Suppressing the Effect of the Wetting Layer through AlAs Capping in InAs/GaAs QD Structures for Solar Cells Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. DCTEM Analyses Using g002 DF Conditions of the CL/WL Regions
3.2. EDX Analyses of the CL/WL Regions
3.3. Simulation of g002 DF Images
3.4. Global Elemental Quantification of the WL and CL
4. Discussion
4.1. WL Reduction
4.2. CL/WL Mixing
4.3. Bandgap Approximation of the CL/WL Regions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shockley, W.; Queisser, H.J. Detailed Balance Limit of Efficiency of P-n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Luque, A.; Martí, A. Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels. Phys. Rev. Lett. 1997, 78, 5014. [Google Scholar] [CrossRef]
- Okada, Y.; Ekins-Daukes, N.J.; Kita, T.; Tamaki, R.; Yoshida, M.; Pusch, A.; Hess, O.; Phillips, C.C.; Farrell, D.J.; Yoshida, K.; et al. Intermediate Band Solar Cells: Recent Progress and Future Directions. Appl. Phys. Rev. 2015, 2, 021302. [Google Scholar] [CrossRef] [Green Version]
- Ramiro, I.; Marti, A.; Antolin, E.; Luque, A. Review of Experimental Results Related to the Operation of Intermediate Band Solar Cells. IEEE J. Photovolt. 2014, 4, 736–748. [Google Scholar] [CrossRef] [Green Version]
- Delamarre, A.; Suchet, D.; Cavassilas, N.; Okada, Y.; Sugiyama, M.; Guillemoles, J.F. An Electronic Ratchet Is Required in Nanostructured Intermediate-Band Solar Cells. IEEE J. Photovolt. 2018, 8, 1553–1559. [Google Scholar] [CrossRef] [Green Version]
- Okada, Y.; Yoshida, K.; Shoji, Y.; Tamaki, R. Semiconductor Quantum Dot Solar Cells; Elsevier: Amsterdam, The Netherlands, 2021; Volume 21, ISBN 9780128220832. [Google Scholar]
- Beattie, N.S.; See, P.; Zoppi, G.; Ushasree, P.M.; Duchamp, M.; Farrer, I.; Donchev, V.; Ritchie, D.A.; Tomić, S. Design and Fabrication of InAs/GaAs QD Based Intermediate Band Solar Cells by Quantum Engineering. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018—A Joint Conference 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC, Waikoloa, HI, USA, 10–15 June 2018; pp. 2747–2751. [Google Scholar] [CrossRef] [Green Version]
- Villa, J.; Ramiro, I.; Ripalda, J.M.; Tobias, I.; Garcia-Linares, P.; Antolin, E.; Marti, A. Contribution to the Study of Sub-Bandgap Photon Absorption in Quantum Dot InAs/AlGaAs Intermediate Band Solar Cells. IEEE J. Photovolt. 2021, 11, 420–428. [Google Scholar] [CrossRef]
- Ramiro, I.; Villa, J.; Hwang, J.; Martin, A.J.; Millunchick, J.; Phillips, J.; Martí, A. Demonstration of a GaSb/GaAs Quantum Dot Intermediate Band Solar Cell Operating at Maximum Power Point. Phys. Rev. Lett. 2020, 125, 247703. [Google Scholar] [CrossRef]
- Blokhin, S.A.; Sakharov, A.V.; Nadtochy, A.M.; Pauysov, A.S.; Maximov, M.V.; Ledentsov, N.N.; Kovsh, A.R.; Mikhrin, S.S.; Lantratov, V.M.; Mintairov, S.A.; et al. AlGaAs/GaAs Photovoltaic Cells with an Array of InGaAs QDs. Semiconductors 2009, 43, 514–518. [Google Scholar] [CrossRef]
- Sablon, K.; Li, Y.; Vagidov, N.; Mitin, V.; Little, J.W.; Hier, H.; Sergeev, A. GaAs Quantum Dot Solar Cell under Concentrated Radiation. Appl. Phys. Lett. 2015, 107, 073901. [Google Scholar] [CrossRef]
- Sellers, D.G.; Polly, S.; Hubbard, S.M.; Doty, M.F. Analyzing Carrier Escape Mechanisms in InAs/GaAs Quantum Dot p-i-n Junction Photovoltaic Cells. Appl. Phys. Lett. 2014, 104, 223903. [Google Scholar] [CrossRef]
- Cappelluti, F.; Khalili, A.; Gioannini, M. Open Circuit Voltage Recovery in Quantum Dot Solar Cells: A Numerical Study on the Impact of Wetting Layer and Doping. IET Optoelectron. 2017, 11, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Varghese, A.; Yakimov, M.; Tokranov, V.; Mitin, V.; Sablon, K.; Sergeev, A.; Oktyabrsky, S. Complete Voltage Recovery in Quantum Dot Solar Cells Due to Suppression of Electron Capture. Nanoscale 2016, 8, 7248–7256. [Google Scholar] [CrossRef] [PubMed]
- Guimard, D.; Morihara, R.; Bordel, D.; Tanabe, K.; Wakayama, Y.; Nishioka, M.; Arakawa, Y. Fabrication of InAs/GaAs Quantum Dot Solar Cells with Enhanced Photocurrent and without Degradation of Open Circuit Voltage. Appl. Phys. Lett. 2010, 96, 203507. [Google Scholar] [CrossRef]
- Löbl, M.C.; Scholz, S.; Söllner, I.; Ritzmann, J.; Denneulin, T.; Kovács, A.; Kardynał, B.E.; Wieck, A.D.; Ludwig, A.; Warburton, R.J. Excitons in InGaAs Quantum Dots without Electron Wetting Layer States. Commun. Phys. 2019, 2, 93. [Google Scholar] [CrossRef]
- Zieliński, M. Vanishing Fine Structure Splitting in Highly Asymmetric InAs/InP Quantum Dots without Wetting Layer. Sci. Rep. 2020, 10, 13542. [Google Scholar] [CrossRef]
- Tutu, F.K.; Lam, P.; Wu, J.; Miyashita, N.; Okada, Y.; Lee, K.-H.; Ekins-Daukes, N.J.; Wilson, J.; Liu, H. InAs/GaAs Quantum Dot Solar Cell with an AlAs Cap Layer. Appl. Phys. Lett. 2013, 102, 163907. [Google Scholar] [CrossRef]
- Kim, D.; Tang, M.; Wu, J.; Hatch, S.; Maidaniuk, Y.; Dorogan, V.; Mazur, Y.I.; Salamo, G.J.; Liu, H. Si-Doped InAs/GaAs Quantum-Dot Solar Cell with AlAs Cap Layers. IEEE J. Photovolt. 2016, 6, 906–911. [Google Scholar] [CrossRef] [Green Version]
- Shchukin, V.; Ledentsov, N.; Rouvimov, S. Formation of Three-Dimensional Islands in Subcritical Layer Deposition in Stranski-Krastanow Growth. Phys. Rev. Lett. 2013, 110, 1–5. [Google Scholar] [CrossRef]
- Lu, X.M.M.; Matsubara, S.; Nakagawa, Y.; Kitada, T.; Isu, T. Suppression of Photoluminescence from Wetting Layer of InAs Quantum Dots Grown on (311)B GaAs with AlAs Cap. J. Cryst. Growth 2015, 425, 106–109. [Google Scholar] [CrossRef]
- Tsatsul’nikov, A.F.; Kovsh, A.R.; Zhukov, A.E.; Shernyakov, Y.M.; Musikhin, Y.G.; Ustinov, V.M.; Bert, N.A.; Kop’ev, P.S.; Alferov, Z.I.; Mintairov, A.M.; et al. Volmer–Weber and Stranski–Krastanov InAs-(Al,Ga)As Quantum Dots Emitting at 1.3 Μm. J. Appl. Phys. 2000, 88, 6272–6275. [Google Scholar] [CrossRef]
- Tutu, F.K.; Sellers, I.R.; Peinado, M.G.; Pastore, C.E.; Willis, S.M.; Watt, A.R.; Wang, T.; Liu, H.Y. Improved Performance of Multilayer InAs/GaAs Quantum-Dot Solar Cells Using a High-Growth-Temperature GaAs Spacer Layer. J. Appl. Phys. 2012, 111, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Moison, J.M.; Guille, C.; Houzay, F.; Barthe, F.; Van Rompay, M. Surface Segregation of Third-Column Atoms in Group III-V Arsenide Compounds: Ternary Alloys and Heterostructures. Phys. Rev. B 1989, 40, 6149–6162. [Google Scholar] [CrossRef] [PubMed]
- Muraki, K.; Fukatsu, S.; Shiraki, Y.; Ito, R. Surface Segregation of In Atoms during Molecular Beam Epitaxy and Its Influence on the Energy Levels in InGaAs/GaAs Quantum Wells. Appl. Phys. Lett. 1992, 61, 557–559. [Google Scholar] [CrossRef]
- Dehaese, O.; Wallart, X.; Mollot, F. Kinetic Model of Element III Segregation during Molecular Beam Epitaxy of III-III’-V Semiconductor Compounds. Appl. Phys. Lett. 1995, 66, 52–54. [Google Scholar] [CrossRef]
- Godbey, D.J.; Ancona, M.G. Modeling of Ge Segregation in the Limits of Zero and Infinite Surface Diffusion. J. Vac. Sci. Technol. A Vac. Surf. Film. 1997, 15, 976–980. [Google Scholar] [CrossRef]
- Cullis, A.G.; Norris, D.J.; Walther, T.; Migliorato, M.A.; Hopkinson, M. Stranski-Krastanow Transition and Epitaxial Island Growth. Phys. Rev. B 2002, 66, 081305. [Google Scholar] [CrossRef]
- Litvinov, D.; Gerthsen, D.; Rosenauer, A.; Schowalter, M.; Passow, T.; Feinäugle, P.; Hetterich, M. Transmission Electron Microscopy Investigation of Segregation and Critical Floating-Layer Content of Indium for Island Formation in InGaAs. Phys. Rev. B 2006, 74, 165306. [Google Scholar] [CrossRef] [Green Version]
- Arzberger, M.; Käsberger, U.; Böhm, G.; Abstreiter, G. Influence of a Thin AlAs Cap Layer on Optical Properties of Self-Assembled InAs/GaAs Quantum Dots. Appl. Phys. Lett. 1999, 75, 3968–3970. [Google Scholar] [CrossRef]
- Dorogan, V.G.; Mazur, Y.I.; Lee, J.H.; Wang, Z.M.; Ware, M.E.; Salamo, G.J. Thermal Peculiarity of AlAs-Capped InAs Quantum Dots in a GaAs Matrix. J. Appl. Phys. 2008, 104, 104303. [Google Scholar] [CrossRef]
- Oktyabrsky, S.; Tokranov, V.; Agnello, G.; Van Eisden, J.; Yakimov, M. Nano-Engineering Approaches to Self-Assembled InAs Quantum Dot Laser Medium. J. Electron. Mater. 2006, 35, 822–833. [Google Scholar] [CrossRef]
- Schowalter, M.; Rosenauer, A.; Gerthsen, D.; Arzberger, M.; Bichler, M.; Abstreiter, G. Investigation of In Segregation in InAs/AlAs Quantum-Well Structures. Appl. Phys. Lett. 2001, 79, 4426–4428. [Google Scholar] [CrossRef]
- González, D.; Flores, S.; Ruiz-Marín, N.; Reyes, D.F.F.; Stanojević, L.; Utrilla, A.D.D.; Gonzalo, A.; Gallego Carro, A.; Ulloa, J.M.M.; Ben, T. Evaluation of Different Capping Strategies in the InAs/GaAs QD System: Composition, Size and QD Density Features. Appl. Surf. Sci. 2021, 537, 148062. [Google Scholar] [CrossRef]
- Eisele, H.; Ebert, P.; Liu, N.; Holmes, A.L.; Shih, C.-K. Reverse Mass Transport during Capping of In 0.5 Ga 0.5 As/GaAs Quantum Dots. Appl. Phys. Lett. 2012, 101, 233107. [Google Scholar] [CrossRef] [Green Version]
- Cerva, H. Transmission Electron Microscopy of Heteroepitaxial Layer Structures. Appl. Surf. Sci. 1991, 50, 19–27. [Google Scholar] [CrossRef]
- Bithell, E.G.; Stobbs, W.M. III-V Ternary Semiconductor Heterostructures: The Choice of an Appropriate Compositional Analysis Technique. J. Appl. Phys. 1991, 69, 2149–2155. [Google Scholar] [CrossRef]
- Rosenauer, A.; Schowalter, M.; Glas, F.; Lamoen, D. First-Principles Calculations of 002 Structure Factors for Electron Scattering in Strained InxGa1-XAs. Phys. Rev. B—Condens. Matter Mater. Phys. 2005, 72, 1–10. [Google Scholar] [CrossRef]
- Beanland, R. Dark Field Transmission Electron Microscope Images of III-V Quantum Dot Structures. Ultramicroscopy 2005, 102, 115–125. [Google Scholar] [CrossRef]
- Grillo, V.; Albrecht, M.; Remmele, T.; Strunk, H.P.; Egorov, A.Y.; Riechert, H. Simultaneous Experimental Evaluation of In and N Concentrations in InGaAsN Quantum Wells. J. Appl. Phys. 2001, 90, 3792–3798. [Google Scholar] [CrossRef]
- Ruiz-Marín, N.; Reyes, D.F.; Stanojević, L.; Ben, T.; Braza, V.; Gallego-Carro, A.; Bárcena-González, G.; Ulloa, J.M.; González, D. Effect of the AlAs Capping Layer Thickness on the Structure of InAs/GaAs QD. Appl. Surf. Sci. 2022, 573, 151572. [Google Scholar] [CrossRef]
- Song, H.Z.Z.; Tanaka, Y.; Yamamoto, T.; Yokoyama, N.; Sugawara, M.; Arakawa, Y. AlGaAs Capping Effect on InAs Quantum Dots Self-Assembled on GaAs. Phys. Lett. A 2011, 375, 3517–3520. [Google Scholar] [CrossRef]
- Chen, Z.; Weyland, M.; Sang, X.; Xu, W.; Dycus, J.H.; LeBeau, J.M.; D’Alfonso, A.J.; Allen, L.J.; Findlay, S.D. Quantitative Atomic Resolution Elemental Mapping via Absolute-Scale Energy Dispersive X-Ray Spectroscopy. Ultramicroscopy 2016, 168, 7–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Y. Practical Electron Microscopy and Database. 2013. Available online: www.globalsino.com/EM/ (accessed on 10 April 2022).
- Twesten, R.D.; Follstaedt, D.M.; Lee, S.R.; Jones, E.D.; Reno, J.L.; Millunchick, J.M.; Norman, A.G.; Ahrenkiel, S.P.; Mascarenhas, A. Characterizing Composition Modulations in InAs/AlAs Short-Period Superlattices. Phys. Rev. B 1999, 60, 13619–13635. [Google Scholar] [CrossRef]
- González, D.; Braza, V.; Utrilla, A.D.; Gonzalo, A.; Reyes, D.F.; Ben, T.; Guzman, A.; Hierro, A.; Ulloa, J.M. Quantitative Analysis of the Interplay between InAs Quantum Dots and Wetting Layer during the GaAs Capping Process. Nanotechnology 2017, 28, 425702. [Google Scholar] [CrossRef] [PubMed]
- Kasu, M.; Kobayashi, N. Surface-Diffusion and Step-Bunching Mechanisms of Metalorganic Vapor-Phase Epitaxy Studied by High-Vacuum Scanning Tunneling Microscopy. J. Appl. Phys. 1995, 78, 3026–3035. [Google Scholar] [CrossRef]
- Kasu, M.; Kobayashi, N. Surface Diffusion of AlAs on GaAs in Metalorganic Vapor Phase Epitaxy Studied by High-vacuum Scanning Tunneling Microscopy. Appl. Phys. Lett. 1995, 67, 2842–2844. [Google Scholar] [CrossRef]
- Fujiwara, K.; Ishii, A.; Aisaka, T. First Principles Calculation of Indium Migration Barrier Energy on an InAs(001) Surface. Thin Solid Films 2004, 464–465, 35–37. [Google Scholar] [CrossRef]
- González, D.; Reyes, D.F.; Utrilla, A.D.; Ben, T.; Braza, V.; Guzman, A.; Hierro, A.; Ulloa, J.M. General Route for the Decomposition of InAs Quantum Dots during the Capping Process. Nanotechnology 2016, 27, 125703. [Google Scholar] [CrossRef]
- Utrilla, A.D.; Grossi, D.F.; Reyes, D.F.; Gonzalo, A.; Braza, V.; Ben, T.; González, D.; Guzman, A.; Hierro, A.; Koenraad, P.M.; et al. Size and Shape Tunability of Self-Assembled InAs/GaAs Nanostructures through the Capping Rate. Appl. Surf. Sci. 2018, 444, 260–266. [Google Scholar] [CrossRef]
- Costantini, G.; Rastelli, A.; Manzano, C.; Acosta-Diaz, P.; Songmuang, R.; Katsaros, G.; Schmidt, O.G.; Kern, K. Interplay between Thermodynamics and Kinetics in the Capping of InAs/GaAs(001) Quantum Dots. Phys. Rev. Lett. 2006, 96, 226106. [Google Scholar] [CrossRef] [Green Version]
- Eisele, H.; Lenz, A.; Heitz, R.; Timm, R.; Dähne, M.; Temko, Y.; Suzuki, T.; Jacobi, K. Change of InAs/GaAs Quantum Dot Shape and Composition during Capping. J. Appl. Phys. 2008, 104, 124301. [Google Scholar] [CrossRef]
- Gong, Q.; Offermans, P.; Nötzel, R.; Koenraad, P.M.; Wolter, J.H. Capping Process of InAs∕GaAs Quantum Dots Studied by Cross-Sectional Scanning Tunneling Microscopy. Appl. Phys. Lett. 2004, 85, 5697–5699. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.H.; Madhukar, A.; Chen, P.; Kobayashi, N.P. Vertically Self-Organized InAs Quantum Box Island on GaAs (100). Phys. Rev. Lett. 1995, 75, 2542–2545. [Google Scholar] [CrossRef] [PubMed]
- Ferdos, F.; Wang, S.; Wei, Y.; Larsson, A.; Sadeghi, M.; Zhao, Q. Influence of a Thin GaAs Cap Layer on Structural and Optical Properties of InAs Quantum Dots. Appl. Phys. Lett. 2002, 81, 1195–1197. [Google Scholar] [CrossRef]
- Ulloa, J.M.; Gargallo-Caballero, R.; Bozkurt, M.; del Moral, M.; Guzmán, A.; Koenraad, P.M.; Hierro, A. GaAsSb-Capped InAs Quantum Dots: From Enlarged Quantum Dot Height to Alloy Fluctuations. Phys. Rev. B 2010, 81, 165305. [Google Scholar] [CrossRef] [Green Version]
- Flores, S.; Reyes, D.F.; Braza, V.; Richards, R.D.; Bastiman, F.; Ben, T.; Ruiz-Marín, N.; David, J.P.R.; González, D. Modelling of Bismuth Segregation in InAsBi/InAs Superlattices: Determination of the Exchange Energies. Appl. Surf. Sci. 2019, 485, 29–34. [Google Scholar] [CrossRef]
- Aresti, A.; Garbato, L.; Rucci, A. Some Cohesive Energy Features of Tetrahedral Semiconductors. J. Phys. Chem. Solids 1984, 45, 361–365. [Google Scholar] [CrossRef]
- Spencer, G.S.; Menéndez, J.; Pfeiffer, L.N.; West, K.W. Optical-Phonon Raman-Scattering Study of Short-Period GaAs-AlAs Superlattices: An Examination of Interface Disorder. Phys. Rev. B 1995, 52, 8205–8218. [Google Scholar] [CrossRef]
- Dorin, C.; Mirecki Millunchick, J. Lateral Composition Modulation in AlAs/InAs and GaAs/InAs Short Period Superlattices Structures: The Role of Surface Segregation. J. Appl. Phys. 2002, 91, 237–244. [Google Scholar] [CrossRef] [Green Version]
- González, D.; Reyes, D.F.; Ben, T.; Utrilla, A.D.; Guzman, A.; Hierro, A.; Ulloa, J.M. Influence of Sb/N Contents during the Capping Process on the Morphology of InAs/GaAs Quantum Dots. Sol. Energy Mater. Sol. Cells 2016, 145, 154–161. [Google Scholar] [CrossRef]
- Haxha, V.; Drouzas, I.; Ulloa, J.M.; Bozkurt, M.; Koenraad, P.M.; Mowbray, D.J.; Liu, H.Y.; Steer, M.J.; Hopkinson, M.; Migliorato, M.A. Role of Segregation in InAs/GaAs Quantum Dot Structures Capped with a GaAsSb Strain-Reduction Layer. Phys. Rev. B 2009, 80, 165334. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, T.; Bowers, J.E. Band Lineup and In-Plane Effective Mass of InGaAsP or InGaAlAs on InP Strained-Layer Quantum Well. IEEE J. Quantum Electron. 1994, 30, 562–570. [Google Scholar] [CrossRef]
- Olego, D.; Chang, T.Y.; Silberg, E.; Caridi, E.A.; Pinczuk, A. Compositional Dependence of Band-Gap Energy and Conduction-Band Effective Mass of In1-x-YGaxAlyAs Lattice Matched to InP. Appl. Phys. Lett. 1982, 41, 476–478. [Google Scholar] [CrossRef]
- Li, E.H.H. Material Parameters of InGaAsP and InAlGaAs Systems for Use in Quantum Well Structures at Low and Room Temperatures. Phys. E Low-Dimens. Syst. Nanostruct. 2000, 5, 215–273. [Google Scholar] [CrossRef]
- Hirayama, Y.; Choi, W.Y.; Peng, L.H.; Fonstad, C.G. Absorption Spectroscopy on Room Temperature Excitonic Transitions in Strained Layer InGaAs/InGaAlAs Multiquantum-Well Structures. J. Appl. Phys. 1993, 74, 570–578. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz, N.; Fernández, D.; Stanojević, L.; Ben, T.; Flores, S.; Braza, V.; Carro, A.G.; Luna, E.; Ulloa, J.M.; González, D. Suppressing the Effect of the Wetting Layer through AlAs Capping in InAs/GaAs QD Structures for Solar Cells Applications. Nanomaterials 2022, 12, 1368. https://doi.org/10.3390/nano12081368
Ruiz N, Fernández D, Stanojević L, Ben T, Flores S, Braza V, Carro AG, Luna E, Ulloa JM, González D. Suppressing the Effect of the Wetting Layer through AlAs Capping in InAs/GaAs QD Structures for Solar Cells Applications. Nanomaterials. 2022; 12(8):1368. https://doi.org/10.3390/nano12081368
Chicago/Turabian StyleRuiz, Nazaret, Daniel Fernández, Lazar Stanojević, Teresa Ben, Sara Flores, Verónica Braza, Alejandro Gallego Carro, Esperanza Luna, José María Ulloa, and David González. 2022. "Suppressing the Effect of the Wetting Layer through AlAs Capping in InAs/GaAs QD Structures for Solar Cells Applications" Nanomaterials 12, no. 8: 1368. https://doi.org/10.3390/nano12081368
APA StyleRuiz, N., Fernández, D., Stanojević, L., Ben, T., Flores, S., Braza, V., Carro, A. G., Luna, E., Ulloa, J. M., & González, D. (2022). Suppressing the Effect of the Wetting Layer through AlAs Capping in InAs/GaAs QD Structures for Solar Cells Applications. Nanomaterials, 12(8), 1368. https://doi.org/10.3390/nano12081368