Acid-Assisted Ball Mill Synthesis of Carboxyl-Functional-Group-Modified Prussian Blue as Sodium-Ion Battery Cathode
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Experimental Section
4.1. Materials
4.2. Synthesis of the Cathode Samples
4.3. Characterizations of Materials
4.4. Electrochemical Measurements
4.5. Electrochemical Characterization
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, Y.; Wang, L.; Cheng, J.; Goodenough, J.B. Prussian blue: A New Framework of Electrode Materials for Sodium Batteries. Chem. Commun. 2012, 48, 6544–6546. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.; Song, J.; Vail, S.; Pan, W.; Barker, J.; Lu, Y. The scale-up and commercialization of nonaqueous Na-ion battery technologies. Adv. Energy Mater. 2018, 8, 1702869. [Google Scholar] [CrossRef]
- Jiang, Y.; Yu, S.; Wang, B.; Li, Y.; Sun, W.; Lu, Y.; Yan, M.; Song, B.; Dou, S. Prussian blue@c composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv. Funct. Mater. 2016, 26, 5315–5321. [Google Scholar] [CrossRef]
- Wessells, C.D.; Peddada, S.V.; Huggins, R.A.; Cui, Y. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 2011, 11, 5421–5425. [Google Scholar] [CrossRef]
- Wessells, C.D.; Huggins, R.A.; Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2011, 2, 550. [Google Scholar] [CrossRef] [Green Version]
- Lou, X.W.; Archer, L.A.; Yang, Z. Hollow micro-/nanostructures: Synthesis and Applications. Adv. Mater. 2008, 20, 3987–4019. [Google Scholar] [CrossRef]
- Roig, A.; Navarro, J.; Tamarit, R.; Vicente, F. Stability of prussian blue films on ito electrodes: Effect of Different Anions. J. Electroanal. Chem. 1993, 360, 55–69. [Google Scholar] [CrossRef]
- Gong, W.; Wan, M.; Zeng, R.; Rao, Z.; Su, S.; Xue, L.; Zhang, W.; Huang, Y. Ultrafine prussian blue as a high-rate and long-life sodium-ion battery cathode. Energy Technol. 2019, 7, 1900108. [Google Scholar] [CrossRef]
- Tang, W.; Xie, Y.; Peng, F.; Yang, Y.; Feng, F.; Liao, X.; He, Y.; Ma, Z.; Chen, Z.; Ren, Y. Electrochemical performance of NaFeFe(CN)6 prepared by solid reaction for sodium ion batteries. J. Electrochem. Soc. 2018, 165, A3910–A3917. [Google Scholar] [CrossRef]
- You, Y.; Yu, X.; Yin, Y.; Nam, K.; Guo, Y. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 2015, 8, 117–128. [Google Scholar] [CrossRef]
- Wan, M.; Tang, Y.; Wang, L.; Xiang, X.; Li, X.; Chen, K.; Xue, L.; Zhang, W.; Huang, Y. Core-shell hexacyanoferrate for superior Na-ion batteries. J. Power Sources 2016, 329, 290–296. [Google Scholar] [CrossRef]
- Wang, L.; Song, J.; Qiao, R.; Wray, L.A.; Hossain, M.A.; Chuang, Y.; Yang, W.; Lu, Y.; Evans, D.; Lee, J.; et al. Rhombohedral prussian white as cathode for rechargeable sodium-ion batteries. J. Am. Chem. Soc. 2015, 137, 2548–2554. [Google Scholar] [CrossRef] [PubMed]
- Moretti, G.; Gervais, C. Raman spectroscopy of the photosensitive pigment Prussian blue. J. Raman Spectrosc. 2018, 49, 1198–1204. [Google Scholar] [CrossRef]
- Ren, L.; Wang, J.; Liu, H.; Shao, M.; Wei, B. Metal-organic-framework-derived hollow polyhedrons of prussian blue analogues for high power grid-scale energy storage. Electrochim. Acta 2019, 321, 134671. [Google Scholar] [CrossRef]
- Tackett, J.E. FT-IR characterization of metal acetates in aqueous solution. Appl. Spectrosc. 1989, 43, 483–489. [Google Scholar] [CrossRef]
- Pang, S.; Wu, C.; Zhang, Q.; Zhang, Y. The structural evolution of magnesium acetate complex in aerosols by FTIR–ATR spectra. J. Mol. Struct. 2015, 1087, 46–50. [Google Scholar] [CrossRef]
- Gao, Q.; Leung, K.T. Thermal evolution of acetic acid nanodeposits over 123-180K on noncrystalline ice and polycrystalline ice studied by ftir reflection−absorption spectroscopy: Hydrogen-Bonding Interactions in Acetic Acid and between Acetic Acid and Ice. J. Phys. Chem. B 2005, 109, 13263–13271. [Google Scholar] [CrossRef]
- Tojo, T.; Sugiura, Y.; Inada, R.; Sakurai, Y. Reversible calcium ion batteries using a dehydrated prussian blue analogue cathode. Electrochim. Acta 2016, 207, 22–27. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Q.; Wan, M.; Peng, J.; Luo, Y.; Zhang, H.; Ren, J.; Xue, L.; Zhang, W. Surface passivation of NaxFe[Fe(CN)6] cathode to improve its electrochemical kinetics and stability in sodium-ion batteries. J. Power Sources 2020, 448, 227421. [Google Scholar] [CrossRef]
- Rao, C.N.; Samatham, S.S.; Ganesan, V.; Sathe, V.G.; Phase, D.M.; Kale, S.N. Improved crystallinity, spatial arrangement and monodispersity of submicron La0.7Ba0.3MnO3 powders: A citrate chelation approach. J. Magn. Magn. Mater. 2012, 324, 3766–3772. [Google Scholar] [CrossRef]
- Dong, X.; Meng, Q.; Hu, W.; Chen, R.; Ge, Q. Forward osmosis membrane developed from the chelation of Fe3+ and carboxylate for trace organic contaminants removal. Chem. Eng. J. 2022, 428, 131091. [Google Scholar] [CrossRef]
- Wu, S.; Wang, T.; Wang, C.; Gao, Z.; Wang, C. Improvement of selectivity and stability of amperometric detection of hydrogen peroxide using prussian blue-pamam supramolecular complex membrane as a catalytic layer. Electroanalysis 2007, 19, 659–667. [Google Scholar] [CrossRef]
- Qian, X.; Ren, M.; Zhu, Y.; Yue, D.; Han, Y.; Jia, J.; Zhao, Y. Visible light assisted heterogeneous fenton-like degradation of organic pollutant via α-FeOOH/mesoporous carbon composites. Environ. Sci. Technol. 2017, 51, 3993–4000. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wu, C.; Wei, C.; Hu, L.; Qian, J.; Cao, Y.; Ai, X.; Wang, J.; Yang, H. Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 5393–5399. [Google Scholar] [CrossRef]
- Tang, J.; Wang, H.; Wang, X.; Xie, C.; Zeng, D. Prussian blue-derived hollow cubic α-Fe2O3 for highly sensitive room temperature detection of H2S. Sens. Actuators B Chem. 2022, 351, 130954. [Google Scholar] [CrossRef]
- Al Khateeb, S.; Sparks, T.D. Pore-graded and conductor- and binder-free FeS2 films deposited by spray pyrolysis for high-performance lithium-ion batteries. J. Mater. Res. 2019, 34, 2456–2471. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, X.; Ren, W.; Wang, Y.; Su, F.; Jiang, J. Microporous organic polymer-based lithium ion batteries with improved rate performance and energy density. J. Power Sources 2016, 317, 49–56. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, X.; Ji, Q.; Liu, R.; Liu, H.; Qu, J.; Li, J. Porous nanobimetallic Fe–Mn cubes with high valent Mn and highly efficient removal of arsenic(III). ACS Appl. Mater. Interfaces 2017, 9, 14868–14877. [Google Scholar] [CrossRef]
- Vo, V.; Van, M.N.; Lee, H.I.; Kim, J.M.; Kim, Y.; Kim, S.J. A new route for obtaining Prussian blue nanoparticles. Mater. Chem. Phys. 2008, 107, 6–8. [Google Scholar] [CrossRef]
- Li, L.; Peng, J.; Chu, Z.; Jiang, D.; Jin, W. Single layer of graphene/Prussian blue nano-grid as the low-potential biosensors with high electrocatalysis. Electrochim. Acta 2016, 217, 210–217. [Google Scholar] [CrossRef]
- Oh, D.; Kim, B.; Kang, S.; Kim, Y.; Yoo, S.; Kim, S.; Chung, Y.; Choung, S.; Han, J.; Jung, S.; et al. Enhanced immobilization of Prussian blue through hydrogel formation by polymerization of acrylic acid for radioactive cesium adsorption. Sci. Rep. 2019, 9, 16334. [Google Scholar] [CrossRef]
- Wang, W.; Gang, Y.; Hu, Z.; Yan, Z.; Li, W.; Li, Y.; Gu, Q.; Wang, Z.; Chou, S.; Liu, H.; et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nat. Commun. 2020, 11, 980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, J.; Ou, M.; Yi, H.; Sun, X.; Zhang, Y.; Zhang, B.; Ding, Y.; Wang, F.; Gu, S.; López, C.A.; et al. Defect-free-induced Na+ disordering in electrode materials. Energy Environ. Sci. 2021, 14, 3130–3140. [Google Scholar] [CrossRef]
- Li, L.; Nie, P.; Chen, Y.; Wang, J. Novel acetic acid induced Na-rich Prussian blue nanocubes with iron defects as cathodes for sodium ion batteries. J. Mater. Chem. A 2019, 7, 12134–12144. [Google Scholar] [CrossRef]
- Quan, J.; Xu, E.; Zhu, H.; Chang, Y.; Zhu, Y.; Li, P.; Sun, Z.; Yu, D.; Jiang, Y. A Ni-doping-induced phase transition and electron evolution in cobalt hexacyanoferrate as a stable cathode for sodium-ion batteries. Phys. Chem. Chem. Phys. 2021, 23, 2491–2499. [Google Scholar] [CrossRef]
- Hu, H.; Liu, W.; Zhu, M.; Lin, Y.; Liu, Y.; Zhang, J.; Chen, T.; Liu, K. Yolk-shell Prussian blue nanoparticles with fast ion diffusion for sodium-ion battery. Mater. Lett. 2019, 249, 206–209. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Du, G.; Qi, Y.; Li, J.; Zhong, W.; Yang, Q.; Zhang, X.; Xu, M. A Prussian blue analogue as a long-life cathode for liquid-state and solid-state sodium-ion batteries. Inorg. Chem. Front. 2020, 7, 3938–3944. [Google Scholar] [CrossRef]
- Yang, J.; Xu, H.; Wu, J.; Gao, Z.; Hu, F.; Wei, Y.; Li, Y.; Liu, D.; Li, Z.; Huang, Y. Improving Na/Na3Zr2Si2PO12 interface via SnOx/Sn film for high-performance solid-state sodium metal batteries. Small Methods 2021, 5, 2100339. [Google Scholar] [CrossRef]
- Yan, C.; Zhao, A.; Zhong, F.; Feng, X.; Chen, W.; Qian, J.; Ai, X.; Yang, H.; Cao, Y. A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode. Electrochim. Acta 2020, 332, 135533. [Google Scholar] [CrossRef]
- Zuo, D.; Wang, C.; Han, J.; Wu, J.; Qiu, H.; Zhang, Q.; Lu, Y.; Lin, Y.; Liu, X. Oriented formation of a prussian blue nanoflower as a high performance cathode for sodium ion batteries. ACS Sustain. Chem. Eng. 2020, 8, 16229–16240. [Google Scholar] [CrossRef]
- Shen, Z.; Sun, Y.; Xie, J.; Liu, S.; Zhuang, D.; Zhang, G.; Zheng, W.; Cao, G.; Zhao, X. Manganese hexacyanoferrate/graphene cathodes for sodium-ion batteries with superior rate capability and ultralong cycle life. Inorg. Chem. Front. 2018, 5, 2914–2920. [Google Scholar] [CrossRef]
- Viet Thieu, Q.Q.; Hoang, H.; Le, V.T.; Nguyen, V.H.; Nguyen, D.Q.; Nguyen, V.D.; Phung Le, M.L.; Thi Tran, N.H.; Kim, I.T.; Nguyen, T.L. Enhancing electrochemical performance of sodium Prussian blue cathodes for sodium-ion batteries via optimizing alkyl carbonate electrolytes. Ceram. Int. 2021, 47, 30164–30171. [Google Scholar] [CrossRef]
- You, Y.; Wu, X.; Yin, Y.; Guo, Y. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 2014, 7, 1643–1647. [Google Scholar] [CrossRef]
- Du, G.; Tao, M.; Li, J.; Yang, T.; Gao, W.; Deng, J.; Qi, Y.; Bao, S.; Xu, M. Low-operating temperature, high-rate and durable solid-state sodium-ion battery based on polymer electrolyte and prussian blue cathode. Adv. Energy Mater. 2020, 10, 1903351. [Google Scholar] [CrossRef]
- Li, W.; Chou, S.; Wang, J.; Kang, Y.; Wang, J.; Liu, Y.; Gu, Q.; Liu, H.; Dou, S. Facile method to synthesize Na-enriched Na1+xFeFe(CN)6 frameworks as cathode with superior electrochemical performance for sodium-ion batteries. Chem. Mater. 2015, 27, 1997–2003. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Qiao, Y.; Zhang, W.; Li, Z.; Ji, X.; Miao, L.; Yuan, L.; Hu, X.; Huang, Y. Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes. Nano Energy 2015, 12, 386–393. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, E.; Yan, X.; Ma, C.; Wen, W.; Liao, X.; Ma, Z. Influence of structural imperfection on electrochemical behavior of prussian blue cathode materials for sodium ion batteries. J. Electrochem. Soc. 2016, 163, A2117–A2123. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Peng, J.; Yin, S.; Xue, L.; Yan, Y. Acid-Assisted Ball Mill Synthesis of Carboxyl-Functional-Group-Modified Prussian Blue as Sodium-Ion Battery Cathode. Nanomaterials 2022, 12, 1290. https://doi.org/10.3390/nano12081290
Luo Y, Peng J, Yin S, Xue L, Yan Y. Acid-Assisted Ball Mill Synthesis of Carboxyl-Functional-Group-Modified Prussian Blue as Sodium-Ion Battery Cathode. Nanomaterials. 2022; 12(8):1290. https://doi.org/10.3390/nano12081290
Chicago/Turabian StyleLuo, Yu, Jiayu Peng, Shengming Yin, Lihong Xue, and Youwei Yan. 2022. "Acid-Assisted Ball Mill Synthesis of Carboxyl-Functional-Group-Modified Prussian Blue as Sodium-Ion Battery Cathode" Nanomaterials 12, no. 8: 1290. https://doi.org/10.3390/nano12081290
APA StyleLuo, Y., Peng, J., Yin, S., Xue, L., & Yan, Y. (2022). Acid-Assisted Ball Mill Synthesis of Carboxyl-Functional-Group-Modified Prussian Blue as Sodium-Ion Battery Cathode. Nanomaterials, 12(8), 1290. https://doi.org/10.3390/nano12081290