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Abstract: In this work, CZTS particles with a mixed phase of wurtzite and kesterite were synthesized
by the solvothermal method. The time-dependent XRD patterns, Raman spectra, SEM, and EDS
analysis were employed to study the growth mechanism of CZTS. The results revealed that the
formation of CZTS started from the nucleation of monoclinic Cu7S4 seeds, followed by the successive
incorporation of Zn2+ and Sn4+ ions. Additionally, the diffusion of Zn2+ into Cu7S4 crystal lattice is
much faster than that of Sn4+. With increasing time, CZTS undergoes a phase transformation from
metastable wurtzite to steady kesterite. The morphology of CZTS tends to change from spherical-like
to flower-like architecture. The mixed-phase CZTS with a bandgap of 1.5 eV exhibited strong visible
light absorption, good capability for photoelectric conversion, and suitable band alignment, which
makes it capable to produce H2 production and degrade RhB under simulated solar illumination.

Keywords: CZTS; wurtzite; kesterite; growth mechanism; photocatalytic performance

1. Introduction

Cu2ZnSnS4 (CZTS), a quaternary chalcogenide p-type semiconductor with a direct
bandgap energy of about 1.4~1.6 eV [1], has attracted much attention in the field of solar
cell [2–4], photoelectrocatalytic [5–8] and photocatalytic application [9–11], due to its high
absorption coefficient (>104 cm−1), natural abundance and non-toxicity. CZTS can exist in
three typical crystal structures, known as kesterite, stannite, and wurtzite [12,13]. Kesterite
is the ground state of CZTS, which has a tetragonal supercell derived from cubic zinc-
blende lattice. Stannite differs from kesterite only in the arrangements of Cu and Zn atoms.
Wurtzite is a metastable CZTS, which possesses a hexagonal crystal cell. Various strategies
have been employed to prepare CZTS, including electrodeposition [5,14], sol–gel [15],
chemical bath deposition [16], successive ionic layer absorption and reaction [17], and
solvothermal synthesis [18,19]. The solvothermal method has been widely adopted to
synthesize CZTS particles by the merit of being convenient for manipulation, low-cost, and
more suitable for large-scale production. The crystal structures and morphology can be
readily controlled by adjusting reaction solvent, sulfur source, metallic precursors, reaction
temperature and time, and surfactant concentration [20]. For example, kesterite CZTS
is reported to be obtained by using ethylene glycol (EG) [20] and ethylene alcohol [21]
as solvents, while wurtzite CZTS is often obtained by using oleylamine (OAm) [1,22],
and ethanediamine [23] as solvents. CZTS nanoparticles with kesterite, wurtzite, as well
as a mixed both phase structures were obtained by using sulfur, 1-dodecanethiol, and
thioacetamide as sulfur sources, respectively [24].

However, a big challenge needs to be solved, which is the formation of binary and
ternary sulfides byproducts in the preparation of CZTS. These byproducts are detrimental
to the photoelectrical performance of CZTS, leading to the short circuit of solar cell devices
and the recombination of electron-hole pairs [25]. Therefore, it is significant to understand
the formation pathway of CZTS to achieve a controlled synthetic route for pure-phase CZTS
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nanoparticles. Up until now, the formation mechanism of the CZTS has not been clear due
to the complex and variable reaction conditions. Li et al. considered that the formation of
wurtzite CZTS started with the nucleation of Cu2S followed by the incorporation of Zn2+

and Sn4+ into the Cu2S crystal lattice and replaced parts of Cu + [1]. Regulacio et al. [26]
reported that djurleite Cu1.94S seeds were formed using long-chain alkanethiols organic
surfactant, which result in the formation of wurtzite CZTS, while digenite Cu1.8S seeds were
formed using alkylamines organic surfactant, which lead to the formation of tetragonal
CZTS. Ling et al. reported that the growth of wurtzite CZTS starts from the nucleation of
Cu2-xS nanoparticles, followed by diffusion of Sn4+ and Zn2+ into Cu2-xS nanoparticles
successively [25]. Conversely, Lu et al. [18,19] reported that the ionic radius of Zn2+ (74 pm)
was closer to Cu+ (77 pm) than Sn4+ (69 pm), thus Zn2+ could diffuse into the Cu2S crystal
lattice faster than that of Sn4+.

In this work, the mixed phase of CZTS nanoparticles was prepared by the solvothermal
method using monoethanolamine as solvent. The time-dependent experiment was carried
out to study the growth mechanism. We found that the formation of CZTS started with
the nucleation of Cu7S4, followed by the incorporation of Zn2+ and Sn4+ successively.
The obtained CZTS exhibited the capability to produce hydrogen from water splitting
and degraded RhB under simulated solar illumination due to the excellent visible light
absorption, good capability for photoelectric conversion, and suitable band alignment.

2. Experimental Section
2.1. Chemical and Reagents

All the reagents are analytical grade and used without further purification. Copper (II)
acetate monohydrate (Cu(CH3COO)2·H2O, ≥99.0%), monoethanolamine (OH(CH2)2NH2,
≥99.0%), tin (IV) chloride pentahydrate (SnCl4·5H2O, ≥99.0%) and thiourea (H2NCSNH2,
≥99.0%) were bought from Xilong Scientific Co., Ltd. (Guangdong, China). Zinc (II) acetate
dihydrate (Zn(CH3COO)2·2H2O, ≥99.0%) was supplied by Aladdin Reagent Co., Ltd.
(Shanghai, China). Anhydrous ethanol (C2H5OH) was purchased from Cologne Chemicals
Co. Ltd. (Chengdu, China). Deionized water was produced using a Direct-Q3 water
purification system.

2.2. Synthesis of CZTS

The CZTS was prepared by a simple solvothermal method using monoethanolamine
as solvent [27]. In a typical synthetic process, copper acetate (2 mmol), zinc acetate (1 mmol),
tin chloride (1 mmol), and thiourea (8 mmol) were dissolved sequentially into 64 mL of
monoethanolamine under magnetic stirring at room temperature. Then, the precursor was
transferred into a Teflon-lined autoclave of 80 mL, and placed in the oven (200 ◦C). The
autoclaves were maintained for different times (0.5, 1, 2, 3, 5, 8, 12, and 24 h) to study the
growth mechanism. After the reaction, the black precipitates were washed with deionized
water and ethanol several times. The CZTS samples were obtained after drying at 60 ◦C
for 24 h.

2.3. Characterizations

The composition and crystal structure was analyzed by X-ray diffractometer
(XRD, Mini Flex600, Rigaku, Tokyo, Japan) and Raman spectrum (inVia, Renishaw,
London, England) with a semiconductor laser excitation at 514 nm. Au film on sample
stage was deposited by ion sputtering for SERS measurements. The morphology, elemental
constituent, and mapping were characterized by transmission electron microscopy (TEM,
JEM-2100F, Tokyo, Japan) and scanning transmission electron microscopy (SEM, Zeiss
Sigma 300, Oberkochen, Germany) equipped with EDS. The chemical valence state was
detected by X-ray photoelectron spectroscopy (XPS, K-Alphaþ, Thermo Fisher Scientific,
Waltham, MA, USA). UV-Vis absorption spectrum was recorded by spectrophotometer
(UV-2700, Shimadzu, Shandong, China). Photoelectrochemical measurements were con-
ducted on an electrochemical workstation (CHI 760E) using a three-electrode system. Pt
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sheet and Ag/AgCl electrodes were used as counter electrodes and reference electrodes,
respectively. The photocatalysts were coated on FTO glasses to serve as working electrodes
(1.0 × 1.0 cm2). 0.1 M Na2SO4 solution served as the electrolyte, which bubbled with N2
for 30 min before each test. The transient photocurrent was obtained at 0.2 V bias under
the chopped simulated solar illumination. Electrochemical impedance spectroscopy (EIS)
was conducted at 0.2 V bias in the range of 0.01–106 Hz. The Mott–Schottky measurement
was performed at 1 KHz using 0.5 M Na2SO4 solution as electrolyte.

2.4. Photocatalytic Performance

Photocatalytic hydrogen evolution was tested in a quartz reactor using 300 W Xenon
lamp as light source. 0.01 g of photocatalyst was dispersed into 90 mL solution (containing
0.25 M Na2SO3 and 0.35 M Na2S) by ultrasonic treatment for 15 min. Before simulated
solar irradiation, N2 was bubbled into the suspension for 30 min to completely remove the
dissolved oxygen. The suspension was magnetic stirring during the whole reaction. The
evolved gases were extracted by gas injection needle every 15 min and analyzed by gas
chromatography (Agilent 7890B). The photocatalytic degradation of RhB was conducted
in a customized photoreactor under simulated solar irradiation. 0.05 g of CZTS powder
was dispersed in 50 mL of 10 ppm RhB solution by stirring in the dark to achieve the
adsorption/desorption equilibrium. Then, the solutions were exposed to simulated solar
irradiation under continuous stirring. At given time intervals, 3 mL of RhB solution
was taken out and tested by spectrophotometer after removing CZTS nanocrystals. The
degradation efficiency of RhB was evaluated based on the Formula (1):

η =
C0 − Ct

C0
× 100% (1)

where C0 is the concentration of RhB solution before irradiation, Ct is the concentration of
RhB solution after irradiation for t min.

3. Results and Discussion

The time-dependent XRD patterns and Raman spectra were measured in order to
understand the growth mechanism of CZTS, as shown in Figure 1. The XRD pattern of
CZTS-0.5 h matches well with the monoclinic Cu7S4 (JCPDF: No 23-0958), indicating the
nucleation and growth of CZTS start with Cu7S4, which is in accordance with previous
reports [22]. When the time increased, the diffraction peaks of Cu7S4 decreased and almost
disappeared at the reaction time of 3 h, while the diffraction peaks of the wurtzite CZTS
plane increased with the time from 0.5 to 3 h. For CZTS-3 h, the diffraction peaks can be
indexed to wurtzite CZTS, indicating that the Cu7S4 nucleus completely transformed into
wurtzite CZTS in less than 3 h. It is noticeable that the peaks at 28.5◦, 47.3◦, and 56.2◦

increased after 3 h, which is the characteristic of kesterite CZTS (JCPDF: No 26-0575). The
results indicated that CZTS undergoes a phase transformation from wurtzite to kesterite.
However, the weak diffraction peaks at about 31.3◦ and 46.4◦ are observed even for the
CZTS-24 h sample, which is mainly attributed to Cu2-xS byproducts. The presence of a
small amount of Cu2-xS byproducts is also observed by other groups [28].
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Figure 1. The time-dependent (a) XRD patterns and (b) Raman spectra of CZTS samples, and (c) the
SERS of CZTS-24 h sample (black line: real curve; red line: fitted curve; green, blue and magenta: the
three splitting peaks of fitted curve).

Since the diffraction peaks of ZnS, Cu3SnS4, Cu2SnS3, ZnS, and SnS are overlapping
with that of CZTS, Raman spectra were measured to confirm the phase composition of the
CZTS. The time-dependent Raman spectra displayed a similar evolution tendency with
XRD patterns. As shown in Figure 1b, the peak centered at 468 cm−1 is the characteristic
peak of Cu7S4, and the peak intensity decreased from 0 to 3 h. When the reaction time
exceeds 2 h, the peak at 328 cm−1 starts to appear, which could be attributed to CZTS. With
the reaction time increasing, this peak obviously shifted to 323 cm−1, which is probably as
a result of phase transition from wurtzite to kesterite phase. The surface-enhanced Raman
scattering spectroscopy of the CZTS-24 h sample clearly exhibited three peaks located
at 298.4 cm−1, 332.9 cm−1, and 359.9 cm−1, in good agreement with CZTS (Figure 1c).
Characteristic peaks from the possible impurities, such as SnS (193 and 224 cm−1) [29],
ZnS (351 and 278 cm−1) [24] and Cu2SnS3 (298, 356 cm−1) [25], Cu3SnS4 (318 cm−1) [25]
were not found. The results of the XRD pattern and Raman spectrum revealed that the
CZTS-24 h sample was a mixed phase of wurtzite and kesterite.

The morphology evolution of CZTS with increasing the reaction time is examined by
SEM images. The images of CZTS-0.5 h show that the Cu7S4 nucleus is nanoparticles with
dozens of nanometers in size, which agglomerated into a sphere-like structure (Figure 2a).
For the CZTS-1 h sample, the nanoparticle size was reduced due to the decomposition
of Cu7S4 and the formation of CZTS nanoparticles (Figure 2b). The morphology did not
change too much for CZTS samples with the increase in reaction time from 3 to 12 h,
except that the agglomeration becomes more obvious (Figure 2c–g). The regular nanosheets
were observed from the CZTS-24 sample (Figure 2h), which were cross-connected to form
a flower-like structure. It is reported that high temperature is beneficial to forming the
flower-like structure of CZTS [9].
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TEM and elemental mapping were employed to further examine the morphology and
elemental distribution of the CZTS-24 h sample. Figure 3a shows that the CZTS nanopar-
ticles are in the range of several to tens of nanometers. The HRTEM image (Figure 3b)
displayed two kinds of lattice arrangements, as marked by a rectangular frame. These
regions were amplified to analyze the lattice fringe as shown in Figure 3c,d, respectively.
The quadrangle lattice area shows an interplanar spacing of 0.31 nm, which is ascribed
to the (112) plane of tetragonal kesterite CZTS. The hexagon lattice area shows the lattice
spacing of 0.33 nm, which is corresponding to the (100) plane of hexagonal wurtzite CZTS.
The HRTEM results further confirmed the co-existence of kesterite and wurtzite phases in
CZTS-24 h. The elemental mapping of the area marked in Figure 4a confirmed that Cu,
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Zn, Sn, and S elements are homogenously distributed in the CZTS-24 h sample, as shown
in Figure 4b–e.
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Figure 4. (a) SEM image of CZTS-24 h sample and the corresponding elemental mapping of (b) Cu,
(c) Zn, (d) Sn, and (e) S.

In order to analyze the valence states of Cu, Zn, Sn, and S elements in CZTS-24, XPS
analysis was performed. As shown in Figure 5a, the survey spectrum exhibited the strong
signals of Cu, Zn, Sn, and S elements. In the Cu 2p spectrum (Figure 5b), two peaks
centered at 932.0 and 951.8 eV with a splitting of 19.8 eV is the characteristic of Cu+. For the
Zn 2p spectrum (Figure 5c), the peaks located at 1022.1 and 1045.2 eV with a peak distance
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of 23.1 eV are assigned to 2p3/2 and 2p1/2 of Zn2+, respectively. From the Sn 2p spectrum
(Figure 5d), the peak at 486.7 and 495.2 eV with a spin-orbit splitting of 8.5 eV are observed,
indicating the presence of Sn4+. The S 2p spectrum was fitted with two distinct doublets
with a splitting of 1.2 eV (Figure 5e). The peak at 161.9 and 163.1 eV is corresponding 2p3/2
and 2p1/2 of S2- in CZTS [29]. Whereas the peaks at 162.2 and 163.4 eV can be assigned to
other sulfide species, such as Cu2-xS byproduct as shown in XRD patterns [28]. The XPS
results proved that the valence states of Cu, Zn, Sn, and S elements agree well with CZTS
nanoparticles. The XPS quantitative analysis showed that the atomic percent of Cu: Zn: Sn:
S in the CZTS-24 h sample is about 1.9:1.2:0.9:4.0.
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The element compositions of CZTS nanoparticles synthesized at different reaction
times were obtained from EDS and listed in Table 1. For the CZTS-0.5 h sample, only
Cu and S elements were present with a stoichiometry ratio quite close to Cu7S4. After
24 h, the Cu/(Zn + Sn) ratios reduced from 2.42 to 1.03, and the Zn/Sn ratio reduced from
3.97 to 1.31. Based on the time-dependent crystal phase, morphology and the elemental
composition evolutions, the growth mechanism of CZTS can be described as follows. In
the precursor, thiourea (Tu) not only acts as a sulfur source, but also plays the role of
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complexing agent to complex with metal ions. At the same time, monoethanolamine (EA),
a solvent with one –NH2 group per molecule, can also bind with metal ions to form an
M-EA complex. Since the pH of EA solvent is about 12, thiourea is unstable in an alkaline
environment and ready to decompose into H2S. Due to the presence of H2S, Cu2+ ions
may partly reduce by S2− and give rise to Cu+ ions [30,31]. With the increase in reaction
temperature and pressure, Cu-EA and Cu-Tu complexes were firstly thermally decomposed
into Cu+ and Cu2+ ions, which reacted with S2- to form monoclinic Cu7S4 seeds [32]. In
the following, Zn2+ and Sn4+ ions were successively released from their mental complex
and incorporated into the Cu7S4 crystal lattice to replace part of Cu+ and Cu2+. As shown
in Table 1, the Zn content is much higher than Sn content in the first 1 h, which indicated
that the diffusion of Zn2+ into the Cu7S4 crystal lattice is much faster than that of Sn4+. The
Cu/(Zn + Sn) and Zn/Sn ratio achieve relative stability after 5 h, indicating the formation
of CZTS is almost accomplished. With the time prolonged, the CZTS undergoes a phase
transformation from metastable wurtzite to steady kesterite. Due to the high surface free
energy, the small particles aggregated into spherical-like morphology. After a 24 h reaction,
according to the Ostwald ripening theory, the small nanoparticles gradually coalesced
to form nanoflakes, as a result, the spherical-like morphology changed into flower-like
architecture.

Table 1. Elemental composition of CZTS nanoparticles obtained at different reaction time.

Sample
Composition Ratio

Cu Zn Sn S Cu/(Zn + Sn) Zn/Sn

CZTS-0.5 h 66.33 0 0 33.67 — — — —
CZTS-1 h 40.72 13.44 3.38 42.47 2.42 3.97
CZTS-2 h 42.94 8.04 7.22 41.81 2.81 1.11
CZTS-5 h 36.87 13.61 11.53 37.98 1.46 1.18

CZTS-12 h 31.96 12.24 10.97 44.83 1.37 1.11
CZTS-24 h 26.21 14.47 11.05 48.28 1.03 1.31

The optical absorption of the CZTS-24 h was studied by UV–Vis spectra. Figure 6a
shows that the CZTS-24 h exhibits a broad absorption in the whole visible-light region,
indicating excellent visible light absorption. The bandgap energy (Eg) was determined
by the Tauc plot based on Formula (2) [6]. Where α, hv, and A is absorption coefficient,
incident photon energy, and constant, respectively. Eg can be obtained from the Tauc plot
by extending the tangent segment to the x-axis (inset of Figure 6a), which was determined
to be 1.50 eV. As shown in the transient photocurrent curve (Figure 6b), the CZTS-24 h
exhibited an obvious photocurrent response under simulated solar illumination, indicating
the good capability for photoelectric conversion. Additionally, no obvious decrease in
photocurrent was observed, indicating good photostability of the CZTS-24 sample.

αhv = A
(
hv − Eg

) 1
2 (2)

1
C2 =

−2
eεrε0NA A2

(
E − EFB − kBT

e

)
(3)
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Figure 6. (a) UV-Vis absorption spectrum (the inset is the corresponding Tauc plot), (b) transient
photocurrent curve, (c) Mott–Schottky curve, and (d) band alignment of CZTS-24 h; (e) The course
of H2 evolution and (f) photocatalytic degradation of RhB over CZTS-24 h photocatalyst under
simulated solar irradiation.

The band alignment of CZTS was determined by the Mott–Schottky Equation (3) [33].
As shown in Figure 6c, the M–S plot displays a negative slope, which confirmed that
the CZTS is a p-type semiconductor. The flat band potential (EFB) can be obtained
by extrapolating the linear portion to the x-axis, which was determined to be 0.65 V
(vs. Ag/AgCl). It is generally accepted that the top of the valence band (VB) for a p-type
semiconductor is more positive (0–0.3 eV) than EFB. Here, the difference between VB and
EFB is set to 0.2 V. Based on the EFB and Eg values, the CB and VB energy level of CZTS
is calculated to be 1.05 eV and −0.45 eV (vs. SHE), respectively. As shown in Figure 6d,
the band alignment of CZTS meets the requirements of photocatalytic H2 production from
water splitting with its electrons in CB and the degradation of most of the organic pollutants
using its holes in VB [34]. Figure 6e exhibits the time courses of hydrogen evolution on
CZTS-24 h photocatalyst under simulated solar and room temperature. The hydrogen
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evolution rate is 1042.5 µmol g−1 h−1 with no obvious decline during the 8 h reaction,
indicating good stability for photocatalytic hydrogen production. Figure 6f shows the
degradation curve of RhB over CZTS-24 h photocatalyst under simulated solar. The con-
centration of RhB solution continuously declined during the 220 min irradiation. After
220 min irradiation, the RhB photodegradation efficiency of the CZTS-24 h sample was
calculated to be 43.3%, which is higher than that of the blank control group (35.3%).

4. Conclusions

CZTS particles with a mixed phase of wurtzite and kesterite were obtained by the
solvothermal method using monoethanolamine as solvent. The growth mechanism of
CZTS can be described as follows. Firstly, monoclinic Cu7S4 nuclei were formed in the
first 30 min. The Cu7S4 nucleus is dozens of nanometers in size, which aggregated into
a sphere-like structure. In the following, Zn2+ and Sn4+ ions were incorporated into the
Cu7S4 crystal lattice to form wurtzite CZTS nanoparticles. The diffusion of Zn2+ ions into
the Cu7S4 crystal lattice is much faster than that of Sn4+ ions. Then, with the time prolonged,
the CZTS nanoparticles undergo a phase transformation from wurtzite to kesterite. Some of
the small CZTS nanoparticles coalesced to form nanoflakes, which cross-connected to form
a flower-like structure. The mixed-phase of CZTS exhibits a bandgap of 1.50 eV and broad
optical absorption in the whole visible-light region. The excellent visible light absorption,
good capability for photoelectric conversion, and suitable band alignment make it capable
to produce H2 production and degrade RhB under simulated solar irradiation.
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