Enhanced Optical Response of Zinc-Doped Tin Disulfide Layered Crystals Grown with the Chemical Vapor Transport Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeng, H.; Cui, X. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2629–2642. [Google Scholar] [CrossRef] [PubMed]
- Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702–2712. [Google Scholar] [CrossRef] [PubMed]
- Schwierz, F.; Pezoldt, J.; Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 2015, 7, 8261–8283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Wang, Z.; Wang, Q.; Wang, F.; Yin, L.; Xu, K.; Huang, Y.; He, J. Synthesis, properties and applications of 2D non-graphene materials. Nanotechnology 2015, 26, 292001. [Google Scholar] [CrossRef]
- Kolobov, A.V.; Tominaga, J. Two-Dimensional Transition-Metal Dichalcogenides; Springer: Cham, Switzerland, 2016; pp. 29–77. [Google Scholar]
- Choi, W.; Choudhary, N.; Han, G.H.; Park, J.; Akinwande, D.; Lee, Y.H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130. [Google Scholar] [CrossRef]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Li, H.; Jia, X.; Zhang, Q.; Wang, X. Metallic transition-metal dichalcogenide nanocatalysts for energy conversion. Chem 2018, 4, 1510–1537. [Google Scholar] [CrossRef] [Green Version]
- Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.-J.; Loh, K.P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Wilson, J.A.; Yoffe, A.D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335. [Google Scholar] [CrossRef]
- Friend, R.H.; Yoffe, A.D. Electronic properties of intercalation complexes of the transition metal dichalcogenides. Adv. Phys. 1987, 36, 1–94. [Google Scholar] [CrossRef]
- Frindt, R.F.; Yoffe, A.D. Physical properties of layer structures: Optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc. R. Soc. Lond. A 1963, 273, 69–83. [Google Scholar]
- Frindt, R.F. Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 1966, 37, 1928–1929. [Google Scholar] [CrossRef]
- Joensen, P.; Frindt, R.F.; Morrison, S.R. Single-layer MoS2. Mat. Res. Bull. 1986, 21, 457–461. [Google Scholar] [CrossRef]
- Liu, Q.; Li, X.; He, Q.; Khalil, A.; Liu, D.; Xiang, T.; Wu, X.; Song, L. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: Applications for visible-light-driven photocatalytic hydrogen evolution. Small 2015, 11, 5556–5564. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Gong, C.; Wangyang, P.; Chu, J.; Hu, K.; Li, C.; Wang, X.; Du, X.; Zhai, T.; Li, Y.; et al. 2D group IVB transition metal dichalcogenides. Adv. Funct. Mater. 2018, 28, 1803305. [Google Scholar] [CrossRef]
- Samadi, M.; Sarikhani, N.; Zirak, M.; Zhang, H.; Zhang, H.-L.; Moshfegh, A.Z. Group 6 transition metal dichalcogenide nanomaterials: Synthesis, applications and future perspectives. Nanoscale Horiz. 2018, 3, 90–204. [Google Scholar] [CrossRef]
- Mak, K.F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–2226. [Google Scholar] [CrossRef]
- Guenter, J.R.; Oswald, H.R. Neue polytype form von zinn(IV)-sulfid. Naturwissenschaften 1968, 55, 177. [Google Scholar] [CrossRef]
- Mitchell, R.S.; Fujiki, Y.; Ishizawa, Y. Structural polytypism of SnS2. Nature 1974, 247, 537–538. [Google Scholar] [CrossRef]
- Ramsdell, L.S. Studies on silicon carbide. Am. Mineral. 1947, 32, 64–82. [Google Scholar]
- Mitchell, R.S. Polytypism of cadmium iodide and its relationship to screw dislocations: I. Cadmium iodide polytypes. Z. Für Krist. 1956, 108, 296–315. [Google Scholar] [CrossRef]
- Shibata, T.; Muranushi, Y.; Miura, T.; Kishi, T. Electrical characterization of 2H-SnS2 single crystals synthesized by the low temperature chemical vapor transport method. J. Phys. Chem. Solids 1991, 52, 551–553. [Google Scholar] [CrossRef]
- Yuan, H.T.; Toh, M.; Morimoto, K.; Tan, W.; Wei, F.; Shimotani, H.; Kloc, C.; Iwasa, Y. Liquid-gated electric-double-layer transistor on layered metal dichalcogenide, SnS2. Appl. Phys. Lett. 2011, 98, 012102. [Google Scholar] [CrossRef]
- De, D.; Manongdo, J.; See, S.; Zhang, V.; Guloy, A.; Peng, H. High on/off ratio field effect transistors based on exfoliated crystalline SnS2 nano-membranes. Nanotechnology 2013, 24, 025202. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.-H.; Lee, M.-J.; Heo, H.; Sung, J.H.; Kim, K.; Hwang, H.; Jo, M.-H. Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett. 2015, 15, 3703–3708. [Google Scholar] [CrossRef]
- Camassel, J.; Schlüter, M.; Kohn, S.; Voitchovsky, J.P.; Shen, Y.R.; Cohen, M.L. Wavelength modulation spectra and electronic band structure of SnS2, and SnSe. Phys. Stat. Sol. 1976, 76, 303–314. [Google Scholar] [CrossRef] [Green Version]
- George, J.; Joseph, K.S. Absorption edge measurements in tin disulphide thin films. J. Phys. D Appl. Phys. 1982, 15, 1109–1116. [Google Scholar] [CrossRef]
- Shibata, T.; Kambe, N.; Muranushi, Y.; Miura, T.; Kishi, T. Optical characterisation of single crystal 2H-SnS2 synthesised by the chemical vapour transport method at low temperatures. J. Phys. D Appl. Phys. 1990, 23, 719–723. [Google Scholar] [CrossRef]
- Lokhande, C.D. A chemical method for tin disulfide thin film deposition. J. Phys. D Appl. Phys. 1990, 23, 1703–1705. [Google Scholar] [CrossRef]
- Huang, Y.; Sutter, E.; Sadowski, J.T.; Cotlet, M.; Monti, O.L.A.; Racke, D.A.; Neupane, M.R.; Wickramaratne, D.; Lake, R.K.; Parkinson, B.A.; et al. Tin disulfide–an emerging layered metal dichalcogenide semiconductor: Materials properties and device characteristics. ACS Nano 2014, 8, 10743–10755. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, Q.; Gan, L.; Li, H.; Zhai, T. Large-size growth of ultrathin SnS2 nanosheets and high performance for phototransistors. Adv. Funct. Mater. 2016, 26, 4405–4413. [Google Scholar] [CrossRef]
- Burton, L.A.; Whittles, T.J.; Hesp, D.; Linhart, W.M.; Skelton, J.M.; Hou, B.; Webster, R.F.; O’Dowd, G.; Reece, C.; Cherns, D.; et al. Electronic and optical properties of single crystal SnS2: An earth-abundant disulfide photocatalyst. J. Mater. Chem. A 2016, 4, 1312–1318. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.-Y.; Hsu, H.-P.; Tsai, C.-F.; Wang, C.-W.; Shih, Y.-T. Temperature dependent excitonic transition energy and enhanced electron-phonon coupling in layered ternary SnS2−xSex Semiconductors with fully tunable stoichiometry. Molecules 2021, 26, 2184. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.R.; Liu, X.M. Nonlinear optical response and applications of tin disulfide in the near- and mid-infrared. Appl. Phys. Lett. 2017, 110, 171106. [Google Scholar] [CrossRef]
- Wang, H.; Yu, L.; Lee, Y.H.; Shi, Y.; Hsu, A.; Chin, M.L.; Li, L.J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680. [Google Scholar] [CrossRef] [Green Version]
- Song, H.S.; Li, S.L.; Gao, L.; Xu, Y.; Ueno, K.; Tang, J.; Cheng, Y.B.; Tsukagoshi, K. High-performance top-gated monolayer SnS2 field effect transistors and their integrated logic circuits. Nanoscale 2013, 5, 9666–9670. [Google Scholar] [CrossRef]
- Domingo, G.; Itoga, R.S.; Kannewurf, C.R. Fundamental optical absorption in SnS2 and SnSe2. Phys. Rev. 1966, 143, 536–542. [Google Scholar] [CrossRef]
- Fong, C.Y.; Cohen, M.L. Electronic energy-band structure of SnS2 and SnSe2. Phys. Rev. B 1972, 5, 3095–3101. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.H.; Murray, R.B.; Govan, D.W.; Thomast, J.M.; Evans, E.L. Band structure and photoemission studies of SnS2 and SnSe2: I. Experimental. J. Phys. C Solid States Phys. 1973, 6, 3631–3642. [Google Scholar] [CrossRef]
- Fong, C.Y.; Cohen, M.L. Electronic charge densities for two layer semiconductors-SnS2 and SnSe2. J. Phys. C Solid State Phys. 1974, 7, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.J.; Meek, P.E.; Liang, W.Y. Raman scattering studies of SnS2 and SnSe2. J. Phys. C Solid State Phys. 1977, 10, 1321–1333. [Google Scholar] [CrossRef]
- Parkinson, B.A. Dye sensitization of van der Waals surfaces of tin disulfide photoanodes. Langmuir 1988, 4, 967–976. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, H.; Gao, S.; Sun, Z.; Liu, Q.; Liu, Q.; Lei, F.; Yao, T.; He, J.; Wei, S.; et al. Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew. Chem. 2012, 51, 8727–8731. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, J.M.; Oleynik, I.I. Layer-dependent properties of SnS2 and SnSe2 novel two-dimensional materials. Phys. Rev. B 2016, 94, 125443. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Xue, K.; Liu, Y.; Liang, T.; Zhang, P.; Zhang, X.; Zhang, W.; Dai, Z. Highly sensitive NO2 response and abnormal P-N sensing transition with ultrathin Mo-doped SnS2 nanosheets. Chem. Eng. J. 2021, 420, 127572. [Google Scholar] [CrossRef]
- Bouzid, H.; Rodan, S.; Singh, K.; Jin, Y.; Jiang, J.; Yoon, D.; Song, H.Y.; Lee, Y.H. Enhanced magnetic moment with cobalt dopant in SnS2 semiconductor. APL Mater. 2021, 9, 051106. [Google Scholar] [CrossRef]
- Bouzid, H.; Sahoo, R.; Yun, S.J.; Singh, K.; Jin, Y.; Jiang, J.; Yoon, D.; Song, H.Y.; Kim, G.; Choi, W.; et al. Multiple magnetic phases in van der Waals Mn-doped SnS2 semiconductor. Adv. Funct. Mater. 2021, 31, 2102560. [Google Scholar] [CrossRef]
- Ali, A.; Zhang, J.-M.; Muhammad, I.; Shahid, I.; Ahmad, I.; Rehman, M.U.; Ahmad, I.; Kabir, F. First-principles investigation on electronic structure, magnetic states and optical properties of Mn-doped SnS2 monolayer via strain engineering. Physica E 2021, 134, 114842. [Google Scholar] [CrossRef]
- Fan, C.; Liu, Z.; Yuan, S.; Meng, X.; An, X.; Jing, Y.; Sun, C.; Zhang, Y. Enhanced photodetection performance of photodetectors based on indium-doped tin disulfide few layers. ACS Appl. Mater. Interfaces 2021, 13, 35889–35896. [Google Scholar] [CrossRef]
- Meng, X.; Fan, C.; An, X.; Yuan, S.; Jing, Y.; Liu, Z.; Sun, C.; Zhang, Y.; Zhang, Z.; Wang, M.; et al. Aluminum doping effects on photoresponse characteristics of hydrothermal tin disulfide nanosheets. Cryst. Eng. Comm. 2021, 23, 4694–4699. [Google Scholar] [CrossRef]
- Lin, L.; Chen, Y.; Tao, H.; Yao, L.; Huang, J.; Zhu, L.; Lou, M.; Chen, R.; Yan, L.; Zhang, Z. Ferromagnetism and optical properties of SnS2 doped with two impurities: First-principles calculations. Phys. Chem. Chem. Phys. 2021, 23, 6574–6582. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, Y.; Zhou, X.; Jin, X.; Li, B.; Liu, J.; Chen, G. Cu doped SnS2 nanostructure induced sulfur vacancy towards boosted photocatalytic hydrogen evolution. Chem. Eng. J. 2021, 407, 127180. [Google Scholar] [CrossRef]
- Setayeshmehr, M.; Haghighi, M.; Mirabbaszadeh, K. Binder-free 3D flower-like alkali doped- SnS2 electrodes for high-performance supercapacitors. Electrochim. Acta 2021, 376, 137987. [Google Scholar] [CrossRef]
- Kumar, G.M.; Ilanchezhiyan, P.; Cho, H.D.; Yuldashev, S.; Jeon, H.C.; Kim, D.Y.; Kang, T.W. Effective modulation of optical and photoelectrical properties of SnS2 hexagonal nanoflakes via Zn incorporation. Nanomaterials 2019, 9, 924. [Google Scholar] [CrossRef] [Green Version]
- Cullity, B.D. Elements of X-ray Diffraction; Addison-Wesley: Reading, MA, USA, 1956; p. 459. [Google Scholar]
- Palosz, B.; Salje, E. Lattice parameters and spontaneous strain in AX2 polytypes: Cdl2, Pbl2, SnS2 and SnSe2. J. Appl. Cryst. 1989, 22, 622–623. [Google Scholar] [CrossRef]
- Palosz, B.; Steurer, W.; Schulz, H. Refinement of SnS2 polytypes 2H, 4H and 18R. Acta Cryst. 1990, B46, 449–455. [Google Scholar] [CrossRef]
- Bhattacharya, P. Semiconductor Optoelectronic Devices, 2nd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1997; p. 127. [Google Scholar]
- Peyghambarian, N.; Koch, S.W.; Mysyrowicz, A. Introduction to Semiconductor Optics; Prentice-Hall: Englewood Cliffs, NJ, USA, 1993; p. 132. [Google Scholar]
- Fox, M. Optical Properties of Solids; Oxford University Press: New York, NY, USA, 2001; p. 64. [Google Scholar]
- Tauc, J.; Grigorvici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Ryvkin, S.M. Photoelectric Effects in Semiconductors; Consultants Bureau: New York, NY, USA, 1964; p. 38. [Google Scholar]
Specimen | d100 (Å) | a (Å) | c (Å) | References |
---|---|---|---|---|
2H SnS2 | 3.6470 | 5.8990 | [58,59] | |
4H SnS2 | 3.6470 | 11.811 | [58,59] | |
Pristine SnS2 | 3.1880 | 3.6812 | 11.812 | This work |
Zn-doped SnS2 | 3.1658 | 3.6556 | 11.812 | This work |
Specimen | c1 | τ1 (ms) | c2 | τ2 (ms) |
---|---|---|---|---|
Pristine SnS2 | 0.70 | 4.96 | 0.30 | 0.119 |
Zn-doped SnS2 | 0.55 | 1.40 | 0.45 | 0.023 |
Frequency (Hz) | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 100 | 500 | 1000 | |||||
Specimen | trise (ms) | tfall (ms) | trise (ms) | tfall (ms) | trise (ms) | tfall (ms) | trise (ms) | tfall (ms) |
Pristine SnS2 | 0.96 | 2.03 | 0.88 | 1.12 | 0.83 | 0.98 | 0.81 | 0.94 |
Zn-doped SnS2 | 0.31 | 0.25 | 0.45 | 0.23 | 0.22 | 0.21 | 0.21 | 0.19 |
Frequency (Hz) | ||||
---|---|---|---|---|
1 | 100 | 500 | 1000 | |
Specimen | Current Amplitude (μA) | |||
Pristine SnS2 | 0.030 | 0.028 | 0.025 | 0.023 |
Zn-doped SnS2 | 0.110 | 0.100 | 0.090 | 0.080 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shih, Y.-T.; Lin, D.-Y.; Li, Y.-C.; Tseng, B.-C.; Hwang, S.-B. Enhanced Optical Response of Zinc-Doped Tin Disulfide Layered Crystals Grown with the Chemical Vapor Transport Method. Nanomaterials 2022, 12, 1442. https://doi.org/10.3390/nano12091442
Shih Y-T, Lin D-Y, Li Y-C, Tseng B-C, Hwang S-B. Enhanced Optical Response of Zinc-Doped Tin Disulfide Layered Crystals Grown with the Chemical Vapor Transport Method. Nanomaterials. 2022; 12(9):1442. https://doi.org/10.3390/nano12091442
Chicago/Turabian StyleShih, Yu-Tai, Der-Yuh Lin, Yu-Cheng Li, Bo-Chang Tseng, and Sheng-Beng Hwang. 2022. "Enhanced Optical Response of Zinc-Doped Tin Disulfide Layered Crystals Grown with the Chemical Vapor Transport Method" Nanomaterials 12, no. 9: 1442. https://doi.org/10.3390/nano12091442
APA StyleShih, Y. -T., Lin, D. -Y., Li, Y. -C., Tseng, B. -C., & Hwang, S. -B. (2022). Enhanced Optical Response of Zinc-Doped Tin Disulfide Layered Crystals Grown with the Chemical Vapor Transport Method. Nanomaterials, 12(9), 1442. https://doi.org/10.3390/nano12091442