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Abstract: A modified biodegradable magnesium alloy (AZ31, 96 wt% Mg, 3 wt% Al, and 1 wt% Zn)
with polylactic acid (PLA) nanofibers was obtained by the electrospinning technique. The presence
of PLA nanofibers was evidenced using Fourier transform infrared spectroscopy (FT-IR) and using
an scanning electronic microscope (SEM) equipped with an energy dispersive X-ray spectroscopy
(EDX) module. The degradation behavior of an uncoated Mg alloy and a Mg alloy coated with PLA
was evaluated through hydrogen evolution, pH, and electrochemical measurements in simulated
body fluid. Contact angle measurements showed a shift from hydrophilic towards the hydrophobic
character of the alloy after its coating with PLA nanofibers. Furthermore, the electrochemical
measurement results show that the Mg based alloy coated with PLA inhibits hydrogen evolution,
thus being less prone to degradation. The aim of this research is not only to reduce the corrosion rate
of Mg alloy and to improve its properties with the help of polylactic acid coating, but also to provide
a study to understand the hydrophilic–hydrophobic balance of biodegradable magnesium based on
surface energy investigations. Taking into account corrosion rate, wettability, and pH changes, an
empiric model of the interaction of Mg alloy with PLA nanofibers is proposed.

Keywords: magnesium alloy; PLA nanofibers; coating; biodegradable property; electrochemical and
morphology characterization

1. Introduction

Stainless steel, CoCr, and Ti alloys, coated or uncoated, have traditionally been em-
ployed for medical device implants in surgery due to their improved mechanical and
corrosion properties as well as high biocompatibility [1–3]. Because such implants are
non-biodegradable, they must frequently be removed from the human body by a further
operation after healing. This implies new risks of infection, although the implants are
specially coated and most of them present a good antibacterial effect [4,5]. To solve this
issue, introducing directly temporary implants that degrade themselves in the human
body was one of the strategies permitting the reduction of patient time spent in hospitals.
The degradable metals for biomedical application need to restore tissue function having
properties close to human bone [6,7]. In this context, simultaneously with the increasing
number of secondary operations, a growing interest in biodegradable materials has devel-
oped [8]. Although Zn, Mg, and Fe are among the most basic biodegradable metals, Mg
not only possesses an elastic modulus similar to that of human bone [9], but it also pro-
vides crucial nutrition for the human body [10]. The primary drawback of biodegradable
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magnesium is that it dissolves rapidly in the human body and has a high corrosion rate at
pH 7.4–7.6. As a result, hydrogen is released, which is detrimental to the implant as well as
the patient [11,12].

Thus, as a relatively recent concept for the improvement of Mg corrodible metallic
biomaterials by alloying and modifying the surface with the different coatings developed, it
has resulted in the development of a new generation of bioactive biomaterials with potential
multifunctional capabilities [13–15]. Alloying is an effective procedure that changes the
structure and properties of a metal. Therefore, to prevent tissue damage and to ensure
faster healing, magnesium alloyed with various metals are used, such as aluminum (Al),
calcium (Ca), and zinc (Zn) [16]. For example, alloying magnesium with aluminum has
a number of benefits, including improved biodegradability, mechanical characteristics or
corrosion resistance [17,18].

Another method for improving the qualities of magnesium materials is to apply
surface changes such as coatings, which are less expensive and more widely used [19].
Among the different materials used for coating biodegradable magnesium alloys, synthetic
polymers seem to be the most typical, as they lead to an increase in electrochemical
stability due to the insulating properties that ensure the absence of galvanic corrosion
between coatings and substrate [20]. Thus, in recent years, biocompatible polymers such
as poly(lactide-co-glycolic) acid, poly(glycolic acid), collagen, polycaprolactone, chitosan,
polylactic acid (PLA), fibrin, alginate, and other well-known biocompatible polymers have
been investigated and tested as coatings [21].

In the case of a biodegradable implant, a quick corrosion process is crucial since the
implant must preserve its mechanical stability for a specified period of time before the bone
heals entirely [22].

Therefore, coating the Mg alloy with polylactic acid (PLA) helps to slow down the
dissolution of the alloy and maintain a balance between bone regeneration and implant
resorption [23].

Thus, the aim of this research is not only to reduce the corrosion rate of Mg alloy and
to improve its properties with the help of polylactic acid coating, but also to provide a study
to understand the hydrophilic–hydrophobic balance of biodegradable magnesium based
on surface energy investigations. The understanding of such changes is based on more
knowledge about the Mg alloy interaction with PLA electrospun nanofibers. The interaction
mechanism of the Mg alloy with a PLA nanofiber coating could explain the increase of the
surface’s hydrophobic character being an important novelty for more potential applications
of biodegradable Mg alloys, such as platelet adhesion decrease in thrombosis or drug
release. As an expression of novelty, an empiric model of interaction is proposed, based on
experimental data.

2. Materials and Methods
2.1. Reagents

AZ31 alloy (96 wt% Mg, 3 wt% Al, and 1 wt% Zn) from Alfa-Aesar, Thermo Fisher,
Kandel Germany, PLA (granules 3 mm—GoodFellow, Huntingdon, UK), chloroform
(99%—Carl Roth, Germany) and N, N-dimethylformamide (99.9% HPLC grade—Alfa-
Aesar, Haverhill, MA, USA) were used to prepare the solution for nanofiber deposition. All
the salts required to prepare simulated body fluid solution (SBF) were from Sigma-Aldrich
(analytical reagent grade). Aqueous solutions were prepared using Type I ultrapure water
obtained from a water purification system (Millipore Direct Q 3UV from Merck, Molsheim,
France, 18.2 MΩcm−1).

2.2. Equipment

PLA nanofiber deposition by electrospinning was achieved using a high-power source
(PS/EJ30P20, Glassman High Voltage, Inc., High Bridge, NJ, USA) connected to a pump
(Legato 180, KD Scientific, Holliston, MA, USA).
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A Contact Angle Meter–KSV Instruments CAM100 was used to measure the contact
angle by dripping 3 drops of distilled water, ethylene glycol, and diiodomethane on
different areas of each sample of uncoated Mg alloy, as well as Mg alloy coated with PLA
nanofibers (Mg alloy-PLA). Each determination was repeated 3 times for the three liquids.

FT-IR spectra were recorded on a Perkin-Elmer Spectrum 100 spectrophotometer.
The SEM-EDX analysis was performed using a Hitachi SU 8230 scanning electron

microscope equipped with an Oxford EDX detector-analyzer.
The electrochemical measurements were performed in a three-electrode electrochemi-

cal cell connected to a potentiostat–galvanostat from AutoLAB PGSTAT100N (Metrohm
Autolab, Barendrecht, The Netherlands). The working electrodes were Mg alloy and Mg
alloy coated with PLA nanofibers (6 mm in diameter–controlled surface). The counter elec-
trode was a platinum (Pt) wire, while the reference electrode was an Ag/AgCl electrode. At
a rate of 2 mV/s, potentiodynamic voltammetry was performed vs. open circuit potential
(OCP). Electrochemical impedance spectroscopy (EIS) was conducted at OCP with a 10 mV
applied signal and frequencies ranging from 104 to 10−1 Hz. The readings were taken at
varied intervals of time.

2.3. Procedures
2.3.1. Preparation of AZ31 Biodegradable Alloy

After gradually polishing up to 1200 grit with SiC paper, samples of AZ31 alloy with
dimensions of 20 mm × 20 mm × 1 mm were used. The samples were then cleaned and
degreased in the ultrasonic bath with ultrapure water (10 min) and ethyl alcohol (10 min)
before being dried in air.

2.3.2. Preparation of Simulated Body Fluid Solution (SBF)

The electrolyte utilized to characterize the Mg alloy was simulated body fluid (SBF),
which was prepared according to Kokubo’s recipe. Table 1 provides the composition of
the SBF.

Table 1. Composition of the simulated body fluid (SBF) [24].

Component Concentration [g/500 mL]

NaCl 3.998
NaHCO3 0.175

KCl 0.112
K2HPO4·3H2O 0.114
MgCl2·6H2O 0.152

CaCl2 0.139
Na2SO4 0.035

(CH2OH)3CNH2 3.028

2.3.3. Deposition of PLA Nanofibers on AZ31 Alloy

PLA nanofibers were deposited by the electrospinning technique using a solution
obtained from 0.173 g PLA granules dissolved in a mixture of 1.153 mL chloroform (CHCl3)
and 0.77 mL N, N-dimethylformamide (DMF) under magnetic stirring and alternating with
the ultrasonic bath until the complete dissolution of the PLA and obtaining a homogeneous
solution. The PLA solution was transferred to a 1 mL plastic syringe with a needle, which
was then connected to a pump having a flow rate of 0.5 mL/h. The PLA solution was
deposited on the Mg alloy samples using a constant voltage of 20 kV. The deposition time
was 1 h, and the distance between the collector and the needle of the syringe containing the
PLA solution was 15 cm.

2.3.4. Hydrogen Evolution

Hydrogen evolution for uncoated Mg alloy and Mg alloy-PLA samples was evaluated
in SBF of pH 7.4, at different time intervals (1 h, 3 h, 8 h, 24 h, 72 h, 168 h, 240 h, 408 h,
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and 504 h) using the equipment shown in Scheme 1. It consisted of a beaker inside which
a plastic support containing the sample of uncoated Mg alloy or, respectively, Mg alloy-
PLA, was fixed. A graded cylinder containing SBF solution was placed upside down
on the beaker to determine the volume of hydrogen by changing the level of solution
during the experiment, according to ASTM-G31-72 protocol (ratio surface-solution 1 cm2:
30 mL) [25]. The whole setup was covered with parafilm. The volume of hydrogen
released is proportional to the amount of dissolved magnesium alloy. Thus, the volume
of H2 collected is converted into mass loss, 1 mL H2 released corresponds to 0.00108 g of
decomposed Mg alloy. The amount of H2 released is unaffected by the corrosion products
generated on the Mg surface. This experiment is based on reaction (1), according to which
hydrogen is produced during the corrosion process [26].

Mg(s) + 2H2O(aq)→Mg(OH)2(s) + H2(g) (1)
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Scheme 1. Schematic illustration for volume measurement of H2 evolution.

Corrosion rate (CR, mm/year) was calculated based on the evolution of the volume of
H2 released using the following Equation (2) [26]:

CR (mm/year) = k rate of H2 evolution (mL/cm2/day) (2)

where:
k—constant, calculated with: k =

(
365 days
ρ· 1 year ·

1 g
1000 mm ·

1 mm
1 cm

)
. ρ—density, AZ31 = 1.82 g/cm3.

3. Results and Discussion
3.1. Polymer Coating Characterization
3.1.1. FT-IR Analysis of Coating

Following FT-IR analysis, the proof of the deposition of PLA on the Mg alloy is shown
in Figure 1, which presented characteristic IR bands of polylactic acid. The observed bands,
the carbonyl group (C=O) at the wavelength 1752 cm−1, the C-O-C group at 1085 and
1182 cm−1, the C-C group at 866 cm−1, the CH3 group at 1452 cm−1, and the characteristic
bands C-H (CH3) group at 2945–2995 cm−1, indicated that the layer deposited on the
surface of the Mg alloy was composed mainly of PLA [27,28]. The absence of signals in
the 700–830 area indicated that the chloroform (CHCl3) solvent used to dissolve the PLA
granules had been completely removed.
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Using Equation (3), the thickness of the PLA coating was determined by measuring
the weight and surface area of the Mg alloy before and after PLA coating [29]:

Thickness (µm) =
weight gain

density surface area
·104 (3)

The density of the magnesium alloy was 1.82 g/mL (provided by the manufacturer).
The value of the thickness of PLA was 2.8 µm. It is known that a coating which is too thin is
ineffective in reducing water permeation. In contrast, if the coating is too thick it may raise
concerns about the inflammatory reactions associated with polymer degradation products.

3.1.2. Morphology and Elemental Composition

The SEM micrographs of the uncoated Mg alloy (Figure 2a) show a typical morphology
of a polished metal alloy, revealing stripe-like structures along the surface. In the PLA
coated Mg alloy sample (Figure 2b), the nanofibers were clearly visible on the surface
along with formations that appeared to be nodules of nanofibers. The distribution of the
nanofibers was homogenous over the surface of the entire sample.

The energy dispersive X-ray spectroscopy analysis confirmed the presence of PLA
and showed the same uniformity in the distribution of the PLA nanofibers. In the results
obtained (Table 2) on the uncoated Mg alloy we observed that more than 85 wt% of the
sample was composed of Mg (87.83 wt% ± 0.47 wt%), Al (2.62 wt% ± 0.10 wt%), and
Zn (1.02 wt% ± 0.08 wt%). The composition was completed by C and O which are often
contaminants in this situation. In the coated sample, C (58.54 wt% ± 1.82 wt%) and O
(20.74 wt% ± 2.96 wt%) were the main identified elements. This corroborated with the
FT-IR results showing that the sample was coated with PLA nanofibers. Furthermore, the
presence of the Mg alloy as substrate could be seen in the results obtained on the coated
Mg alloy, all three of its components being present (Mg, Al, and Zn). All the EDX results
presented in Table 2 are averages of measurements recorded on four areas of each sample.
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Table 2. Elemental composition in wt% (obtained by EDX) of the uncoated and coated Mg alloy.

Element Uncoated Mg Alloy Mg Alloy-PLA

Wt% Std. Dev. Wt% Std. Dev.

Mg 87.83 0.47 19.81 3.15
Al 2.62 0.1 0.67 0.14
Zn 1.02 0.08 0.16 0.16
C 3.83 0.30 58.54 1.82
O 4.59 0.31 20.74 2.96

3.1.3. Hydrophilicity and Hydrophobicity of Mg Alloy

One of the most frequently applied methods for determining a surface’s wettability is
to measure the contact angle. Distilled water, ethylene glycol, and diiodomethane were
the solvents used. The components of the surface free energy (SFE) properties of these
solvents are given in Table 3 [30]. Contact angle measurement gives indications for surface
wettability and are used for the determination of SFE. The average values of the contact
angles of the coated and uncoated Mg alloys are summarized in Table 4.

Table 3. Surface free energy of the liquids at 20 ◦C [30].

Liquids Surface Energy [mJ/m2]
γs γd

s γ
p
s

Water 72.8 21.8 51
Ethylene glycol 47.7 21.3 26.4
Diiodomethane 50.8 48.5 2.3

The contact angle values for Mg alloy-PLA indicated that the coating resulted in
increased hydrophobicity (>90), which leads to reduced platelet adsorption and subsequent
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thrombogenicity, as previously shown [31]. Research studies show that hydrophobic
surfaces favor the sorption of a wide range of proteins such as albumin, fibronectin, IgG,
etc. However, when fibrinogen is in contact with a hydrophobic substrate, it does not
usually attach and will not trigger the thrombogenic cascade, therefore avoids blood clots
from forming on the implant’s surface. Furthermore, hydrophobic surfaces are preferred
by endothelial cells, giving the implant surfaces improved biocompatibility [32,33].

SFE has been determined as the sum of two independent contributions (Equation (4))
according to the Owen–Wendt method [30].

γs = γd
s + γ

p
s (4)

where γs is the SFE, γd
s is the dispersion component of SFE, and γ

p
s is the polar component

of SFE [30].
Although the calculations of SFE are based on the approximation of perfectly smooth

surfaces that are almost impossible to generate, the determination of the SFE of sam-
ples covered with PLA electrospun nanofibers was calculated using the same method by
others [34].

The SFE of Mg alloy and Mg alloy-PLA in our investigation was 45.01 mJ/m2 and
37.55 mJ/m2, respectively. The surface free energy decreased as a result of the PLA coating,
which can be attributed to the interaction between the polar regions of the polymer and
water. Furthermore, the obtained SFE values indicated that the material could present
biocompatibility since they were in the range of 30–50 mJ/m2, in accordance with the
literature [34].

For Mg alloy and Mg alloy-PLA, the fractional polarity, FP (γp/γp + γd), was 0.52 and
0.04, respectively. It has been shown that an FP of less than 0.3 promotes cellular adhesion
and fibroblast proliferation [35,36].

Table 4. Values of contact angle, and surface free energy.

Uncoated Mg Alloy Mg Alloy-PLA

Water, ◦ 59 ± 0.5 98 ± 0.3
Ethylene glycol, ◦ 44 ± 0.2 72 ± 0.6
Diiodomethane, ◦ 57 ± 0.6 62 ± 0.4
γs (SFE), mJ/m2 45.01 37.55

γ
p
s , mJ/m2 23.74 1.59

γd
s , mJ/m2 21.27 35.96

3.1.4. Hydrogen Release in SBF

The results of measuring the evolution of the H2 volume are shown in Figure 3 and
were achieved by immersing the samples in SBF solution for up to 21 days to monitor the
corrosion rates of the Mg alloy and Mg alloy-PLA nanofiber samples. Due to the negative
electrochemical potential, hydrogen bubbles appeared as soon as the Mg samples were
immersed in the SBF solution. It could be seen that uncoated Mg had a faster corrosion
rate compared to Mg alloy-PLA, which showed no hydrogen release until day 7. In the
first 72 h of immersion, the evolution of H2 was negligible for the coated sample. During
this time, the SBF diffused through the PLA nanofiber coating, starting the corrosion of
the Mg alloy beneath the polymeric coating. The resulting corrosion products remained
between the PLA film and the metallic surface of the sample. After 72 h of immersion
PLA degradation was sufficient to allow the produced H2 to be suddenly released from
the surface of the sample. The evolution of H2 was observed until 240 h immersion time.
During this time, the corrosion products continued to grow and the SBF salts started to
accumulate on the sample surface. After 240 h of immersion, the H2 release slowed down
due to the accumulation of corrosion products and alkalinization of the environment, as
well as the increase of the thickness of the SFB salt deposits.
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Therefore, the uncoated Mg alloy, after 504 h of immersion, had a total volume of H2
released of 21.25 mL/cm2, compared to the Mg alloy-PLA, which had a total volume of
H2 of 3.75 mL/cm2. The H2 release rate was 1.01 mL/cm2/day and 0.18 mL/cm2/day
for Mg-alloy and Mg alloy-PLA, respectively. According to reports, the human body can
sustain a hydrogen adsorption rate of 2.25 mL/cm2/day [37].

The corrosion rate was calculated using Equation (2), from the volume of H2, and
the result on the uncoated Mg alloy was 2.03 mm/year, while on Mg alloy-PLA it was
0.36 mm/year.
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3.1.5. pH Variation

Measuring the pH variation is important in the evaluation of the corrosion process.
At the time of the immersion of the uncoated Mg alloy sample and the Mg alloy-PLA in
SBF, the degradation process of the uncoated sample began immediately, as can be seen in
Figure 4. Calcium phosphates were generated and deposited on the surface of the alloy
over time [38], slowing the rate of corrosion and making the environment around the
implant alkaline [39].
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After 3 h of immersion, the pH of the SBF solution increased. The development of
a protective layer of Mg(OH)2 on the surface of the Mg alloy explains this enhancement.
The pH of the Mg alloy-PLA increased only after 48 h, which was mainly due to the
deterioration of the coating and ion penetration into the Mg substrate.
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3.1.6. Electrochemical Impedance Spectroscopy (EIS) and Potentiodynamic Voltammetry
(Tafel Curves)

Figures 5 and 6 represent the Nyquist, Bode diagrams, and the equivalent circuits of
uncoated Mg alloy and Mg alloy-PLA, at different periods of immersion time in SBF.

The Nyquist plots of the Mg alloy exhibited, during the entire immersion time in
SBF solution, two well-defined loops with different diameters, which indicated the same
corrosion mechanism but different corrosion rates [40]. The Bode phase diagram shows
that the phase angle moved at lower frequencies and increased slightly with the immersion
time. This is a consequence of the accumulation of corrosion products on the alloy surface
which leads to an increased mass or thickness which could provide a certain protective
property [41].

The equivalent circuit and the corresponding electrochemical parameters used to fit
the impedance data are shown in Figure 5c, and Table 5. The elements in the equivalent
circuit were attributed as follows: At 0 h, R1 is the resistance of the electrolyte, the parallel
(R2/CPE1) is the interface between the electrolyte and the initial oxide film, the parallel
(R3/CPE2) is the interface between the initial oxide layer and the metallic substrate. At
24 h, 48 h, and 168 h, R1 remained attributed to the electrolyte resistance, the interfaces
represented as the parallel (R2/CPE1) and (R3/CPE2) now incorporated besides the initial
oxides, the corrosion products and salts resulting from the immersion in SBF. The use
of a constant phase element is considered to be the electrical double layer due to the
inhomogeneous electrode surface.
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alloy, immersed in SBF.

Table 5. Values from equivalent circuit uncoated Mg alloy.

Sample Time
[h]

R1
[kΩ]

R2
[kΩ]

CPE1
R3

[kΩ]

CPE2

YO
[µMho] N1 * YO

[µMho] N2 *

Uncoated
Mg alloy

0 0.117 0.576 5.46 0.881 0.273 874 0.964
24 0.116 0.837 4.02 0.877 0.365 672 0.967
48 0.110 0.881 6.16 0.866 0.563 563 0.908

168 0.115 1.32 7.71 0.855 1.61 531 0.783
* N1, N2 index that represents the deviation from a pure capacitor of CPE.
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From the EIS spectra, we can deduce that at 0 h the Mg alloy was covered with thin
oxides produced naturally in the atmosphere. After immersion in SBF, during the observed
period, a few competing processes occurred on the surfaces of the samples, namely the
oxidation of the alloy, the deposition of salts from the electrolyte, the release of H2, which
partially destroyed the obtained oxide and salt films. The corrosion resistance, in this
case, was given not by the passivating processes but by the lower conductivity of the
salt depositions.

At 0 h, we could see two capacitive loops in the Mg alloy-PLA, as shown in Figure 6a.
A small capacitive loop at a high frequency area could be attributed to the coating, whereas
a large capacitive loop at a medium frequency region may be attributed to electrochemical
processes occurring below the coating [42]. This indicates that in the SBF solution, the Mg
alloy was only partially protected.
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from 24–168 h of Mg alloy-PLA, immersed in SBF, over time.

This phenomenon is due to the PLA network that allows the SBF solution to penetrate.
At 24 and 48 h, the diffusion of SFB was evidenced by the EIS. After 24 h of immersion
the diffusion of SFB was evidenced by the EIS. During the immersion, on the electrode
surface, below the PLA nanofiber layer, corrosion products started to accumulate. During
the corrosion process, the dissolved oxygen as a depolarizing agent needs to go through
the corrosion product layer before reaching the electrode reaction interface. The diffusion
of cathode depolarizing agent through the corrosion product layer is shown as cotangent-
hyperbolic diffusion impedance (O) in the impedance response. In this condition, for Mg
alloy-PLA, two different electrochemical equivalent circuit models are proposed. As a
result, we can see R1 as the solution resistance, parallel R2/CPE1 as the electrolyte-PLA
interface, and parallel linked elements (R3-CPE2) as the electrical charge transfer at the Mg
alloy substrate/PLA coating interface in Figure 6c,d and Table 6. A cotangent-hyperbolic
diffusion impedance (O) was added in series with R3 to improve the fit over 24–168 h. This
cotangent-hyperbolic diffusion impedance (O) is used to model limited length diffusion
and investigate how reactants diffuse through permeable defects [43,44].
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Table 6. Values from equivalents circuits Mg alloy-PLA.

Sample Time
[h]

R1
[kΩ]

R2
[kΩ]

CPE1
R3

[kΩ]

CPE2 O

YO
[µMho] N1 * YO

[µMho] N2 * YO
[µMho] B

Mg alloy-PLA

0 0.115 3390 69.6 × 10−5 0.982 8460 6.46 × 10−3 0.705 - -

24 0.113 46.6 0.659 0.566 101 1.06 × 10−4 0.961 3.23 1.88

48 0.11 2.62 3.23 × 10−3 0.895 14.7 1.43 0.547 12.5 0.407

168 0.119 0.324 1.61 × 10−3 0.9 5.88 9.86 0.633 10.4 0.1

* N1, N2 index that represents the deviation from a pure capacitor of CPE.

According to Figure 7 and Table 7, at 0 h, the corrosion rate (Vcorr) in the case of
Mg-PLA was 0.048 µm/year and, after 24 h, an increase in the corrosion rate was observed,
due to the penetration of ions from the electrolyte to the Mg substrate. Therefore, a shift
of the corrosion potential towards more electropositive values can be observed with the
increase of the immersion time.
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Table 7. Tafel parameters for samples of uncoated Mg alloy, and Mg-PLA alloy.

Sample Time
[h] Ecorr [V] Icorr

[µA]
Vcorr

[µm/Year]
Ba

[V/Decade]
Bc

[V/Decade]

Uncoated
Mg alloy

0 −1.55 26.8 2114 0.19 11.33
24 −1.53 22.3 1756 0.19 0.60
48 −1.50 17.05 1344 0.22 0.37

168 −1.47 2.38 187.58 0.08 0.07

Mg
alloy-PLA

0 −1.52 0.0021 0.048 0.20 0.14
24 −1.31 0.0195 0.45 0.15 0.23
48 −1.35 0.126 2.91 0.25 0.34
168 −1.39 0.382 8.82 0.23 0.25

Furthermore, comparing the corrosion current density (Icorr) we observed much lower
values for Mg alloy coated with PLA nanofibers than uncoated Mg alloy. This indicates
better corrosion resistance by the coated material [45,46].

Since electrochemical stability is a function of hydrogen evolution, pH and surface
energy changes, the interaction of the Mg alloy with the PLA electrospun nanofiber coating
involves the changes of corrosion, wettability, and pH, as were described above. All of
them allowed us to propose an empiric model with three stages.
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The first is hydrogen evolution, the second is Mg hydroxide dissolution and the third
is the increase of hydrophobic character with the decrease of adherence.

The main processes represented in the above model (Scheme 2) for biodegradable Mg
alloy with and without PLA nanofibers are described as follows:

Uncoated sample:

(a) Uncoated sample immersion in SBF: the presence of natural Mg oxides formed in
the atmosphere.

(b) Mg(OH)2 and H2 formation.
(c) H2 destroyed MgO and Mg(OH)2 films; deposit of salts from SBF.
(d) MgO, Mg(OH)2, and salts covered the Mg surface; due to H2 release the film had cracks.

Coated sample:

(a’) Sample coated with PLA nanofibers in SBF: the presence of natural Mg oxides formed
in atmosphere under PLA; SBF diffusion through nanofibers.

(b’) Mg(OH)2 and H2 formation.
(c’) PLA nanofibers degradation; (RCOO)2 Mg formation; H2 broke the polymeric film.
(d’) Deposition of salts from SBF will occupy free spaces without PLA.
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Scheme 2. The empiric model of Mg alloy interaction with PLA nanofibers.

As a result of the interaction with PLA nanofibers, as has been seen from the contact
angle determinations, the coated sample had a hydrophobic character and higher surface
energy than the uncoated one.

4. Conclusions

The paper is a study of the synthesis and characterization of Mg alloy coatings con-
ducted to enhance the potential applications of PLA nanofibers on biodegradable Mg alloy.
The procedure of synthesis was an electrospinning technique, and the deposition was
evidenced using scanning electronic microscopy with EDX for elemental composition and
FT-IR. Both confirmed the successful deposition of the PLA nanofibers on the Mg alloy.
The degradation tests of the coated and uncoated alloys were performed in SBF. Based
on the experimental data, it can be concluded that electrospun PLA nanofibers improve
the surface behavior, having a higher electrochemical stability in SBF, a lower volume of
hydrogen release, and an important increase of the hydrophobicity characteristics.

Taking into account corrosion rate, wettability, and pH changes, an empiric model
of the interaction of an Mg alloy with PLA nanofibers was proposed. The main chemical
reactions which sustain the model define three stages, hydrogen evolution, Mg hydroxide
dissolution, and the increase of hydrophobic character with the decrease of adherence.
Based on such behavior, biodegradable Mg alloys with PLA electrospun nanofibers could
be a good proposal for other biomedical applications, such as platelet adhesion decrease in
thrombosis or behavior in drug release.
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