Explaining the Frequency Dependence of the DC-Biased Dielectric Response of Polar Nanoregions by Field-Enhanced Correlation Length
Abstract
:1. Introduction
2. Model
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nakamura, K.; Miyazu, J.; Sasaura, M.; Fujiura, K. Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1-xNbxO3. Appl. Phys. Lett. 2006, 89, 131115. [Google Scholar] [CrossRef]
- Sapiens, N.; Weissbrod, A.; Agranat, A. Fast electroholographic switching. Opt. Lett. 2009, 34, 353–355. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Zhu, W.B.; Chao, J.H.; Yin, S.Z.; Hoffman, R.C.; Mott, A.G.; Luo, C. Super broadband ultrafast waveguide switches based on dynamic waveguiding effect. In Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications VIII; SPIE Policies: Bellingham, WA, USA, 2014. [Google Scholar]
- Chang, Y.C.; Wang, C.; Yin, S.; Hoffman, R.C.; Mott, A.G. Kovacs effect enhanced broadband large field of view electro-optic modulators in nanodisordered KTN crystals. Opt. Express 2013, 21, 17760–17768. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Chang, Y.-C.; Yin, S.; Hoffman, R.C.; Mott, A.G.; Guo, R. Broadband large field of view electro-optic modulators using potassium tantalate niobate (KTN) crystals. In Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications VII; SPIE Policies: Bellingham, WA, USA, 2013. [Google Scholar]
- Zhu, W.; Chao, J.H.; Chen, C.J.; Yin, S.; Hoffman, R.C. Three order increase in scanning speed of space charge-controlled KTN deflector by eliminating electric field induced phase transition in nanodisordered KTN. Sci. Rep. 2016, 6, 33143. [Google Scholar] [CrossRef] [PubMed]
- Chao, J.H.; Zhu, W.; Chen, C.J.; Campbell, A.L.; Henry, M.G.; Yin, S.; Hoffman, R.C. High speed non-mechanical two-dimensional KTN beam deflector enabled by space charge and temperature gradient deflection. Opt. Express 2017, 25, 15481–15492. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Chao, J.H.; Lee, Y.G.; Shang, A.; Liu, R.; Yin, S.; Hoffman, R.C. Enhanced electro-optic beam deflection of relaxor ferroelectric KTN crystals by electric-field-induced high permittivity. Opt. Lett. 2019, 44, 5557–5560. [Google Scholar] [CrossRef]
- Chang, Y.C.; Wang, C.; Yin, S.; Hoffman, R.C.; Mott, A.G. Giant electro-optic effect in nanodisordered KTN crystals. Opt. Lett. 2013, 38, 4574–4577. [Google Scholar] [CrossRef]
- Burns, G.; Dacol, F.H. Glassy polarization behavior in ferroelectric compounds Pb (Mg1/3Nb2/3)O3 and Pb (Zn1/3Nb2/3)O3. Solid State Commun. 1983, 48, 853–856. [Google Scholar] [CrossRef]
- Toulouse, J.; Jiang, F.; Svitelskiy, O.; Chen, W.; Ye, Z.G. Temperature evolution of the relaxor dynamics in Pb(Zn1/3Nb2/3)O3: A critical Raman analysis. Phys. Rev. B 2005, 72, 184106. [Google Scholar] [CrossRef]
- Schmidt, G.; Arndt, H.; Cieminski, J.V.; Petzsche, T.; Voigt, H.J.; Krainik, N.N. Field-induced Phase Transition in Lead Magnesium Niobate. Kristall Technik 1980, 15, 1415–1421. [Google Scholar] [CrossRef]
- Sommer, R.; Yushin, N.K.; van der Klink, J.J. Polar metastability and an electric-field-induced phase transition in the disordered perovskite Pb(Mg1/3Nb2/3)O3. Phys. Rev. B Condens. Matter 1993, 48, 3230–13237. [Google Scholar] [CrossRef] [PubMed]
- Imai, T.; Toyoda, S.; Miyazu, J.; Kobayashi, J.; Kojima, S. Permittivity changes induced by injected electrons and field-induced phase transition in KTa1-xNbxO3 optical beam deflectors. J. Appl. Phys. 2014, 53, 09PB02. [Google Scholar] [CrossRef]
- Chen, C.-J.; Zhu, W.; Chao, J.-H.; Shang, A.; Lee, Y.G.; Liu, R.; Yin, S.; Dubinskii, M.; Hoffman, R.C. Study of thermal and spatial dependent electric field-induced phase transition in relaxor ferroelectric crystals using Raman spectroscopy. J. Alloys Compd. 2019, 804, 35–41. [Google Scholar] [CrossRef]
- Li, X.; Yang, Q.; Zhang, X.; He, S.; Liu, H.; Wu, P. Low DC Electric-Field-Induced Phase Transition in KTa0.59Nb0.41O3 crystal. Cryst. Growth Des. 2019, 20, 1248–1253. [Google Scholar] [CrossRef]
- Khemakhem, H.; Ravez, J.; Daoud, A. Effect of DC and AC Bias Fields on the Dielectric and Ferroelectric Properties of a KTN Ceramic. Phys. Status Solidi 1997, 161, 557–564. [Google Scholar] [CrossRef]
- Li, H.; Tian, H.; Gong, D.; Meng, Q.; Zhou, Z. High dielectric tunability of KTa0.60Nb0.40O3. J. Appl. Phys. 2013, 114, 054103. [Google Scholar]
- Zhang, J.; Du, X.; Wang, X.; Zhao, J.; Liu, B.; Lv, X.; Chen, P.; Song, Y.; Wang, Y. Super electro-optic modulation in bulk KTN: Cu based on electric-field-enhanced permittivity. Opt. Lett. 2021, 46, 4192–4195. [Google Scholar] [CrossRef]
- Merz, W.J. Domain Formation and Domain Wall Motions in Ferroelectric BaTiO3 Single Crystals. Phys. Rev. 1954, 95, 690–698. [Google Scholar] [CrossRef]
- Robert, C.M.; Gabriel, W. Mechanism for the sidewise Motion of 180° Domain Walls in Barium Titanate. Phys. Rev. 1960, 117, 1460–1466. [Google Scholar]
- Fatuzzo, E. Theoretical Considerations on the Switching Transient in Ferroelectrics. Phys. Rev. 1962, 127, 1999–2005. [Google Scholar] [CrossRef]
- Chong, K.B.; Guiu, F.; Reece, M.J. Thermal activation of ferroelectric switching. J. Appl. Phys. 2008, 103, 014101. [Google Scholar] [CrossRef]
- Pirc, R.; Blinc, R. Vogel-Fulcher freezing in relaxor ferroelectrics. Phys. Rev. B 2007, 76, 020101. [Google Scholar] [CrossRef] [Green Version]
- Vopsaroiu, M.; Blackburn, J.; Cain, M.G.; Weaver, P.M. Thermally activated switching kinetics in second-order phase transition ferroelectrics. Phys. Rev. B 2010, 82, 024109. [Google Scholar] [CrossRef]
- Shi, Y.P.; Soh, A.K. Effects of frequency and temperature evolution of polar nanoregions on susceptibility dispersion and polarization mechanism in relaxors. J. Appl. Phys. 2011, 110, 124108. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.P.; Soh, A.K. Effects of volume evolution of static and dynamic polar nanoregions on the dielectric behavior of relaxors. Appl. Phys. Lett. 2011, 99, 092908. [Google Scholar] [CrossRef] [Green Version]
- McDonald, I.R. Nonequilibrium Thermodynamics and Its Statistical Foundations; Oxford University Press: Oxford, UK, 1981. [Google Scholar]
- Coey, J.M.D. Louis Néel: Retrospective. C. R. Acad. Sci. Paris 1949, 228, 664. [Google Scholar]
- Ni, Y.; Chen, H.T.; Shi, Y.P.; He, L.H.; Soh, A.K. Modeling of polar nanoregions dynamics on the dielectric response of relaxors. J. Appl. Phys. 2013, 113, 092908. [Google Scholar] [CrossRef]
- Prosandeev, S.; Wang, D.; Akbarzadeh, A.R.; Dkhil, B.; Bellaiche, L. Field-Induced Percolation of Polar Nanoregions in Relaxor Ferroelectrics. Phys. Rev. Lett. 2013, 110, 207601. [Google Scholar] [CrossRef] [Green Version]
- Fu, D.; Taniguchi, H.; Itoh, M.; Koshihara, S.Y.; Yamamoto, N.; Mori, S. Relaxor Pb(Mg1/3Nb2/3)O3: A Ferroelectric with Multiple Inhomogeneitie. Phys. Rev. Lett. 2009, 103, 207601. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.J. Calculations of dielectric properties from the superparaelectric model of relaxors. J. Phys. Condens. Matter 1993, 5, 8773–8792. [Google Scholar] [CrossRef]
Parameters | ||||||
---|---|---|---|---|---|---|
101 kHz | 4998 | 900.3 | 0.007707 | 361 | 288.2 | 0.0503 |
201 kHz | 4997 | 722.2 | 0.006525 | 519.1 | 287.9 | 0.09605 |
676 kHz | 3000 | 454.4 | 0.004374 | 606.5 | 293.3 | 0.2234 |
1.501 MHz | 2200 | 996.3 | 0.01025 | 240.2 | 285.4 | 0.04852 |
2 MHz | 2145 | 873.5 | 0.009247 | 276 | 286.5 | 0.05921 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Du, X.; Zhao, J.; Duan, Y. Explaining the Frequency Dependence of the DC-Biased Dielectric Response of Polar Nanoregions by Field-Enhanced Correlation Length. Nanomaterials 2022, 12, 1293. https://doi.org/10.3390/nano12081293
Zhang J, Du X, Zhao J, Duan Y. Explaining the Frequency Dependence of the DC-Biased Dielectric Response of Polar Nanoregions by Field-Enhanced Correlation Length. Nanomaterials. 2022; 12(8):1293. https://doi.org/10.3390/nano12081293
Chicago/Turabian StyleZhang, Jianwei, Xiaoping Du, Jiguang Zhao, and Yongsheng Duan. 2022. "Explaining the Frequency Dependence of the DC-Biased Dielectric Response of Polar Nanoregions by Field-Enhanced Correlation Length" Nanomaterials 12, no. 8: 1293. https://doi.org/10.3390/nano12081293
APA StyleZhang, J., Du, X., Zhao, J., & Duan, Y. (2022). Explaining the Frequency Dependence of the DC-Biased Dielectric Response of Polar Nanoregions by Field-Enhanced Correlation Length. Nanomaterials, 12(8), 1293. https://doi.org/10.3390/nano12081293