Suspended Multifunctional Nanocellulose as Additive for Mortars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanocellulose Production
2.1.1. Oxidized Nanocellulose Preparation (ONC)
2.1.2. GMA Grafted ONC
2.1.3. GMA/EGDMA Grafted ONC
2.1.4. Suspension
2.2. Mortars Preparation
2.3. Characterization Techniques
2.3.1. Infrared Spectroscopy (IR)
2.3.2. ONC Titration
2.3.3. Solid-State 13C CP-MAS NMR
2.3.4. Scanning Electron Microscopy (SEM)
2.3.5. Dynamic Light Scattering (DLS)
2.3.6. Mortars Performance Characterization
3. Results
3.1. Cotton Wool Characterization
3.2. Nanocellulose Characterization
3.2.1. FT-IR Analyses
3.2.2. DLS Analyses
3.2.3. NMR Analyses
3.2.4. SEM analyses
3.3. Mortars Characterization
3.3.1. Mechanical Properties
3.3.2. Water Absorption and Contact Angle
3.3.3. Porosity Tests
3.3.4. Thermal gravimetric analyses (TGA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, B.; Raj, M.C.; Athira, K.B.; Rubiah, M.H.; Joy, J.; Moores, A.; Drisko, G.L.; Sanchez, C. Nanocellulose, a versatile green platform: From biosources to materials and their applications. Chem. Rev. 2018, 118, 11575–11625. [Google Scholar] [CrossRef] [PubMed]
- Klemm, D.; Cranston, E.D.; Fischer, D.; Gama, M.; Kedzior, S.A.; Kralisch, D.; Kramer, F.; Kondo, T.; Lindström, T.; Nietzsche, S.; et al. Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state. Mater. Today 2018, 21, 720–748. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.-Y.; Yan, C.-F. Mechanical properties of cellulose nanofibril (CNF)- and cellulose nanocrystal (CNC)-based nanocomposites. In Handbook of Nanocellulose and Cellulose Nanocomposites; Kargarzadeh, H., Ahmad, I., Thomas, S., Dufresne, A., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 393–443. [Google Scholar]
- Zou, Y.; Zhao, J.; Zhu, J.; Guo, X.; Chen, P.; Duan, G.; Liu, X.; Li, Y. A mussel-inspired polydopamine-filled cellulose aerogel for solar-enabled water remediation. ACS Appl. Mater. Interfaces 2021, 13, 7617–7624. [Google Scholar] [CrossRef] [PubMed]
- Fatima, A.; Yasir, S.; Khan, M.S.; Manan, S.; Ullah, M.W.; Ul-Islam, M. Plant extract-loaded bacterial cellulose composite membrane for potential biomedical applications. J. Bioresour. Bioprod. 2021, 6, 26–32. [Google Scholar] [CrossRef]
- Deeksha, B.; Sadanand, V.; Hariram, N.; Rajulu, A.V. Preparation and properties of cellulose nanocomposite fabrics with in situ generated silver nanoparticles by bioreduction method. J. Bioresour. Bioprod. 2021, 6, 75–81. [Google Scholar] [CrossRef]
- Peters, S.J.; Rushing, T.S.; Landis, E.N.; Cummins, T.K. Nanocellulose and microcellulose fibers for concrete. Transp. Res. Rec. J. Transp. Res. Board 2010, 2142, 25–28. [Google Scholar] [CrossRef]
- Vazquez, A.; Piqué, T.M.; Hoyos, C.G.; Escobar, M.M. Study of kinetic, structure and properties evaluation of organically modified montmorillonites and micro nanocellulose added to cement paste. In Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, Brazil, 1–6 July 2012; American Society of Mechanical Engineers: New York, NY, USA, 2012; pp. 829–833. [Google Scholar]
- Hoyos, C.G.; Cristia, E.; Vázquez, A. Effect of cellulose microcrystalline particles on properties of cement based composites. Mater. Des. 2013, 51, 810–818. [Google Scholar] [CrossRef]
- Mohammadkazemi, F.; Doosthoseini, K.; Ganjian, E.; Azin, M. Manufacturing of bacterial nano-cellulose reinforced fiber−cement composites. Constr. Build. Mater. 2015, 101, 958–964. [Google Scholar] [CrossRef]
- Cao, Y.; Zavattieri, P.; Youngblood, J.; Moon, R.; Weiss, W. The relationship between cellulose nanocrystal dispersion and strength. Constr. Build. Mater. 2016, 119, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Tian, N.; Bahr, D.; Zavattieri, P.; Youngblood, J.; Moon, R.; Weiss, J. The influence of cellulose nanocrystals on the microstructure of cement paste. Cem. Concr. Compos. 2016, 74, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Hisseine, O.A.; Wilson, W.; Sorelli, L.; Tolnai, B.; Tagnit-Hamou, A. Nanocellulose for improved concrete performance: A macro-to-micro investigation for disclosing the effects of cellulose filaments on strength of cement systems. Constr. Build. Mater. 2019, 206, 84–96. [Google Scholar] [CrossRef]
- Santos, R.F.; Ribeiro, J.C.L.; de Carvalho, J.M.F.; Magalhães, W.L.E.; Pedroti, L.G.; Nalon, G.H.; de Lima, G.E.S. Nanofibrillated cellulose and its applications in cement-based composites: A review. Constr. Build. Mater. 2021, 288, 123122. [Google Scholar] [CrossRef]
- Balea, A.; Fuente, E.; Blanco, A.; Negro, C. Nanocelluloses: Natural-based materials for fiber-reinforced cement composites. A critical review. Polymers 2019, 11, 518. [Google Scholar] [CrossRef] [Green Version]
- Doostkami, H.; Roig-Flores, M.; Negrini, A.; Mezquida-Alcaraz, E.J.; Serna, P. Evaluation of the Self-Healing Capability of Ultra-high-Performance Fiber-Reinforced Concrete with Nano-particles and Crystalline Admixtures by Means of Permeability. In RILEM Bookseries; Springer Science and Business Media LLC: Berlin, Germany, 2020; Volume 30, pp. 489–499. [Google Scholar]
- Guo, A.; Sun, Z.; Sathitsuksanoh, N.; Feng, H. A review on the application of nanocellulose in cementitious materials. Nanomaterials 2020, 10, 2476. [Google Scholar] [CrossRef] [PubMed]
- Kolour, H.H.; Ashraf, W.; Landis, E.N. Hydration and early age properties of cement pastes modified with cellulose nanofibrils. Transp. Res. Rec. J. Transp. Res. Board 2020, 2675, 38–46. [Google Scholar] [CrossRef]
- Barnat-Hunek, D.; Grzegorczyk-Frańczak, M.; Szymańska-Chargot, M.; Łagód, G. Effect of eco-friendly cellulose nanocrystals on physical properties of cement mortars. Polymers 2019, 11, 2088. [Google Scholar] [CrossRef] [Green Version]
- Mejdoub, R.; Hammi, H.; Suñol, J.; Khitouni, M.; M‘Nif, A.; Boufi, S. Nanofibrillated cellulose as nanoreinforcement in Portland cement: Thermal, mechanical and microstructural properties. J. Compos. Mater. 2017, 51, 2491–2503. [Google Scholar] [CrossRef]
- Supit, S.W.; Nishiwaki, T. Compressive and flexural strength behavior of ultra-high performance mortar reinforced with cellulose nano-fibers. Int. J. Adv. Sci. Eng. Inf. Technol. 2019, 9, 365–372. [Google Scholar] [CrossRef]
- El Bakkari, M.; Bindiganavile, V.; Goncalves, J.; Boluk, Y. Preparation of cellulose nanofibers by TEMPO-oxidation of bleached chemi-thermomechanical pulp for cement applications. Carbohydr. Polym. 2019, 203, 238–245. [Google Scholar] [CrossRef]
- de Souza, L.O.; Cordazzo, M.; de Souza, L.M.S.; Tonoli, G.; Silva, F.D.A.; Mechtcherine, V. Investigation of dispersion methodologies of microcrystalline and nano-fibrillated cellulose on cement pastes. Cem. Concr. Compos. 2021, 126, 104351. [Google Scholar] [CrossRef]
- Salminen, R.; Reza, M.; Pääkkönen, T.; Peyre, J.; Kontturi, E. TEMPO-mediated oxidation of microcrystalline cellulose: Limiting factors for cellulose nanocrystal yield. Cellulose 2017, 24, 1657–1667. [Google Scholar] [CrossRef]
- Vismara, E.; Bernardi, A.; Bongio, C.; Farè, S.; Pappalardo, S.; Serafini, A.; Pollegioni, L.; Rosini, E.; Torri, G. Farè Bacterial nanocellulose and its surface modification by glycidyl methacrylate and ethylene glycol dimethacrylate. incorporation of vancomycin and ciprofloxacin. Nanomaterials 2019, 9, 1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vismara, E.; Bertolini, G.; Bongio, C.; Massironi, N.; Zarattini, M.; Nanni, D.; Cosentino, C.; Torri, G. Nanocellulose from cotton waste and its glycidyl methacrylate grafting and allylation: Synthesis, characterization and adsorption properties. Nanomaterials 2021, 11, 476. [Google Scholar] [CrossRef] [PubMed]
- EN-1015-11:2019; Methods of test for mortar for masonry—Part 11: Determination of flexural and compressive strength of hardened mortar. iTeh Inc.: Newark, NJ, USA, 2019.
- Vismara, E.; Melone, L.; Gastaldi, G.; Cosentino, C.; Torri, G. Surface functionalization of cotton cellulose with glycidyl methacrylate and its application for the adsorption of aromatic pollutants from wastewaters. J. Hazard. Mater. 2009, 170, 798–808. [Google Scholar] [CrossRef]
- Park, S.; Johnson, D.K.; Ishizawa, C.I.; Parilla, P.A.; Davis, M.F. Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose 2009, 16, 641–647. [Google Scholar] [CrossRef]
- Mariño, M.; Da Silva, L.L.; Durán, N.; Tasic, L. Enhanced materials from nature: Nanocellulose from citrus waste. Molecules 2015, 20, 5908–5923. [Google Scholar] [CrossRef]
- ISO 15148:2022; Hygrothermal Performance of Building Materials and Products—Determination of Water Absorption Coefficient by Partial Immersion. International Organization for Standardization: Geneva, Switzerland, 2002.
- Lehtonen, J.; Hassinen, J.; Kumar, A.A.; Johansson, L.-S.; Mäenpää, R.; Pahimanolis, N.; Pradeep, T.; Ikkala, O.; Rojas, O.J. Phosphorylated cellulose nanofibers exhibit exceptional capacity for uranium capture. Cellulose 2020, 27, 10719–10732. [Google Scholar] [CrossRef] [Green Version]
- Focher, B.; Palma, M.; Canetti, M.; Torri, G.; Cosentino, C.; Gastaldi, G. Structural differences between non-wood plant celluloses: Evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Ind. Crop. Prod. 2001, 13, 193–208. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Yang, Y.; Pang, B.; Xu, W.; Duan, G.; Jiang, S.; Zhang, K. Recent progress on nanocellulose aerogels: Preparation, modification, composite fabrication, applications. Adv. Mater. 2021, 33, 2005569. [Google Scholar] [CrossRef]
- Bertolini, L.; Elsener, B.; Pedeferri, P.; Redaelli, E.; Polder, R.B. Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair, 2nd ed.; Wiley-VCH Verlag: New York, NY, USA, 2013. [Google Scholar]
- Vismara, E.; Melone, L.; Torri, G. Surface Functionalizationed Cotton with Glycidyl Methacrylate: Physico-chemical Aspects and Multi-tasking Applications. In Cotton: Cultivation, Varieties and Uses; Giuliano, B., Vinci, E.J., Eds.; Nova Science Publishers: New York, NY, USA, 2012; pp. 125–147. [Google Scholar]
- Cho, E.J.; Trinh, L.T.P.; Song, Y.; Lee, Y.G.; Bae, H.-J. Bioconversion of biomass waste into high value chemicals. Bioresour. Technol. 2020, 298, 122386. [Google Scholar] [CrossRef]
Water (L/m3) | Premix (kg/m3) | w/c | ONC (kg/m3) | ONC (%) | |
---|---|---|---|---|---|
REF | 410 | 1700 | 0.48 | - | - |
ONC-0.3 | 410 | 1700 | 0.48 | 2.6 | 0.3 |
ONC-0.6 | 410 | 1700 | 0.48 | 5.1 | 0.6 |
ONC-1.2 | 410 | 1700 | 0.48 | 10.2 | 1.2 |
ONC-2.4 | 410 | 1700 | 0.48 | 20.4 | 2.4 |
Z-Average (d, nm) | PdI | Intercept | Z-Potential (mV) | |
---|---|---|---|---|
ONC | 167.7 | 0.448 | 0.835 | −38.4 |
ONC-GMA | 761.0 | 0.696 | 0.824 | −33.6 |
C4 Crystalline * | C6 Crystalline * | |
---|---|---|
Cotton cellulose | 40.7 (90.7) | 45.4 (113) |
Milled cellulose | 58 (95.6) | 64 (111.7) |
ONC | 65 (101.22) | 60 (82) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diamanti, M.V.; Tedeschi, C.; Taccia, M.; Torri, G.; Massironi, N.; Tognoli, C.; Vismara, E. Suspended Multifunctional Nanocellulose as Additive for Mortars. Nanomaterials 2022, 12, 1093. https://doi.org/10.3390/nano12071093
Diamanti MV, Tedeschi C, Taccia M, Torri G, Massironi N, Tognoli C, Vismara E. Suspended Multifunctional Nanocellulose as Additive for Mortars. Nanomaterials. 2022; 12(7):1093. https://doi.org/10.3390/nano12071093
Chicago/Turabian StyleDiamanti, Maria Vittoria, Cristina Tedeschi, Mariagiovanna Taccia, Giangiacomo Torri, Nicolò Massironi, Chiara Tognoli, and Elena Vismara. 2022. "Suspended Multifunctional Nanocellulose as Additive for Mortars" Nanomaterials 12, no. 7: 1093. https://doi.org/10.3390/nano12071093
APA StyleDiamanti, M. V., Tedeschi, C., Taccia, M., Torri, G., Massironi, N., Tognoli, C., & Vismara, E. (2022). Suspended Multifunctional Nanocellulose as Additive for Mortars. Nanomaterials, 12(7), 1093. https://doi.org/10.3390/nano12071093