Structural Engineering Effects on Hump Characteristics of ZnO/InSnO Heterojunction Thin-Film Transistors
Abstract
:1. Introduction
2. Experimental Methods
2.1. Fabrication of Films and Devices
2.2. Characterization of Films and Devices
3. Results and Discussion
3.1. Material Properties of ZnO and ITO Films
3.2. Hump Characteristics of ZnO/ITO TFTs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945–2986. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhang, J.; Yang, L.; Qu, M.; Qi, D.C.; Zhang, K.H.L. Wide bandgap oxide semiconductors: From materials physics to optoelectronic devices. Adv. Mater. 2021, 33, e2006230. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S.; Chand, U.; Xu, S.; Han, K.; Wu, Y.; Wang, C.; Kumar, A.; Velluri, H.; Li, Y.; Fong, X.; et al. Low subthreshold swing and high mobility amorphous Indium-Gallium-Zinc-Oxide thin-film transistor with thin HfO2 gate dielectric and excellent uniformity. IEEE Electron Device Lett. 2020, 41, 856–859. [Google Scholar] [CrossRef]
- Lee, S.Y. Comprehensive review on amorphous oxide semiconductor thin film transistor. Trans. Electr. Electron. Mater. 2020, 21, 235–248. [Google Scholar] [CrossRef]
- Li, H.; Han, D.; Yi, Z.; Dong, J.; Zhang, S.; Zhang, X.; Wang, Y. High-performance ZnO thin-film transistors prepared by atomic layer deposition. IEEE Trans. Electron Devices 2019, 66, 2965–2970. [Google Scholar] [CrossRef]
- Li, Q.; Dong, J.; Han, D.; Wang, Y. Effects of channel thickness on electrical performance and stability of high-performance InSnO thin-film transistors. Membranes 2021, 11, 929. [Google Scholar] [CrossRef]
- Park, J.C.; Lee, H.N. Improvement of the performance and stability of oxide semiconductor thin-film transistors using double-stacked active layers. IEEE Electron Device Lett. 2012, 33, 818–820. [Google Scholar] [CrossRef]
- Kim, J.I.; Ji, K.H.; Jung, H.Y.; Park, S.Y.; Choi, R.; Jang, M.; Yang, H.; Kim, D.H.; Bae, J.U.; Kim, C.D.; et al. Improvement in both mobility and bias stability of ZnSnO transistors by inserting ultra thin InSnO layer at the gate insulator/channel Interface. Appl. Phys. Lett. 2011, 99, 122102. [Google Scholar] [CrossRef]
- Furuta, M.; Koretomo, D.; Magari, Y.; Aman, S.G.M.; Higashi, R.; Hamada, S. Heterojunction channel engineering to enhance performance and reliability of amorphous In–Ga–Zn–O thin-film transistors. Jpn. J. Appl. Phys. 2019, 58, 090604. [Google Scholar] [CrossRef]
- Yang, J.; Liao, P.Y.; Chang, T.C.; Chen, B.W.; Huang, H.C.; Chiang, H.C.; Su, W.C.; Zhang, Q. Investigation of a hump phenomenon in back-channel-etched amorphous In-Ga-Zn-O thin-film transistors under negative bias stress. IEEE Electron Device Lett. 2017, 38, 592–595. [Google Scholar] [CrossRef]
- Choi, S.H.; Han, M.K. Effect of channel widths on negative shift of threshold voltage, including stress-induced hump phenomenon in InGaZnO thin-film transistors under high-gate and drain bias stress. Appl. Phys. Lett. 2012, 100, 043503. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.S.; Chen, J.Z. Positive gate-bias temperature stability of RF-sputtered Mg0.05Zn0.95O active-layer thin-film transistors. IEEE Trans. Electron Devices 2012, 59, 151–158. [Google Scholar] [CrossRef]
- Lee, J.H.; Ahn, C.H.; Hwang, S.; Woo, C.H.; Park, J.-S.; Cho, H.K.; Lee, J.Y. Role of the crystallinity of ZnO films in the electrical properties of bottom-gate thin film transistors. Thin Solid Films 2011, 519, 6801–6805. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, S.Y. Investigation on hump mechanism in amorphous SiZnSnO thin-film transistor depending on Si concentration. Phys. Status Solidi A 2020, 217, 1900953. [Google Scholar] [CrossRef]
- Valletta, A.; Gaucci, P.; Mariucci, L.; Fortunato, G.; Templier, F. “Hump” characteristics and edge effects in polysilicon thin film transistors. J. Appl. Phys. 2008, 104, 124511. [Google Scholar] [CrossRef]
- Teng, T.; Hu, C.F.; Qu, X.P.; Wang, M. Investigation of the anomalous hump phenomenon in amorphous InGaZnO thin-film transistors. Solid State Electron. 2020, 170, 107814. [Google Scholar] [CrossRef]
- Chen, H.C.; Chen, J.J.; Tu, Y.F.; Zhou, K.J.; Kuo, C.W.; Su, W.C.; Hung, Y.H.; Shih, Y.S.; Huang, H.C.; Tsai, T.M.; et al. Abnormal hump effect induced by hydrogen diffusion during self-heating stress in top-gate amorphous InGaZnO TFTs. IEEE Trans. Electron Devices 2020, 67, 2807–2811. [Google Scholar] [CrossRef]
- Kim, W.S.; Cho, Y.J.; Lee, Y.H.; Park, J.; Kim, G.; Kim, O. Abnormal behavior with hump characteristics in current stressed a-InGaZnO thin film transistors. Solid State Electron. 2017, 137, 22–28. [Google Scholar] [CrossRef]
- Hsieh, S.; Liang, H.Y.; Lin, C.J.; King, Y.C. Stress-induced width-dependent degradation of low-temperature polycrystalline silicon thin-film transistor. Appl. Phys. Lett. 2007, 90, 183502. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.M.; Jeong, K.S.; Yun, H.J.; Yang, S.D.; Lee, S.Y.; Lee, H.D.; Lee, G.W. Electrical instabilities in amorphous InGaZnO thin film transistors with Si3N4 and Si3N4/Al2O3 Gate Dielectrics. Jpn. J. Appl. Phys. 2012, 51, 09MF10. [Google Scholar] [CrossRef]
- Maeng, W.J.; Park, J.S.; Kim, H.S.; Kim, E.S.; Son, K.S.; Kim, T.S.; Ryu, M.; Lee, S. The effect of active-layer thickness and back-channel conductivity on the subthreshold transfer characteristics of Hf-In-Zn-O TFTs. IEEE Electron Device Lett. 2011, 32, 1077–1079. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, Z.; Xu, Y.; Xu, D.; Zhang, J.; Huang, Z. High-performance back-channel-etched thin-film transistors with an InGaO/InZnO stacked channel. Phys. Status Solidi A 2020, 217, 1900773. [Google Scholar] [CrossRef]
- Zhao, K.; Xie, J.; Zhao, Y.; Han, D.; Wang, Y.; Liu, B.; Dong, J. Investigation on transparent, conductive ZnO: Al films deposited by atomic layer deposition process. Nanomaterials 2022, 12, 172. [Google Scholar] [CrossRef] [PubMed]
- Barreca, D.; Garon, S.; Tondello, E.; Zanella, P. SnO2 nanocrystalline thin films by XPS. Surf. Sci. Spectra 2000, 7, 81–85. [Google Scholar] [CrossRef]
- Jung, H.Y.; Kang, Y.; Hwang, A.Y.; Lee, C.K.; Han, S.; Kim, D.-H.; Bae, J.-U.; Shin, W.-S.; Jeong, J.K. Origin of the improved mobility and photo-bias stability in a double-channel metal oxide transistor. Sci. Rep. 2014, 4, 3765. [Google Scholar] [CrossRef] [Green Version]
- Saha, J.K.; Billah, M.M.; Jang, J. Triple-stack ZnO/AlZnO/YZnO heterojunction oxide thin-film transistors by spray pyrolysis for high mobility and excellent stability. ACS Appl. Mater. Interfaces 2021, 13, 37350–37362. [Google Scholar] [CrossRef]
- Kamiya, T.; Nomura, K.; Hosono, H. Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping. J. Disp. Technol. 2009, 5, 273–288. [Google Scholar] [CrossRef]
- Choi, K.H.; Kim, H.K. Correlation between Ti source/drain contact and performance of InGaZnO-based thin film transistors. Appl. Phys. Lett. 2013, 102, 052103. [Google Scholar] [CrossRef] [Green Version]
- Jeong, K.S.; Kim, Y.M.; Lee, G.W. Origin of oxygen-induced abnormal hump in bottom-gated polycrystalline zinc oxide thin film transistors. ECS J. Solid State Sci. Technol. 2015, 4, Q31–Q34. [Google Scholar] [CrossRef]
- Choi, S.; Choi, S.J.; Kim, D.H.; Park, S.; Kim, J.; Seo, Y.; Shin, H.J.; Jeong, Y.S.; Bae, J.U.; Oh, C.H.; et al. Positive bias stress instability of InGaZnO TFTs with self-aligned top-gate structure in the threshold-voltage compensated pixel. IEEE Electron Device Lett. 2020, 41, 50–53. [Google Scholar] [CrossRef]
- Yang, J.; Liao, P.Y.; Chang, T.C.; Chen, B.W.; Huang, H.C.; Su, W.C.; Chiang, H.C.; Zhang, Q. H2O adsorption on amorphous In-Ga-Zn-O thin-film transistors under negative bias stress. Appl. Phys. Lett. 2017, 110, 143508. [Google Scholar] [CrossRef]
Sample | Carrier Concentration (cm−3) | Conductivity (Ω−1cm−1) |
---|---|---|
ZnO | 1.63 × 1016 | 1.78 × 10−2 |
ITO | 2.80 × 1019 | 78.91 |
tZnO (nm) | µFE (cm2/Vs) | Vhump (V) | VON (V) | |
Group A | 10 | 10.71 | 1.7 | −2.9 |
20 | 11.28 | 0 | −2.9 | |
30 | 12.55 | −0.1 | −2.8 | |
40 | 12.31 | −0.7 | −2.8 | |
tITO (nm) | µFE (cm2/Vs) | Vhump (V) | VON (V) | |
Group B | 3 | 13.06 | −0.1 | −0.1 |
5 | 15.69 | −0.3 | −0.3 | |
7 | 18.30 | −0.2 | −2.3 | |
9 | 18.64 | −0.1 | −3.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Dong, J.; Han, D.; Xu, D.; Wang, J.; Wang, Y. Structural Engineering Effects on Hump Characteristics of ZnO/InSnO Heterojunction Thin-Film Transistors. Nanomaterials 2022, 12, 1167. https://doi.org/10.3390/nano12071167
Li Q, Dong J, Han D, Xu D, Wang J, Wang Y. Structural Engineering Effects on Hump Characteristics of ZnO/InSnO Heterojunction Thin-Film Transistors. Nanomaterials. 2022; 12(7):1167. https://doi.org/10.3390/nano12071167
Chicago/Turabian StyleLi, Qi, Junchen Dong, Dedong Han, Dengqin Xu, Jingyi Wang, and Yi Wang. 2022. "Structural Engineering Effects on Hump Characteristics of ZnO/InSnO Heterojunction Thin-Film Transistors" Nanomaterials 12, no. 7: 1167. https://doi.org/10.3390/nano12071167
APA StyleLi, Q., Dong, J., Han, D., Xu, D., Wang, J., & Wang, Y. (2022). Structural Engineering Effects on Hump Characteristics of ZnO/InSnO Heterojunction Thin-Film Transistors. Nanomaterials, 12(7), 1167. https://doi.org/10.3390/nano12071167