterials 2022, 12, 927. https://doi.org/10.3390/nano12060927
Tsakaraki D, Andreopoulou AK, Bokias G. pH-Responsive Emission of Novel Water-Soluble Polymeric Iridium(III) Complexes. Nanomaterials. 2022; 12(6):927. https://doi.org/10.3390/nano12060927
Chicago/Turabian StyleTsakaraki, Dafnianna, Aikaterini K. Andreopoulou, and Georgios Bokias. 2022. "pH-Responsive Emission of Novel Water-Soluble Polymeric Iridium(III) Complexes" Nanomaterials 12, no. 6: 927. https://doi.org/10.3390/nano12060927
APA StyleTsakaraki, D., Andreopoulou, A. K., & Bokias, G. (2022). pH-Responsive Emission of Novel Water-Soluble Polymeric Iridium(III) Complexes. Nanomaterials, 12(6), 927. https://doi.org/10.3390/nano12060927