Efficient Selective Removal of Radionuclides by Sorption and Catalytic Reduction Using Nanomaterials
Abstract
:1. Introduction
2. Synthesis of Materials
2.1. Bottom-Up Technique
2.2. Blending Method
2.3. Post-Surface Modification Method
3. Efficient Elimination of U(VI)
4. Efficient Elimination of 99TcO4-
5. Efficient Elimination of Other Radionuclides
6. Conclusions and Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Da, H.; Yang, C.; Yan, X. Cationic covalent organic nanosheets for rapid and selective capture of perrhenate: An analogue of radioactive pertechnetate from aqueous solution. Environ. Sci. Technol. 2019, 53, 5212–5220. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Liu, L.; Ling, Q.; Cai, Y.; Yu, S.; Wang, S.; Fu, D.; Hu, B.; Wang, X. Biochar for the removal of contaminants from soil and water: A review. Biochar 2022, 4, 19. [Google Scholar] [CrossRef]
- Yu, S.; Pang, H.; Huang, S.; Tang, H.; Wang, S.; Qiu, M.; Chen, Z.; Yang, H.; Song, G.; Fu, D.; et al. Recent advances in metal-organic frameworks membranes for water treatment: A review. Sci. Total Environ. 2021, 800, 149662. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, L.; Zhang, K.; Lu, Y.; Chen, J.; Wang, S.; Hu, B.; Wang, X. Application of carbon dots and their composite materials for the detection and removal of radioactive ions: A review. Chemosphere 2022, 287, 132313. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; He, X.; Li, Q.; Yang, H.; Liu, Y.; Wu, L.; Liu, Z.; Hu, B.; Wang, X. Low-temperature plasma induced phosphate groups onto coffee residue-derived porous carbon for efficient U(VI) extraction. J. Environ. Sci. 2022, 122, 1–13. [Google Scholar] [CrossRef]
- Wang, S.; Shi, L.; Yu, S.; Pang, H.; Qiu, M.; Song, G.; Fu, D.; Hu, B.; Wang, X. Effect of shewanella oneidensis MR-1 on U(VI) sequestration by montmorillonite. J. Environ. Radioact. 2022, 242, 106798. [Google Scholar] [CrossRef]
- Zhong, X.; Lu, Z.P.; Liang, W.; Guo, X.J.; Hu, B.W. The fabrication of 3D hierarchical flower-like delta-MnO2@COF nanocomposites for the efficient and ultra-fast removal of UO22+ ions from aqueous solution. Environ. Sci Nano. 2020, 7, 3303–3317. [Google Scholar] [CrossRef]
- Manos, M.J.; Kanatzidis, M.G. Metal sulfide ion exchangers: Superior sorbents for the capture of toxic and nuclear waste-released metal ions. Chem. Sci. 2016, 7, 4808–4824. [Google Scholar] [CrossRef] [Green Version]
- Lamichhane, S.; Krishna, K.C.B.; Sarukkalige, R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review. Chemosphere 2016, 148, 336–353. [Google Scholar] [CrossRef]
- Liu, F.; Hua, S.; Wang, C.; Hu, B. Insight into the performance and mechanism of persimmon tannin functionalized waste paper for U(VI) and Cr(VI) removal. Chemosphere 2022, 287, 132199. [Google Scholar]
- Liu, T.; Zhang, R.; Chen, M.; Liu, Y.; Xie, Z.; Tang, S.; Yuan, Y.; Wang, N. Vertically aligned polyamidoxime/graphene oxide hybrid sheets’ membrane for ultrafast and selective extraction of uranium from seawater. Adv. Funct. Mater. 2022, 2111049. [Google Scholar] [CrossRef]
- Shen, N.; Yang, Z.; Liu, S.; Dai, X.; Xiao, C.; Taylor-Pakshow, K.; Li, D.; Yang, C.; Li, J.; Zhang, Y.; et al. 99TcO4-removal from legacy defense nuclear waste by an alkaline-stable 2D cationic metal organic framework. Nature Comm. 2020, 11, 5571. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhuang, S. Covalent organic frameworks (COFs) for environmental applications. Coord. Chem. Rev. 2019, 400, 213046. [Google Scholar] [CrossRef]
- Stegbauer, L.; Schwinghammer, K.; Lotsch, B.V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem. Sci. 2014, 5, 2789–2793. [Google Scholar] [CrossRef] [Green Version]
- El-Kaderi, H.M.; Hunt, J.R.; Mendoza-Cortes, J.L.; Cote, A.P.; Taylor, R.E.; O’Keeffe, M.; Yaghi, O.M. Designed synthesis of 3D covalent organic frameworks. Science 2007, 316, 268–272. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, S.; Chen, Y.; Zhang, Z.; Ma, S. Covalent organic frameworks for separation applications. Chem. Soc. Rev. 2019, 49, 708–735. [Google Scholar] [CrossRef]
- Feng, X.; Ding, X.; Jiang, D. Covalent organic frameworks. Chem. Soc. Rev. 2012, 41, 6010–6022. [Google Scholar] [CrossRef]
- Ding, S.Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568. [Google Scholar] [CrossRef]
- Guan, X.; Chen, F.; Fang, Q.; Qiu, S. Design and application of three dimensional covalent organic frameworks. Chem. Soc. Rev. 2020, 49, 1357–1384. [Google Scholar] [CrossRef]
- Wang, H.; Zeng, Z.; Xu, P.; Li, L.; Zeng, J.; Xiao, R.; Tang, Z.; Huang, D.; Tang, L.; Lai, C.; et al. Recent progress in covalent organic framework thin films: Fabrications, applications and perspectives. Chem. Soc. Rev. 2019, 48, 488–516. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.X.; Zhao, G.X.; Chen, C.L.; Chai, Z.F.; Alsaedi, A.; Hayat, T.; Wang, X.K. Metal-organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 2018, 47, 2322–2356. [Google Scholar] [CrossRef] [PubMed]
- Waller, P.J.; Gandara, F.; Yaghi, O.M. Chemistry of covalent organic frameworks. Account Chem. Res. 2015, 48, 3053–3063. [Google Scholar] [CrossRef] [PubMed]
- Lenocini, A.; Huskens, J.; Verboom, W. Ligands for f-element extraction used in the nuclear fuel cycle. Chem. Soc. Rev. 2017, 46, 7229–7273. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Pang, H.; Liu, X.; Li, Q.; Zhang, N.; Mao, L.; Qiu, M.; Hu, B.; Yang, H.; Wang, X. Orderly porous covalent organic frameworks-based materials: Superior adsorbents for pollutants removal from aqueous solutions. Innovation 2021, 2, 100076. [Google Scholar] [CrossRef] [PubMed]
- Supply of Uranium, W.N.A. World Nuclear Association. 2020. Available online: www.world-nuclear.org (accessed on 22 March 2022).
- Feng, Y.; Jiang, H.; Li, S.; Wang, J.; Jing, X.; Wang, Y.; Chen, M. Metal–organic frameworks HKUST-1 for liquid-phase adsorption of uranium. Colloid. Surf. A Physicochem. Eng. Aspects 2013, 431, 87–92. [Google Scholar] [CrossRef]
- Carboni, M.; Abney, C.W.; Liu, S.; Lin, W. Highly porous and stable metal–organic frameworks for uranium extraction. Chem. Sci. 2013, 4, 2396–2402. [Google Scholar] [CrossRef]
- Yang, W.; Pan, Q.; Song, S.; Zhang, H. Metal–organic framework-based materials for the recovery of uranium from aqueous solutions. Inorg. Chem. Front. 2019, 6, 1924–1937. [Google Scholar] [CrossRef]
- Wang, L.L.; Luo, F.; Dang, L.L.; Li, J.Q.; Wu, X.L.; Liu, S.J.; Luo, M.B. Ultrafast high-performance extraction of uranium from seawater without pretreatment using an acylamide- and carboxyl-functionalized metal–organic framework. J. Mater. Chem. A 2015, 3, 13724–13730. [Google Scholar] [CrossRef]
- Chen, L.; Bai, Z.; Zhu, L.; Zhang, L.; Cai, Y.; Li, Y.; Liu, W.; Wang, Y.; Chen, L.; Diwu, J.; et al. Ultrafast and efficient extraction of uranium from seawater using an amidoxime appended metal-organic framework. ACS Appl. Mater. Interf. 2017, 9, 32446–32451. [Google Scholar] [CrossRef]
- Wang, X.F.; Chen, Y.; Song, L.P.; Fang, Z.; Zhang, J.; Shi, F.; Lin, Y.W.; Sun, Y.; Zhang, Y.B.; Rocha, J. Cooperative capture of uranyl ions by a carbonyl-bearing hierarchical-porous cu–organic framework. Angew. Chem. Int. Ed. 2019, 58, 18808–18812. [Google Scholar] [CrossRef]
- Yuan, Y.; Feng, S.; Feng, L.; Yu, Q.; Liu, T.; Wang, N. Spatial structure bio-inspired nano-pocket for targeting uranyl capture. Angew. Chem. Int. Ed. 2020, 59, 4262–4268. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Zhang, A.; Zhao, Z.; Chai, Z.; Hu, B.; Han, B.; Ai, Y.; Wang, X. Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Sci. Bull. 2021, 66, 1996–2001. [Google Scholar] [CrossRef]
- Astheimer, L.; Schenk, H.J.; Witte, E.G.; Schwochar, K. Development of sorbers for the recovery of uranium from seawater. Part 2. The accumulation of uranium from seawater by resins containing amidoxime and imidoxime functional groups. Sep. Sci. Technol. 1983, 18, 307–339. [Google Scholar] [CrossRef]
- Feng, L.; Yuan, Y.; Yan, B.; Feng, T.; Jian, Y.; Zhang, J.; Sun, W.; Lin, K.; Luo, G.; Wang, N. Halogen hydrogen-bonded organic framework (XHOF) constructed by singlet open-shell diradical for efficient photoreduction of U(VI). Nat. Commun. 2022, 13, 1389. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, T.; Xiao, J.; Yu, Q.; Feng, L.; Niu, B.; Feng, S.; Zhang, J.; Wang, N. DNA Nano-pocket for ultra-selective uranyl extraction from seawater. Nat. Commun. 2020, 11, 5708. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Yu, Q.; Cao, M.; Feng, L.; Feng, S.; Liu, T.; Feng, T.; Yan, B.; Guo, Z.; Wang, N. Selective recovery of uranium from natural seawater with biofouling resistant polymeric peptide. Nat. Sustain. 2021, 4, 708. [Google Scholar] [CrossRef]
- Yan, B.; Ma, C.; Gao, J.; Yuan, Y.; Wang, N. An ion-crosslinked supramolecular hydrogel for ultrahigh and fast uranium recovery from seawater. Adv. Mater. 2020, 32, 1906615. [Google Scholar] [CrossRef]
- Zhao, S.; Yuan, Y.; Yu, Q.; Niu, B.; Liao, J.; Guo, Z.; Wang, N. A dual-surface amidoximated halloysite nanotube for high-efficiency economical uranium extraction from seawater. Angew. Chem. Int. Ed. 2019, 58, 14979. [Google Scholar] [CrossRef]
- Qiu, M.; Hu, B.; Chen, Z.; Yang, H.; Wang, X. Challenges of organic pollutant photocatalysis by biochar-based catalysts. Biochar 2021, 3, 117–123. [Google Scholar] [CrossRef]
- Qiu, M.; Liu, Z.; Wang, S.; Hu, B. The photocatalytic reduction of U(VI) into U(IV) by ZIF-8/g-C3N4 composites at visible light. Environ. Res. 2021, 196, 110349. [Google Scholar] [CrossRef]
- Liu, R.R.; Wang, H.; Han, L.; Hu, B.; Qiu, M. Reductive and adsorptive elimination of U(VI) ions in aqueous solution by SFeS@Biochar composites. Environ. Sci. Poll. Res. 2021, 28, 55176–55185. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.H.; Guo, H.; Zhang, N.; Chen, Z.; Hu, B.; Wang, X. Enhanced photoreduction of U(VI) on C3N4 by Cr(VI) and bisphenol A: ESR, XPS and EXAFS investigation. Environ. Sci. Technol. 2019, 53, 6454–6461. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Tan, X.; Liu, Z.; Hu, B.; Wang, X. Recent progress on metal-enhanced photocatalysis: A review on the mechanism. Research 2021, 9794329. [Google Scholar] [CrossRef] [PubMed]
- Hao, M.J.; Liu, X.L.; Liu, X.H.; Zhang, J.Z.; Yang, H.; Waterhouse, G.I.N.; Wang, X.K.; Ma, S. Converging cooperative functions into the nanospace of covalent organic frameworks for efficient uranium extraction from seawater. CCS Chem. 2022. [Google Scholar] [CrossRef]
- Yang, H.; Liu, X.; Hao, M.; Xie, Y.; Wang, X.; Tian, H.; Waterhouse, G.I.N.; Kruge, P.E.; Telfer, S.G.; Ma, S. Functionalized Iron−nitrogen−carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Adv. Mater. 2021, 33, 2106621. [Google Scholar] [CrossRef]
- Tavengwa, N.T.; Cukrowska, E.; Chimuka, L. Sequestration of U(VI) from aqueous solutions using precipitate ion imprinted polymers endowed with oleic acid functionalized magnetite. J. Radioanal. Nucl. Chem. 2015, 304, 933–943. [Google Scholar] [CrossRef]
- Yuan, K.; Ilton, E.S.; Antonio, M.R.; Li, Z.; Cook, P.J.; Becker, U. Electrochemical and spectroscopic evidence on the one-electron reduction of U(VI) to U(V) on magnetite. Environ. Sci. Technol. 2015, 49, 6206–6213. [Google Scholar] [CrossRef]
- Herasymenko, P. Electroreduction of uranyl salts by means of the mercury dropping cathode. Trans. Faraday Soc. 1928, 24, 272. [Google Scholar] [CrossRef]
- Wester, D.W.; Sullivan, J.C. Electrochemical and spectroscopic studies of uranium(IV), -(V), and -(VI) in carbonate-bicarbonate buffers. Inorg. Chem. 1980, 19, 2838. [Google Scholar] [CrossRef]
- Li, H.; Zhai, F.; Gui, D.; Wang, X.; Wu, C.; Zhang, D.; Dai, X.; Deng, H.; Su, X.; Diwu, J.; et al. Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by postsynthetically modified photoactive metal-organic frameworks. Appl. Catal. B: Environ. 2019, 254, 47–54. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, M.; Zhang, S.; Cai, Y.; Lv, Z.; Fang, M.; Tan, X.; Wang, X. Highly efficient removal of U(VI) by the photoreduction of SnO2/CdCO3/CdS nanocomposite under visible light irradiation. Appl. Catal. B: Environ. 2020, 279, 119390. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, Y.; Lv, Z.; Zhang, S.; Gao, F.; Fang, M.; Kong, M.; Liu, P.; Tan, X.; Hu, B.; et al. Highly efficient uranium extraction by a piezo catalytic reduction-oxidation process. Appl. Catal. B Environ. 2022, 310, 121343. [Google Scholar] [CrossRef]
- Li, S.; Hu, Y.; Shen, Z.; Cai, Y.; Ji, Z.; Tan, X.; Liu, Z.; Zhao, G.; Hu, S.; Wang, X. Rapid and selective uranium extraction from aqueous solution under visible light in the absence of solid photocatalyst. Sci. China Chem. 2021, 64, 1323–1331. [Google Scholar] [CrossRef]
- Kannan, S.; Vaughn, A.E.; Weis, E.M.; Barnes, C.L.; Duval, P.B. Anhydrous photochemical uranyl(VI) reduction: Unprecedented retention of equatorial coordination accompanying reversible axial oxo/alkoxide exchange. J. Am. Chem. Soc. 2006, 128, 14024–14025. [Google Scholar] [CrossRef]
- He, L.; Liu, S.; Chen, L.; Dai, X.; Li, J.; Zhang, M.; Ma, F.; Zhang, C.; Yang, Z.; Zhou, R.; et al. Mechanism unravelling for ultrafast and selective 99TcO4- uptake by a radiation-resistant cationic covalent organic framework: A combined radiological experiment and molecular dynamics simulation study. Chem. Sci. 2019, 10, 4293–4305. [Google Scholar] [CrossRef] [Green Version]
- Hao, M.J.; Chen, Z.; Yang, H.; Waterhouse, G.I.N.; Ma, S.; Wang, X. Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous 99TcO4−. Sci. Bull. 2022, 67, 924–932. [Google Scholar] [CrossRef]
- Drout, R.J.; Otake, K.; Howarth, A.J.; Islamoglu, T.; Zhu, L.; Xiao, C.L.; Wang, S.A.; Farha, O.K. Efficient capture of perrhenate and pertechnetate by a mesoporous Zr metal-organic framework and examination of anion binding motifs. Chem. Mater. 2018, 30, 1277–1284. [Google Scholar] [CrossRef]
- Mei, L.; Li, F.Z.; Lan, J.H.; Wang, C.Z.; Xu, C.; Deng, H.; Wu, Q.Y.; Hu, K.Q.; Wang, L.; Chai, Z.F.; et al. Anion adaptive crystalline cationic material for 99TcO4− trapping. Nat. Comm. 2019, 10, 1532. [Google Scholar] [CrossRef] [Green Version]
- Sheng, D.; Zhu, L.; Xu, C.; Xiao, C.; Wang, Y.; Wang, Y.; Chen, L.; Diwu, J.; Chen, J.; Chai, Z.; et al. Efficient and selective uptake of TcO4− by a cationic metal-organic framework material with open Ag+ sites. Environ. Sci. Technol. 2017, 51, 3471–3479. [Google Scholar] [CrossRef]
- Zhu, L.; Sheng, D.; Xu, C.; Dai, X.; Silver, M.A.; Li, J.; Li, P.; Wang, Y.; Wang, Y.; Chen, L.; et al. Identifying the recognition site for selective trapping of 99TcO4− in a hydrolytically stable and radiation resistant cationic metal-organic framework. J. Am. Chem. Soc. 2017, 139, 14873–14876. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Pall, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, L.; Dai, X.; Zhu, L.; Xiao, C.; Xu, L.; Zhang, Z.; Alekseev, E.V.; Wang, Y.; Zhang, C.; et al. Distinctive two-step intercalation of Sr2+ into a coordination polymer with record High 90Sr uptake capabilities. Chem 2019, 5, 977–994. [Google Scholar] [CrossRef]
- Zhang, N.; Yuan, L.Y.; Guo, W.L.; Luo, S.Z.; Chai, Z.F.; Shi, W.Q. Extending the use of highly porous and functionalized MOFs to Th(IV) capture. ACS Appl. Mater. Interf. 2017, 9, 25216–25224. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Ma, Y.; Li, H. Postsynthetic functionalization of three-dimensional covalent organic frameworks for selective extraction of lanthanide ions. Angew. Chem. Int. Ed. 2018, 130, 6150–6156. [Google Scholar] [CrossRef]
- Zhong, X.; Liang, W.; Lu, Z. Highly efficient enrichment mechanism of U (VI) and Eu (III) by covalent organic frameworks with intramolecular hydrogen-bonding from solutions. Appl. Surf. Sci. 2020, 504, 144403. [Google Scholar] [CrossRef]
- Xiong, X.H.; Tao, Y.; Yu, Z.W.; Luo, F. Selective extraction of thorium from uranium and rare earth elements using sulfonated covalent organic framework and its membrane derivate. Chem. Eng. J. 2020, 384, 123240. [Google Scholar] [CrossRef]
- Gao, Y.J.; Feng, M.L.; Zhang, B.; Wu, Z.F.; Song, Y.; Huang, X.Y. An easily synthesized microporous framework material for the selective capture of radioactive Cs+ and Sr2+ ions. J. Mater. Chem. A 2018, 6, 3967–3976. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, A.; Ma, R.; Wu, B.; Wen, T.; Ai, Y.; Sun, M.; Jin, J.; Wang, S.; Wang, X. Experimental and theoretical insights into copper phthalocyanine-based covalent organic frameworks for highly efficient radioactive iodine capture. Chin. Chem. Lett. 2022. [Google Scholar] [CrossRef]
- Yu, S.; Tang, H.; Zhang, D.; Wang, S.; Qiu, M.; Song, G.; Fu, D.; Hu, B.; Wang, X. MXenes as emerging nanomaterials in water purification and environmental remediation. Sci. Total Environ. 2022, 811, 152280. [Google Scholar] [CrossRef]
- Cheng, J.Y.; Liang, J.; Dong, L.B.; Chai, J.X.; Zhao, N.; Ullah, S.; Wang, H.; Zhang, D.Q.; Imtiaz, S.; Shan, G.C.; et al. Self-assembly of 2D-metal-organic framework/graphene oxide membranes as highly efficient adsorbents for the removal of Cs+ from aqueous solutions. RSC Adv. 2018, 8, 40813–40822. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Cai, Y.; Chen, G.; Li, B.; Chen, Z.; Hu, B.; Wang, X. Efficient Selective Removal of Radionuclides by Sorption and Catalytic Reduction Using Nanomaterials. Nanomaterials 2022, 12, 1443. https://doi.org/10.3390/nano12091443
Xu M, Cai Y, Chen G, Li B, Chen Z, Hu B, Wang X. Efficient Selective Removal of Radionuclides by Sorption and Catalytic Reduction Using Nanomaterials. Nanomaterials. 2022; 12(9):1443. https://doi.org/10.3390/nano12091443
Chicago/Turabian StyleXu, Min, Yawen Cai, Guohe Chen, Bingfeng Li, Zhongshan Chen, Baowei Hu, and Xiangke Wang. 2022. "Efficient Selective Removal of Radionuclides by Sorption and Catalytic Reduction Using Nanomaterials" Nanomaterials 12, no. 9: 1443. https://doi.org/10.3390/nano12091443
APA StyleXu, M., Cai, Y., Chen, G., Li, B., Chen, Z., Hu, B., & Wang, X. (2022). Efficient Selective Removal of Radionuclides by Sorption and Catalytic Reduction Using Nanomaterials. Nanomaterials, 12(9), 1443. https://doi.org/10.3390/nano12091443