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Abstract: Atomic- and nanometer-scale features of nanomaterials have a strong influence on their
chemical and physical properties and a detailed description of these elements is a crucial step in
their characterization. Total scattering methods, in real and reciprocal spaces, have been established
as fundamental techniques to retrieve this information. Although the impact of microstructural
features, such as defectiveness of different kinds, has been extensively studied in reciprocal space,
disentangling these effects from size- and morphology-induced properties, upon downsizing, is
not a trivial task. Additionally, once the experimental pattern is Fourier transformed to calculate
the pair distribution function, the direct fingerprint of structural and microstructural features is
severely lost and no modification of the histogram of interatomic distances derived therefrom is
clearly discussed nor considered in the currently available protocols. Hereby, starting from atomistic
models of a prototypical system (cadmium selenide), we simulate multiple effects on the atomic
pair distribution function, obtained from reciprocal space patterns computed through the Debye
scattering equation. Size and size dispersion effects, as well as different structures, morphologies,
and their interplay with several kinds of planar defects, are explored, aiming at identifying the main
(measurable and informative) fingerprints of these features on the total scattering pattern in real and
reciprocal spaces, highlighting how, and how much, they become evident when comparing different
cases. The results shown herein have general validity and, as such, can be further extended to other
classes of nanomaterials.

Keywords: Debye scattering equation; atomic pair distribution function; quantum dots

1. Introduction

Colloidal semiconductor nanocrystals, also known as quantum dots (QDs), show
excellent size- and shape-tunable optical and electronic properties due to a strong quantum
confinement effect, as well as low-cost solution processability and surface functionaliza-
tion [1].

Among colloidal QDs, binary III-V and II-VI semiconductors are most promising in
terms of applications in displays [2,3] and solar cells with relatively high certified power
conversion efficiencies [4,5]. Thanks to the seminal work of Murray, Norris, and Bawendi [6]
and the following developments in the late 1990s and early 2000s, great progress has been
made in the synthesis of colloidal QDs with unprecedented monodispersity, thus ensuring
very narrow and tunable emission spectra [7].

Most III-V and II-VI semiconductors can crystallize in two polymorphs, as zincblende
(ZB) and wurtzite (WZ) type-structures, where the cubic or hexagonal packing of layers is
characterized by the same tetrahedral units MX4 (where M = metal of the XII/XIII groups
and X = pnictide/chalcogenide) in the staggered (ZB) or eclipsed (WZ) configurations.
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This small difference between the two structures makes the occurrence of planar defects,
in particular, of basal-plane stacking faults (SFs), a highly probable event, the density of
which mainly depends on the ionicity of the M-X chemical bond [8].

The most-studied among luminescent binary semiconductors is cadmium selenide
(CdSe), which is indeed characterized by very low SFs energy at the bulk scale (14 ± 5 mJ
m−2) [9], leading to relatively high SFs densities.

At the nanoscale, where the formation of SFs can be strongly influenced by surface
energy contributions [10,11], the possibility of ZB and WZ packings coexisting in the same
nanocrystal makes the phase purity control a difficult task [12]. Our recent work on ZB
CdSe QDs and its quantitative picture of planar defects’ dependence on nanocrystal size,
based on a sophisticated atomistic model, is further confirmation of such complexity [13].

Accordingly, considering the huge impact of structural defects on the electronic prop-
erties of QDs [14–18], as well as their size and morphology playing a pivotal role in
driving quantum confinement effects [19–23], developing experimental and computational
methods able to retrieve structural and microstructural information on semiconductors
at the nanoscale is of utmost importance. Transmission electron microscopy (TEM) is by
far the leading technique in this field, being limited, however, in the statistical point of
view and able to provide 2D information only, on selected particles, which might not
be representative of the entire ensemble [24]. Imaging techniques often fail in precisely
determining QDs morphology, due to resolution limits and the presence of capping ligands
at the nanocrystals’ surface, generating blurry particle contours [25]. Additionally, precise
structural information cannot be derived with these methods.

The common modeling technique based on the Rietveld method (which is based on
the original Braggs’ approach to intensity calculation from the atomic content of a unit
cell) implies that nanoparticles are described simply as if they were just a small portion
of a much larger massive material. To deal with NCs scattering traces, analytical profile
functions are typically used in convolutory mode to model the size and shape of the
nanocrystalline domains and the diffuse scattering arising from nanosize, shape, and/or
defects is completely disregarded (i.e., hidden by fitting the continuous “background” trace
through phenomenological polynomial functions) [26].

In this context, in the last decade, new approaches have emerged as superior meth-
ods for the structural analysis of nanoparticles: the wide angle X-ray total scattering
(WAXTS) techniques [27]. Total scattering means that all (structure-relevant) scattering
from the sample is collected and properly modeled, including both Bragg peaks, origi-
nating from nanocrystals’ atomic periodicity, and diffuse components, arising from size-
and defects-induced effects [28]. These methods operate both in reciprocal (the so-called
Debye-scattering-equation-based methods, DSE) and direct (pair distribution function
analysis, PDF or G(r) function) spaces. Within the DSE-based approach, we have devel-
oped a thorough methodology that, starting from atomistic models of nanocrystals (thus
including size, shape information, and many possible sources of structural defects), allows
the computation of the total scattered intensity from a randomly oriented ensemble (both
powders or colloidal suspensions) [29]. This computationally heavy approach is made fea-
sible thanks to the exploitation of symmetry elements within the structure of nanocrystals,
thus reducing the number of unique distances to be computed, and a fast implementation
of the DSE, based on equispaced, sampled, interatomic distances (instead of the true ones),
encoded in suitable databases [30]. As demonstrated by us [13,31,32], this approach can
be easily extended to the simultaneous modeling of the small-angle (SAXS) and wide-
angle (WAXS) regions of the total scattering pattern, thus allowing the characterization
of structure, morphology, and defectiveness of nanocrystals within a unified modeling
approach.

Due to the powerful possibility of modeling both Bragg and diffuse scattering starting
from atomistic models, the DSE-based approach has indeed been widely used in the
literature to characterize size-, shape-, and defects-induced effects on the X-ray scattering
pattern of nanocrystals, highlighting, for example, the possibility of deriving specific



Nanomaterials 2022, 12, 1252 3 of 17

features arising from anisotropic particles morphology [24,33] and planar defects, especially
dealing with metallic clusters [26,34].

On the other hand, PDF is a real-space total scattering method, requiring a maximized
Q experimental value (where Q = 4π sinθ/λ is the magnitude of the scattering vector) to
reduce truncation errors upon sine-Fourier transforming the total scattering profile [35].
One of the most popular approaches to PDF relies on a “real-space Rietveld-based method”
(also called small-box modeling) in which the fitting of the experimental G(r) function
is achieved upon varying atomic parameters within the unit cell (or a chosen supercell),
eventually convoluted to a dampening function to account for the discrete size of the
particles (form factor) and/or instrumental resolution (usually treated as a pure Gaussian
contribution) [36]. For these reasons, the main fingerprints of structural and microstructural
features of atomistic models of nanocrystals on the PDF are not clearly derived in the
current literature. Nevertheless, some recent attempts to retrieve interlaced structural and
morphological features from PDF data of nanocrystals (mainly metals and oxides) have
been conducted using a numerical approximation of the nanoparticles form factor [37].

In this article, we demonstrate that total scattering methods can be used as powerful
tools to obtain accurate information on particles from the atomic-to-nanometer length scales.
In performing this exploration we have chosen, as benchmark nanocrystals, CdSe QDs, one
of the most-studied model systems for investigating a wide range of optoelectronic and
chemical processes [38].

Considering size and shape polydispersity, as well as different kinds of structural
defects within a unified atomistic modeling approach (according to the DSE-based method-
ology), we explore their main fingerprints on the total scattering pattern of CdSe QDs
in reciprocal space. Furthermore, we analyze the same features after sine-Fourier trans-
forming of the DSE patterns, to compare the information retrievable in the two (real and
reciprocal) spaces, also considering the different experimental conditions required by the
two techniques. The model parameters are chosen to be realistic for CdSe QDs showing
a highly predominant ZB cubic structure, as derived by a previous in-depth DSE-based
study [13].

2. Methods
2.1. The Debye Scattering Equation (DSE) Approach

The Debye scattering equation (DSE) [39] provides the total scattered intensity (i.e., the
average differential elastic cross-section) of a randomly oriented object from the distribution
of interatomic distances between atomic pairs, within the sample:

I(Q) =
N

∑
j=1

f j(Q)2oj
2 + 2

N

∑
j>i=1

f j(Q) fi(Q)Tj(Q)Ti(Q)ojoi
sin
(
Qdij

)
(Qdij)

(1)

where Q = 4π sin θ/λ is the magnitude of the scattering vector, λ is the radiation wave-
length, fi is the X-ray atomic form factor of an element i, dij is the interatomic distance
between atoms i and j, N is the total number of atoms, and T and o are the thermal atomic
displacement parameter and the site occupancy factor associated with each atomic species,
respectively. The first summation accounts for the contribution of the zero distances of each
atom from itself, whereas the second one includes the non-zero distances between pairs of
distinct atoms.

The DSE simulations of CdSe ZB QDs are carried out using the Debussy suite of
programs [29], following a bottom-up approach. The CdSe ZB unit cell (a = 6.0400 Å) [13] is
used as a building block to generate populations of atomistic models of QDs of increasing
sizes. Bivariate (square D4h prisms, with two independent growth directions, La = Lb
and Lc) populations of nanocrystals are mainly used for the DSE simulations, along with
monovariate (spherical shape, with progressively growing diameter, D) populations for
a few selected cases. According to the Debussy strategy, for each population, sampled
interatomic distances [30] of all pertinent clusters are encoded in databases and used to
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compute the DSE. Each cluster of the population is weighted by the appropriate fraction,
according to a log-normal distribution of sizes, whose mean and standard deviation values
are given, for all the models, in Table S2.

2.1.1. The Instrumental Profile

Different experimental setups affect both the angular resolution and the peak shapes of
the diffraction profile [40,41]. The characteristic shape of the observable peaks, in principle,
can be computed by considering the geometry of the measurement, the detector used, the
optics of the instrument, the sample holder, etc., according to the so-called fundamental
parameters approach [42]. Alternatively, it is possible to derive the instrumental profile by
adopting a convolutional approach with a phenomenological (analytical) function, describ-
ing the instrumental contribution to peak shape and width and its angular dependence as
derived from a reference measurement.

Within this approach, the instrumental resolution function (IRF) used here (and convo-
luted with the model DSE) is a pseudo-Voigt function (i.e., a linear combination of two—one
Gaussian, G(θ), and one Lorentzian, L(θ)—functions):

PV(θ) = ηL(θ) + (1− η)G(θ) (2)

characterized by the following angular dependence of the full width at half maximum
(FWHM):

FWHM(θ) = ha + hb tan θ + hc/ cos θ (3)

where ha, hb, and hc are real numbers, refined using TOPAS v3.0 [43] against reference
materials collected in the experimental conditions of interest, and are reported in Table S1.
For the sake of simplicity, the mixing parameter, η (0 ≤ η ≤ 1), is kept constant in the
whole angular range (Table S1).

To account for realistic experimental conditions for each technique (as further detailed
in Section 3.1), an appropriate level of noise, distributed according to a Poisson statistic [44],
is added to the DSE simulations, as detailed in the Supporting Information.

2.1.2. Stacking Disorder in CdSe ZB QDs

Atomistic models of prismatic CdSe nanocrystals are built by stacking atomic mono-
layers along the [111] direction of the cubic unit cell (in the trigonal setting: atrig =

− 1
2 acub +

1
2 bcub, btrig = − 1

2 bcub +
1
2 ccub and ctrig = acub + bcub + ccub).

Stacking disorder along [111] is introduced by randomly assembling monolayers of
Cd-Se dumbbells (aligned with [111], with a fixed bond distance of 2.63 Å), following the
formalism proposed by Kakinoki [45].

In a close-packed faulted structure, three types of atomic layers can be stacked along
the main growth direction ([111] in a ZB-type structure and [001] in a WZ-type), named A,
B, and C, according to the different atomic coordinates in the plane perpendicular to [111]
(ZB) or [001] (WZ), as shown in Figure 1a–c. The final arrangement of layers (along [111] in
this work) is determined by a Markov chain sequence: in the simplest example, each layer
influences the occurrence of the next one only (no “memory effect”, Reichweite parameter,
s = 1) [46], considering also that a sequence of equal layers (e.g., AA) is forbidden.

As described in ref. [13], for CdSe QDs a longer correlation length is implemented
by using s = 4, meaning that the occurrence of an atomic layer depends, as a stochastic
event, on the preceding 4 layers (Figure 1d). According to this formalism, for close-packed
structures (for which the AA/BB/CC sequences are forbidden), the number of different
configurations allowed for an s-layers sequence is R = 6s−3.

Therefore, after redefining an ABC sequence (or any equivalent one in which the third
layer differs from the first one) as c (i.e., cubic), and an ABA concatenation (having the
third layer equal to the first one) as h (i.e., hexagonal), four independent SFs probability
parameters are considered:
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α = P(Xn+1 = c | Xn−1 = c, Xn = c), e.g., ABCA→B

β = P(Xn+1 = c | Xn−1 = h, Xn = c), e.g., ABAC→B

γ = P(Xn+1 = c | Xn−1 = h, Xn = h), e.g., ABAB→C

δ = P(Xn+1 = c | Xn−1 = c, Xn = h), e.g., ABCB→A

where α, β, γ, δ span from 0 to 1 and are given as input parameters in the assembly of the
sequences of layers.
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A matrix Nlay × Nseq is therefore generated, with Nlay being the number of CdSe layers
along [111] and Nseq the number of sequences for each input parameter, representing the
different possible configurations. Nlay depends on the size of the cluster considered, while
Nseq is chosen to be equal to 50 for all databases (based on previous tests, details can be
found in ref. [13]).

Multiple databases of sampled interatomic distances are obtained in this way, accord-
ing to bivariate populations of CdSe QDs (two growth directions, La = Lb and Lc), following
the Debussy strategy.

The final databases for each cluster of the population characterized by the same α,
β, γ, δ are then computed as linear combinations of the equispaced pseudomultiplicities
(associated with the sampled interatomic distances) of the Nseq generated, from which the
DSE is computed, as detailed in Section 2.1.

The stacking faults input parameters used in this work are given in Table S3 for all the
models.

In order to provide SFs average quantification, independent from the model used, an

SF% is computed as: SF% =

[
∑N

i=1

(
Ah

Ah+Ac

)
i

Viξi
∑N

j=1 Vj

]
× 100, where N is the total number

of clusters in the population, Ah/c is the total area of the h/c layers of the i-th cluster, Vi
its volume, and ξ its number fraction, according to the bivariate log-normal distribution
function implemented for the DSE simulation. Therefore, the SF% is here considered as the
prevalence of (wrong) hexagonal stackings within the cubic reference structure.
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2.2. The Atomic Pair Distribution Function (PDF) Method

As detailed in Section 2.1, the coherent scattered intensity from a randomly oriented
object can be computed by using the DSE (Equation (1)).

The self-scattering term of the DSE, containing only i = j elements, can be redefined as
the average of the squared scattering factors:

1
N

N

∑
j=1

f 2
j (Q) = 〈 f 2〉(Q) (4)

where N is the total number of atoms in the system and Q = 4π sin θ/λ.
By dividing total scattered intensity computed through the DSE by the self-scattering

term, it is possible to calculate the so-called total scattering structure function [47]:

S(Q) =
I(Q)

〈 f 2〉(Q)
(5)

Once the S(Q) is obtained, the atomic PDF, G(r), can be computed, as sine-Fourier
transform of F(Q) = Q[S(Q)− 1] (reduced total scattering structure function):

G(r) =
2
π

∫ Qmax

Qmin

Q[S(Qi)− 1] sin QrdQ (6)

According to this workflow, implemented in the Debussy suite of programs [29], the
S(Q) is computed from each DSE pattern (with the proper IRF and signal-to-noise ratio)
and properly rescaled in order to obtain lim

Q→∞
F(Q) = 0 (Figure S1).

The values of Qmin and Qmax for each computation are reported in Table S1 and they
are chosen to avoid oscillations coming from the small-angle scattering signal (Qmin) and
to recover the Q-space resolution of the experimental data (Qmax) [48], depending on the
selected instrumental setup (as detailed in Section 3.1).

On the other hand, the PDF is sampled according to a grid of mesh dr = 0.01 Å,
as is common practice to generate smooth G(r) signals; the comparison between a PDF
obtained using dr = 0.01 Å and the optimal sampling step according to the Nyquist–Shannon
theorem (dr = π/Qmax) [49] is reported in Figure S2, showing that the oversampling does
not generate any artifact in the computed G(r).

3. Results and Discussion
3.1. On the Instrumental Resolution Function

To compare different modeling aspects in real and reciprocal spaces by generating ad
hoc synthetic datasets, the pertinent experimental setup must be considered.

In this view, for the simulations reported in the next sections of the manuscript
(Sections 3.3 and 3.4), we consider two of the most common setups implemented for
PDF and DSE data collections: the so-called “rapid-PDF” (RAPDF) acquisition mode
(Figure 2a) [50], and a high angular resolution setup combined with a high signal-to-noise
ratio (SNR), ensured by employing a position-sensitive 1D detector (Figure 2b) [27,51].

One of the main issues related to the sine-Fourier transform of total scattered intensity
is the occurrence of truncation errors due to the inevitable Qmax experimental limit, resulting
in unphysical, high-frequency oscillations in the G(r) [28,52].

Therefore, to maximize Qmax, as well as SNR at high Q, standard PDF data collections
usually employ an RAPDF setup, combined with high operating energies (>50 keV). This
experimental condition, achieved with a large area detector placed very close to the sample
(150–300 mm), allows a large Q-range to be collected (in Debye Scherrer geometry) in a
single shot (Qmax typically > 20 Å−1) [53].
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However, due to the very short sample-to-detector distance and to the characteristics
of area detectors, this experimental setup is associated with poor angular resolution. In
Figure 2c, the full width at half maximum (FWHM) of an instrumental resolution func-
tion (IRF) computed from a reference material usually employed for PDF experiments
(polycrystalline nickel) is compared with a line position and shape standard (Silicon NIST
640c) from a high-resolution setup. The nickel powder dataset was collected at the 28-ID-1
PDF beamline at NSLS-II (Brookhaven National Laboratory, Upton, NY) according to an
RAPDF acquisition mode (69 keV, Qmax = 23Å−1). The silicon NIST 640c standard exper-
imental data were collected at the MS- X04SA beamline of the Swiss Light Source (SLS,
Paul Scherrer Institut, Villigen, CH), implementing a 1D silicon microstrip array detector
(MYTHEN-II) [54], covering simultaneously up to 155◦ of 2θ, with a sample-to-detector
distance of 760 mm (17 keV, Qmax = 19Å−1).

Details on the IRF parameters, refined against experimental data, are reported in
Figure 2 and Table S1.

It is worth noticing that the FWHM of the IRF of the RAPDF@NSLS-II measurements
has not only a larger constant term with respect to the SLS one, but also a larger angular
dependence, while it has a slightly smaller mixing parameter, η. Its small value (0.16)
indeed indicates that the instrumental profile of the RAPDF@NSLS-II setup is dominated
by the Gaussian contribution, which makes the pure Gaussian approximation, implemented
in popular PDF software such as PDFgui [36], quite reliable.

As illustrated in the next section, the poor angular resolution characterizing RAPDF@NSLS-
II experiments hampers reliable nanocrystals size estimation when samples’ coherent do-
mains exceed ∼7 nm, as a consequence of the intrinsic G(r) dampening at large r-values
originating from finite (and large) peak widths in Q space (mimicking size-induced broad-
ening).

All the simulations reported in the next sessions (3.2–3.4) are performed considering
the experimental conditions (in terms of Qmax, IRF, and SNR) associated with the two setups:
RAPDF for PDF simulations and the MS-X04SA conditions for the DSE ones, detailed in
Table S1.
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3.2. Influence of Nanocrystals Size and Size Distribution on Total Scattering Patterns

Beyond structural features, X-ray diffraction patterns also contain valuable microstruc-
tural information. According to conventional Rietveld-like methods of analysis and theo-
retical analyses, the sample diffraction profile is conceived as a convolution of a Gaussian
and a Lorentzian function, where the first component is largely due to microstrain, while
the latter is normally taken as a consequence of the finite size of crystalline domains [55]. If
size-monodisperse samples are considered, this method works properly when also dealing
with very small QDs, as demonstrated elsewhere [27]. Nevertheless, this traditional ap-
proach, extracting size information from Bragg peaks only, completely neglects the diffuse
scattering between and below them, also arising from the finite size of (nano)crystalline
domains. Moreover, a plethora of other common features in very small QDs, such as size
dispersion and morphological effects, structural defectiveness, and other kinds of static
disorder, are normally, though not always, disregarded [27].

In Figure 3a,c, the role of size and size distribution on the WAXTS DSE pattern of
CdSe QDs (ZB structure) is highlighted: size-induced peak broadening and increasing
of diffuse scattering components upon downsizing are clearly visible in Figure 3a, while
the size dispersion modification (from a strict monodisperse up to a slightly polydisperse
population of nanocrystals) is mainly influencing Bragg peaks’ tails (Figure 3c). There-
fore, from the reciprocal space patterns, it is possible to disentangle the effects coming
from (nano)crystalline domains lowering/enlargement and nanoparticles size distribution
modifications.

Moving to real-space simulations, size and size dispersion effects are shown in
Figure 3b,d, respectively. According to literature reports, the average coherence length of
(nano)crystalline domains can be estimated in the direct space by the dampening properties
of the PDF signal [53].

The simplest method to perform this calculation is measuring the r-value at which
the G(r) signal is fading away, since no interatomic distances falling at r > D are possible.
Within the so-called small-box modeling approach, implemented in some popular software,
such as PDFgui [36], the envelope function, dampening the G(r) at high r, can be multiplied
to the reference Gbulk(r), giving the final attenuated PDF. The envelope function in the
most standard case is a spherical form factor but can be in principle replaced with other
analytical expressions [56] (or even numerical approximations) [37] accounting for different
morphologies. In Figure 3b, the vanishing of the G(r) is quite consistent with the CdSe
QDs nominal sizes (Deq, diameter of the spherical cluster of equivalent volume) used for
the simulations of 2.9 nm and 5.2 nm clusters, while for the largest system it occurs at r ∼
6.5 nm, despite the 8.0 nm size of the original QD. In real materials, this apparent lower
size extracted from the G(r) could be a consequence of many sample-related effects, such
as surface amorphization or occurrence of structural defects, lowering the “size” of the
coherent domains (as detailed in Section 3.4); this could therefore be easily misinterpreted.
In the example shown in Figure 3b, the 8.0 nm QDs signal is dampened because of the poor
Q-resolution of the RAPDF experiment, making unreliable any size estimation above the
resolution limit. This value can be roughly estimated, e.g., by looking at the G(r) of the
highly crystalline material used as reference (in this example, polycrystalline Ni, shown in
Figure S3).

Considering QDs size dispersion effects (Figure 3d), the strict monodispersed con-
dition (5.8%), applied to the selected 5.2 nm CdSe cluster, quite usual for III-V and II-VI
semiconductors [13], does not significantly modify the PDF trace; on the other hand, a
slightly larger size dispersion (23.4%), not so uncommon for many other semiconductor
nanocrystals (such as lead halide perovskites) [57], might determine a sample size overesti-
mation, up to ∼5.8 nm, if not properly accounted for in the model description. Therefore,
for an accurate size determination, polydispersity should also be considered in building
models for real-space structural analysis.
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× 100 (where Ir is the reference simulation, and Iw the

work model) is also reported. Further details on the size and shape of CdSe atomistic models are
given in Table S2.

3.3. Extracting Morphological Features from Wide-Angle X-ray Total Scattering

Colloidal QDs such as CdSe are ideal model systems for nanoscience, due to the ex-
traordinary control over their size and shape that has been developed through the years [7].
However, beyond highly controlled synthetic procedures allowing precise tuning of parti-
cles’ sizes and shapes, it is equally important to develop ensemble characterization methods
able to properly quantify these features and to relate them with QDs properties. Despite
being the leading technique in the field, TEM size and shape determination of very small
nanocrystals, such as QDs, is generally hampered by difficulties in particle/background
evaluation and other contrast-related issues [25]. Therefore, scattering methods represent
a valid alternative due to the intrinsic microstructural information stored in both small-
and wide-angle regions of the total scattering patterns of nanocrystals. In Figure 4, we
explore this possibility considering the wide-angle region only, this being also the carrier of
structural information.
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line) and different square prism morphologies with aspect ratios (AR = Lc/La) 0.7, 0.2, and 2.8 (red
lines), both as DSE (a) and PDF (b). Differences against the reference spherical model are shown as
green traces at the bottom of each plot, together with the corresponding agreement factors, R. Further
details on the size and shape of CdSe atomistic models are given in Table S2.

Figure 4 showcases the comparison between a reference spherical morphology (<D>
= 5.2 nm; σ/<D> = 7.0%) and alternative square prisms (La = Lb 6= Lc) with aspect ratios
(AR = Lc/La) 0.7 (as detected in CdSe ZB experimental data) [13], 0.2 (plate-like), and 2.8
(rod-like), in reciprocal (Figure 4a) and real (Figure 4b) spaces.

To focus on the shape-induced differences in the wide-angle total scattering region, all
the populations of nanocrystals used for performing the simulations have the same average
volume (78 nm3) and relative size dispersions along the two growth directions (σ/La =
6.9%; σ/Lc = 10.7%), comparable to the ones detected on real CdSe samples [13]. The effect
of slightly modifying the morphology (from a spherical to a square prim with AR = 0.7)
is very tiny both in real and reciprocal spaces, hidden by size-dispersion-induced effects
on peak tails in the DSE simulation and is perhaps undetectable unless complementary
SAXS techniques are considered [13]. On the other hand, more anisotropic morphologies
are clearly modifying the main features of the DSE simulations (Figure 4a), especially
when a very short axis is included in the model (La = Lb = 7.7 nm; Lc = 1.3 nm, AR = 0.2),
determining the occurrence of broader components together with sharper ones. Anisotropic
morphologies in the G(r) (Figure 4b) are detectable as an increase of the maximum coherence
length with respect to the reference spherical simulation (fading at 52 Å) and with a different
slope of the G(r) dampening with r.

Considering AR = 2.8 as a reference (La = Lb = 3.0 nm; Lc = 8.4 nm), we also explore the
influence on the WAXTS pattern of different growth directions of CdSe ZB QDs, these being
[100] preferred for ZB structures, while [111] can be considered a plausible occurrence upon
intergrowing with the WZ-like hexagonal polymorph, due to the mutual orientations of the
two crystal structures (Figure 5). The two growth directions are immediately distinguish-
able in the DSE patterns (Figure 5a) due to the sharpening of 111 and of 400 peaks (200 being
of very low intensity in CdSe), for the [111] and [100] growth directions, respectively. In real
space (Figure 5b), the (relative) differences between the two morphologies are maximized
in the high-r region (r > 30 Å), being however difficult to reconcile the tiny G(r) variations
with any evident growth direction. Moreover, this spatial region is also highly influenced
by other sample- or instrumental-related effects, making morphological features difficult
to infer from PDF traces only; this is also the case for very small QDs, especially when an
RAPDF data collection strategy is employed.
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3.4. Structural Defectiveness in Real and Reciprocal Spaces

Stacking disorder is reported in a large variety of materials, from layered com-
pounds [58–61] to close-packed metals [34,62–64], alloys [65], and semiconductors [66–71].
Generally speaking, it arises because the different ways the layers stack on top of each
other possess close (enough) energetics. In close-packed materials, it can be (qualitatively)
described as a dense intergrowth of two polymorphs (f.c.c. and h.c.p.), generating an
aperiodic stacking sequence along the growth direction ([111] in the cubic and [001] in
the hexagonal phases); the reference modeling approach is the formalism proposed by
Kakinoki [45], also defined by the Reichweite s = 4 [72], meaning that a single atomic layer
influences the stacking arrangement up to the fourth neighbor (through four independent
probability parameters α: cc→c; β: hc→c; γ: hh→c; δ: ch→c).

The implementation of this formalism within the DSE-based modeling approach has
recently allowed the quantification of CdSe QDs SFs density, and a detailed reconstruction
of particles’ morphological details, within a unified atomistic model [13]. Previous attempts
were made employing real-space modeling, which were able to successfully retrieve average
size information and SFs probability within a simplified s = 1 approach (no “memory effect”
considered) [38,73–76]. On the other hand, the possibility of disentangling size-induced
effects from defect-induced effects in the PDF (a challenging aspect in Q-space, since both
features influence peak width) by performing r-dependent structural refinements has been
considered fundamental to retrieving SFs probability up to s = 4 more straightforwardly
and to even reveal overparameterization effects (s = 3 “synthetic data” fitted using an s = 4
model) [64].

Considering the importance of obtaining a detailed structural and microstructural
description (coupled with a thorough morphological characterization, already tackled in
the previous paragraphs) of (nano)materials, we performed DSE/PDF simulations with
different amounts and types of stacking disorder (Figure 6) and microstrain (Figure 7),
the latter likely associated with non-uniform modulation of interplanar distances in the
presence of SFs. Details on the models, implemented within the DSE-based approach and
based on the s = 4 formalism, are found in the Method Section 2.1.2 and ref. [13].

Figure 6a,b show the DSE and PDF simulations, respectively, at increasing SF% on
square prisms CdSe QDs of average sizes La = Lb = 4.7 nm (σ/La = 6.9%) and Lc = 3.5 nm
(σ/Lc = 10.7%). The increase of SFs percentage, from 0% up to 39.8%, clearly broadens
Bragg peaks in the DSE simulations, in favor of a growing amount of diffuse scattering
between and below them. At the highest SFs value (39.8%), features typical of the WZ
phase appear at Q∼3 å−1 and in the higher Q region (Q > 4.4 å−1, Figure 6a). These peculiar
features are complemented in r-space by the rise of new peaks corresponding to interatomic
distances of the hexagonal polymorph in the range 10 å < r < 27 å, being the lower r region
(r < 6 å) dominated by the intralayer features, and thus independent from the stacking
sequence (Figure 6b).
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Figure 6. (a) DSE simulations of different SF% (6.2, 23.9, and 39.8) introduced in a CdSe population
of prismatic nanocrystals with average sizes La = Lb = 4.7 nm (σ/La = 6.9%) and Lc = 3.5 nm (σ/Lc =
10.7%). (b) Corresponding G(r), with the features in the low-r region assigned to interlayer interatomic
distances (scheme in the inset), and highlighted with a shaded area. Effects on DSE peak width and
position, due to growth (GF, α = 0.57, β = 1.00, γ = 1.00, δ = 1.00), and intrinsic SF (ISF, α = 0.85,
β = 0.85, γ = 1.00, δ = 0.00) (c), and their corresponding sine-Fourier transform (d), at a constant SF%
(∼23%). Difference traces and agreement factors against the unfaulted model are provided for all
simulations. Further details on the SFs parameters used for these simulations are given in Table S3.
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Figure 7. Isotropic microstrain effect, with ε = 0.6%, particularly effective on the peaks broadening in
the high-Q region for the DSE simulation (a), and in the dampening of G(r) with r (b). The unstrained
simulations (black lines) and the corresponding R-values are reported for comparison.

To verify the contribution of the so-called “memory effects”, in Figure 6c,d we worked
at constant SFs percentage (∼23%) and we modified accordingly the four probability
parameters (given in Figure 6 and Table S3) to generate faulted sequences of . . . cchcc
. . . (growth fault only) and . . . cchhcc . . . (intrinsic SFs only), to be compared with the
ideal ZB structure. The two types of SFs in percentage below 10% are well-known to
induce Bragg peaks broadening only (growth fault, GF) or Bragg peaks broadening and



Nanomaterials 2022, 12, 1252 13 of 17

shifts, depending on the reflection indices (intrinsic SF, ISF), and thus are distinguishable in
reciprocal space [34].

When the number of planar defects increases up to the values shown in Figure 6c,d,
new peaks appear in the Q-space of GF simulations only (clearly visible at Q = 3.25 å−1)
due to the incipient development of a new periodicity, resembling one of the 6H1 polytypes,
characterized by 1/3 of hexagonal components within the cubic structure as a periodic
. . . cch . . . sequence (Figures 6c and S4) [77]. Considering the sine-Fourier transform of
the DSE, shown in Figure 6d, a clear fingerprint of the two types of defects is detectable:
the major deviations from the unfaulted structure are detectable in the 10 å < r < 20 å for
the GF-only simulation, while at higher r-values (r > 20 å), this structure recovers a higher
degree of order (due to the incipient long-range ordering) with respect to the ISF model
G(r).

Therefore, since the SFs percentage is equal in the two cases, the “memory effect” of
the structure (up to s = 4) is clearly preserved also in real space and (likely) the four SFs
parameters are retrievable by using an appropriate modeling approach.

In our recent work on CdSe QDs, beyond stacking faults’ defectiveness, an additional
source of peak broadening in reciprocal space was found, following a tan(θ) dependence,
and ascribed to modulation of interatomic distances along the stacking direction. The
effect of a microstrain parameter ε = 0.6% (value optimized against experimental CdSe
QDs data) [13] is shown in Figure 7a (Q-space) and Figure 7b (r-space). From DSE simu-
lations (Figure 7a), the microstrain effect is clearly distinguishable from the SFs-induced
one, causing peaks broadening only (without shifts), without any selectivity on reflection
indices, in contrast to SFs that follow well-defined (i.e., vectorial) selection rules. A similar
consideration can be conducted for the PDFs shown in Figure 7b, in which no additional
peaks corresponding to the occurrence of new interatomic distances (belonging to WZ)
appear once the microstrain is introduced in the model; nevertheless, a general coherence
loss is retrieved as a consequence of the augmented peak broadening in the original DSE
simulation.

4. Conclusions

To summarize, in this work we have shown how DSE can be used to simulate structural
and microstructural features on very small QDs. By sine-Fourier transformation of the
reciprocal space patterns, we have explored how size inhomogeneities, morphology, and
structural defectiveness might also impress specific fingerprints on the corresponding PDFs,
while the low angular resolution of the experimental setup, usually employed jointly for
real-space data analysis, can be detrimental in properly identifying them.

Among the most significant results derived, we quote: (i) the possibility of disentan-
gling size and size dispersion in DSE patterns, as well as features coming from different
growth directions in nanoclusters (coupled also with size dispersions effects); (ii) the concur-
rent sample- (size, size dispersion, and anisotropic morphologies) and instrumental-related
effects on the PDF that might lead to misinterpretations of the results if not independently
derived using other techniques; (iii) the persistence of “memory effects” related to stacking
disorder, both in reciprocal and real spaces, thus potentially driving to a proper reconstruc-
tion of different stacking sequences in defective (nano)crystals (if an adequate model is
employed); (iv) the feasibility of distinguishing between different kinds of structural defects
in very small QDs, such as SFs and microstrain, both relying on the DSE and PDF methods
of analysis. Moreover, their quantification is fully affordable for both methodologies (again
under the assumption of a thoroughly implemented model) if an independent (ideally
ensemble) technique is employed for size determination (such as SAXS) [13,78].

It is worth noting that the modeling approach usually employed for PDF analysis,
based on the so-called “small-box” methodology, is clearly inadequate to describe all the
structural and microstructural information reported in this work.

A more thorough approach, such as the one based on atomistic models construction
coupled to DSE computations, should be considered essential in this kind of study, which
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is indeed of utmost importance for a proper characterization of functional nanomaterials,
such as CdSe QDs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12081252/s1, calculation of G(r) (Figures S1 and S2); limitations
on average size determination using the RAPDF setup (Figure S3); effect of high SF% in the case of
growth stacking faults (Figure S4); detailed information instrumental parameters (Table S1); size and
size distribution (Table S2); stacking faults parameters (Table S3). References [13,50,54] are cited in
the supplementary materials.
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