A Co-Doped Carbon Dot/Silver Nanoparticle Nanocomposite-Based Fluorescence Sensor for Metformin Hydrochloride Detection
Abstract
:1. Introduction
2. Chemicals and Experiments
2.1. Chemicals
2.2. Instruments
2.3. Preparation of NPCDs
2.4. Preparation of NPCD/AgNP Nanocomposites
2.5. Fluorescence Sensing of MFH
2.6. Detection of MFH in Human Serum
2.7. Selectivity
3. Results and Discussion
Characterization of NPCD/AgNP Nanocomposites
4. Detection of MFH
4.1. Mechanism of Sensing
4.2. Sensing
4.3. Determination of MFH in Human Serum
4.4. Selectivity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guariguata, L.; Whiting, D.; Weil, C.; Unwin, N. The International Diabetes Federation Diabetes Atlas methodology for estimating global and national prevalence of diabetes in adults. Diabetes Res. Clin. Pract. 2011, 94, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Klingensmith, G.J.; Lanzinger, S.; Tamborlane, W.V.; Hofer, S.E.; Cheng, P.Y.; de Beaufort, C.; Gal, R.L.; Reinehr, T.; Kollman, C.; Holl, R.W. Adolescent type 2 diabetes: Comparing the Pediatric Diabetes Consortium and Germany/Austria/Luxemburg Pediatric Diabetes Prospective registries. Pediatr. Diabetes 2018, 19, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Pacaud, D.; Schwandt, A.; de Beaufort, C.; Casteels, K.; Beltrand, J.; Birkebaek, N.H.; Campagnoli, M.; Bratina, N.; Limbert, C.; O’Riordan, S.M.P.; et al. A description of clinician reported diagnosis of type 2 diabetes and other non-type 1 diabetes included in a large international multicentered pediatric diabetes registry (SWEET). Pediatr. Diabetes 2016, 17, 24–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frauenfeld, L.; Nann, D.; Sulyok, Z.; Feng, Y.S.; Sulyok, M. Forecasting tuberculosis using diabetes-related google trends data. Pathog. Glob. Health 2020, 114, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Gedawy, A.; Al-Salami, H.; Dass, C.R. Development and validation of a new analytical HPLC method for simultaneous determination of the antidiabetic drugs, metformin and gliclazide. J. Food Drug Anal. 2019, 27, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Basavaiah, K.; Rajendraprasad, N. Selective Spectrophotometric Determination of Metformin Hydrochloride in Pharmaceuticals and Urine Using Two Nitrophenols as Chromogenic Agents. Anal. Bioanal. Chem. Res. 2017, 4, 41–51. [Google Scholar]
- Rena, G.; Pearson, E.R.; Sakamoto, K. Molecular mechanism of action of metformin: Old or new insights? Diabetologia 2013, 56, 1898–1906. [Google Scholar] [CrossRef] [Green Version]
- Li, D.H.; Yeung, S.C.J.; Hassan, M.M.; Konopleva, M.; Abbruzzese, J.L. Antidiabetic Therapies Affect Risk of Pancreatic Cancer. Gastroenterology 2009, 137, 482–488. [Google Scholar] [CrossRef] [Green Version]
- Hsu, W.-H.; Hsiao, P.-J.; Lin, P.-C.; Chen, S.-C.; Lee, M.-Y.; Shin, S.-J. Effect of metformin on kidney function in patients with type 2 diabetes mellitus and moderate chronic kidney disease. Oncotarget 2017, 9, 5416–5423. [Google Scholar] [CrossRef] [Green Version]
- Mubeen, G.; Noor, K. Spectrophotometric Method for Analysis of Metformin Hydrochloride. Indian J. Pharm. Sci. 2009, 71, 100–102. [Google Scholar] [CrossRef] [Green Version]
- Pyzowski, J.; Lenartowicz, M.; Sobanska, A.W.; Brzezinska, E. Fast and Convenient NIR Spectroscopy Procedure for Determination of Metformin Hydrochloride in Tablets. J. Appl. Spectrosc. 2017, 84, 710–715. [Google Scholar] [CrossRef]
- Attia, A.K.; Salem, W.M.; Mohamed, M.A. Voltammetric Assay of Metformin Hydrochloride Using Pyrogallol Modified Carbon Paste Electrode. Acta Chim. Slov. 2015, 62, 588–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulsun, T.; Sahin, S. Development and Validation of a RP-HPLC Method for Simultaneous Determination of Metformin Hydrochloride, Phenol Red and Metoprolol Tartrate for Intestinal Perfusion Studies. Lat. Am. J. Pharm. 2016, 35, 50–57. [Google Scholar]
- Tiwari, D.C.; Jain, R.; Sharma, S. Development of Polymer Composite Electrode to Analyze Metformin Hydrochloride Drug in Pharmaceutical Formulation with Higher Current Response. Asian J. Chem. 2012, 24, 1747–1750. [Google Scholar]
- Al-Hashimi, B.; Omer, K.M.; Rahman, H.S. Inner filter effect (IFE) as a simple and selective sensing platform for detection of tetracycline using milk-based nitrogen-doped carbon nanodots as fluorescence probe. Arabian J. Chem. 2020, 13, 5151–5159. [Google Scholar] [CrossRef]
- Kumar Panigrahi, S.; Kumar Mishra, A. Inner filter effect in fluorescence spectroscopy: As a problem and as a solution. J. Photochem. Photobio. C Photochem. Rev. 2019, 41, 100318. [Google Scholar] [CrossRef]
- Mu, X.W.; Wu, M.X.; Zhang, B.; Liu, X.; Xu, S.M.; Huang, Y.B.; Wang, X.H.; Song, D.Q.; Ma, P.Y.; Sun, Y. A sensitive “off-on” carbon dots-Ag nanoparticles fluorescent probe for cysteamine detection via the inner filter effect. Talanta 2021, 221, 121463. [Google Scholar] [CrossRef]
- Cayuela, A.; Soriano, M.L.; Valcarcel, M. Reusable sensor based on functionalized carbon dots for the detection of silver nanoparticles in cosmetics via inner filter effect. Anal. Chim. Acta 2015, 872, 70–76. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, L.; Yu, S.H. A selective sensor for cyanide ion (CN-) based on the inner filter effect of metal nanoparticles with photoluminescent carbon dots as the fluorophore. Sci. Bull. 2015, 60, 785–791. [Google Scholar] [CrossRef]
- Le, T.H.; Lee, H.J.; Kim, J.H.; Park, S.J. Detection of Ferric Ions and Catecholamine Neurotransmitters via Highly Fluorescent Heteroatom Co-Doped Carbon Dots. Sensors 2020, 20, 3470. [Google Scholar] [CrossRef]
- Ming, F.L.; Hou, J.Z.; Hou, C.J.; Yang, M.; Wang, X.F.; Li, J.W.; Huo, D.Q.; He, Q. One-step synthesized fluorescent nitrogen doped carbon dots from thymidine for Cr (VI) detection in water. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 222, 8. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Shi, B.; Liao, S.; Zhao, J.; Chen, L.; Zhao, S. Silver Nanoparticles/N-Doped Carbon-Dots Nanocomposites Derived from Siraitia Grosvenorii and Its Logic Gate and Surface-Enhanced Raman Scattering Characteristics. ACS Sustain. Chem. Eng. 2016, 4, 1728–1735. [Google Scholar] [CrossRef]
- Liu, X.; Atwater, M.; Wang, J.; Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B 2007, 58, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Chen, Q.; Xu, L.G.; Zhang, S.; Feng, L.Z.; Cheng, L.; Xu, H.; Liu, Z.; Peng, R. Graphene Oxide-Silver Nanocomposite as a Highly Effective Antibacterial Agent with Species-Specific Mechanisms. Acs Appl. Mater. Interfaces 2013, 5, 3867–3874. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Fang, Y.X.; Wang, E.K. A Binary Functional Substrate for Enrichment and Ultrasensitive SERS Spectroscopic Detection of Folic Acid Using Graphene Oxide/Ag Nanoparticle Hybrids. Acs Nano 2011, 5, 6425–6433. [Google Scholar] [CrossRef]
- Qian, Z.J.; Cheng, Y.C.; Zhou, X.F.; Wu, J.H.; Xu, G.J. Fabrication of graphene oxide/Ag hybrids and their surface-enhanced Raman scattering characteristics. J. Colloid Interface Sci. 2013, 397, 103–107. [Google Scholar] [CrossRef]
- Habibi, B.; Jahanbakhshi, M. A novel nonenzymatic hydrogen peroxide sensor based on the synthesized mesoporous carbon and silver nanoparticles nanohybrid. Sens. Actuators B Chem. 2014, 203, 919–925. [Google Scholar] [CrossRef]
- Singh, I.; Arora, R.; Dhiman, H.; Pahwa, R. Carbon Quantum Dots: Synthesis, Characterization and Biomedical Applications. Turkish J. Pharm. Sci. 2018, 15, 219–230. [Google Scholar] [CrossRef]
- Li, M.X.; Chen, T.; Gooding, J.J.; Liu, J.Q. Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sens. 2019, 4, 1732–1748. [Google Scholar] [CrossRef]
- Ma, J.L.; Yin, B.C.; Wu, X.; Ye, B.C. Simple and Cost-Effective Glucose Detection Based on Carbon Nanodots Supported on Silver Nanoparticles. Anal. Chem. 2017, 89, 1323–1328. [Google Scholar] [CrossRef]
- Kumar, N.; Seth, R.; Kumar, H. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles. Anal. Biochem. 2014, 456, 43–49. [Google Scholar] [CrossRef]
- Verma, A.; Shivalkar, S.; Sk, M.P.; Samanta, S.K.; Sahoo, A.K. Nanocomposite of Ag nanoparticles and catalytic fluorescent carbon dots for synergistic bactericidal activity through enhanced reactive oxygen species generation. Nanotechnology 2020, 31, 405704. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.P.; Rong, M.C.; Luo, F.; Chen, D.M.; Wang, Y.R.; Chen, X. Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. Trac-Trend. Anal. Chem. 2014, 54, 83–102. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, P.P.; Wang, A.Q.; Yu, C.F.; Qian, T.; Wu, S.S.; Shen, J. Dopamine fluorescent sensors based on polypyrrole/graphene quantum dots core/shell hybrids. Biosens. Bioelectron. 2015, 64, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.M.; Hsu, J.H.; Shih, M.K.; Hsieh, C.W.; Ju, W.J.; Chen, Y.W.; Lee, B.H.; Hou, C.Y. Process Optimization of Silver Nanoparticle Synthesis and Its Application in Mercury Detection. Micromachines 2021, 12, 1123. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Li, B.F.; Ye, Y.C.; Cai, W.; Li, W.J.; Yang, C.Y.; Chen, Y.S.; Xu, M.; Li, N.; Zheng, X.S.; et al. Synthesis, mechanical investigation, and application of nitrogen and phosphorus co-doped carbon dots with a high photoluminescent quantum yield. Nano Res. 2018, 11, 3691–3701. [Google Scholar] [CrossRef]
- Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia 2017, 60, 1577–1585. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.P.; Ren, T.B.; Cheng, D.; Hou, J.N.; Su, D.D.; Yuan, L. An ESIPT-Based Ratiometric Fluorescent Probe for Highly Sensitive and Rapid Detection of Sulfite in Living Cells. Chemistryopen 2019, 8, 1251–1257. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Sharma, R.; Chaturvedi, S.C. Simultaneous Estimation of Metformin Hydrochloride and Pioglitazone Hydrochloride by RPHPLC Method from Combined Tablet Dosage Form. Indian J. Pharm. Sci. 2008, 70, 383–386. [Google Scholar]
- Al-Rimawi, F. Development and validation of an analytical method for metformin hydrochloride and its related compound (1-cyanoguanidine) in tablet formulations by HPLC-UV. Talanta 2009, 79, 1368–1371. [Google Scholar] [CrossRef]
- Riaz, M.K.; Niaz, S.; Asghar, M.A.; Shafiq, Y.; Zehravi, M.; Shah, S.S.H.; Rehman, A.A.; Khan, K. Simultaneous Determination, Validation and Forced Degradation Studies of Metformin and Empagliflozin Using New HPLC Analytical Method. Lat. Am. J. Pharm. 2020, 39, 2257–2265. [Google Scholar]
- Momeni, S.; Farrokhnia, M.; Karimi, S.; Nabipour, I. Copper hydroxide nanostructure-modified carbon ionic liquid electrode as an efficient voltammetric sensor for detection of metformin: A theoretical and experimental study. J. Iran. Chem. Soc. 2016, 13, 1027–1035. [Google Scholar] [CrossRef]
- Khaled, E.; Kamel, M.S.; Hassan, H.N.; Abd El-Alim, S.H.; Aboul-Enein, H.Y. Miniaturized ionophore-based potentiometric sensors for the flow-injection determination of metformin in pharmaceutical formulations and biological fluids. Analyst 2012, 137, 5680–5687. [Google Scholar] [CrossRef] [PubMed]
- Song, J.-Z.; Chen, H.-F.; Tian, S.-J.; Sun, Z.-P. Determination of metformin in plasma by capillary electrophoresis using field-amplified sample stacking technique. J. Chromatogr. B Biomed. Sci. Appl. 1998, 708, 277–283. [Google Scholar] [CrossRef]
- Abbas Moussa, B.; Mahrouse, M.A.; Fawzy, M.G. A validated LC-MS/MS method for simultaneous determination of linagliptin and metformin in spiked human plasma coupled with solid phase extraction: Application to a pharmacokinetic study in healthy volunteers. J. Pharm. Biomed. Anal. 2019, 163, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Samajdar, R.N.; Mukherjee, S.; Bhattacharyya, A.J.; Bagchi, B. Unique Features of Metformin: A Combined Experimental, Theoretical, and Simulation Study of Its Structure, Dynamics, and Interaction Energetics with DNA Grooves. J. Phys. Chem. B 2018, 122, 2227–2242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Method | Linear Range | LOD | Reference |
---|---|---|---|
RPHPLC HPLC-UV HPLC Voltametric | 0.5–4 µg/mL 10 –30 µg/mL 5–150 µg/mL 0.165–662 µg/mL | 0.89 µg/mL 0.08 µg/mL | [39] [40] [41] [42] |
Voltametric Elecrochemical-FIA CE | 0.132–0.993 µg/mL 0.17–16600 µg/mL 0.25–3.5 µg/mL | 0.011 µg/mL 0.13 µg/mL 0.1 µg/mL | [12] [43] [44] |
LC-MS/MS Fluorescence | 2.5×10−4–0.01 µg/mL 2×10−3–0.1 µg/mL | 2.5×10−4µg/mL 1.76×10−3µg/mL | [45] Our method |
Sample | Added (µg/L) | Founded (µg/L) | Recovery (%) | RSD (n = 3) | |
1 | 3 | 3.5 | 118.3 | 7.3 | |
2 | 5 | 6.9 | 138.8 | 4.4 | |
3 | 15 | 14.4 | 95.7 | 1.9 | |
4 | 20 | 23.3 | 116.6 | 4.8 | |
5 | 30 | 30.9 | 102.9 | 3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, T.-H.; Kim, J.-H.; Park, S.-J. A Co-Doped Carbon Dot/Silver Nanoparticle Nanocomposite-Based Fluorescence Sensor for Metformin Hydrochloride Detection. Nanomaterials 2022, 12, 1297. https://doi.org/10.3390/nano12081297
Le T-H, Kim J-H, Park S-J. A Co-Doped Carbon Dot/Silver Nanoparticle Nanocomposite-Based Fluorescence Sensor for Metformin Hydrochloride Detection. Nanomaterials. 2022; 12(8):1297. https://doi.org/10.3390/nano12081297
Chicago/Turabian StyleLe, Thi-Hoa, Ji-Hyeon Kim, and Sang-Joon Park. 2022. "A Co-Doped Carbon Dot/Silver Nanoparticle Nanocomposite-Based Fluorescence Sensor for Metformin Hydrochloride Detection" Nanomaterials 12, no. 8: 1297. https://doi.org/10.3390/nano12081297
APA StyleLe, T. -H., Kim, J. -H., & Park, S. -J. (2022). A Co-Doped Carbon Dot/Silver Nanoparticle Nanocomposite-Based Fluorescence Sensor for Metformin Hydrochloride Detection. Nanomaterials, 12(8), 1297. https://doi.org/10.3390/nano12081297