Efficient Charge Transfer Channels in Reduced Graphene Oxide/Mesoporous TiO2 Nanotube Heterojunction Assemblies toward Optimized Photocatalytic Hydrogen Evolution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of TiO2 Nanotube
2.3. Preparation of rGO/TiO2
3. Results and Discussion
3.1. Crystal Structure and Optical Absorption of rGO/TiO2
3.2. Morphology of rGO/TiO2 Assembly
3.3. Photocatalytic Performance of rGO/TiO2
3.4. Photocatalytic Mechanism of rGO/TiO2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Uddin, N.; Zhang, H.; Du, Y.; Jia, G.; Wang, S.; Yin, Z. Structural-phase catalytic redox reactions in energy and environmental applications. Adv. Mater. 2020, 32, 1905739. [Google Scholar] [CrossRef] [PubMed]
- Jeong, G.; Sasikala, S.; Yun, T.; Lee, G.; Lee, W.; Kim, S. Nanoscale assembly of 2d materials for energy and environmental applications. Adv. Mater. 2020, 32, 1907006. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Xing, Z.; Sun, D.; Li, Z.; Zhou, W. Hollow semiconductor photocatalysts for solar energy conversion. Adv. Powder Mater. 2022, 1, 100021. [Google Scholar] [CrossRef]
- Wang, W.; Deng, C.; Xie, S.; Li, Y.; Zhang, W.; Sheng, H.; Chen, C.; Zhao, J. Photocatalytic c–c coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II). J. Am. Chem. Soc. 2021, 143, 2984–2993. [Google Scholar] [CrossRef] [PubMed]
- Jian, S.; Tian, Z.; Hu, J.; Zhang, K.; Zhang, L.; Duan, G.; Yang, W.; Jiang, S. Enhanced visible light photocatalytic efficiency of La-doped ZnO nanofibers via electrospinning-calcination technology. Adv. Powder Mater. 2022, 1, 100004. [Google Scholar] [CrossRef]
- Ma, B.; Blanco, M.; Calvillo, L.; Chen, L.; Chen, G.; Lau, T.-C.; Dražić, G.; Bonin, J.; Robert, M.; Granozzi, G. Hybridization of Molecular and Graphene Materials for CO2 Photocatalytic Reduction with Selectivity Control. J. Am. Chem. Soc. 2021, 143, 8414–8425. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Gong, H.; Wang, L.; Zhou, K.; Zhang, D.; Zhang, Y.; Adamaki, V.; Bowen, C.; Sergejevs, A. Improved photocatalytic performance of gradient reduced TiO2 ceramics with aligned pore channels. Adv. Powder Mater. 2021, 1, 100025. [Google Scholar] [CrossRef]
- Qiu, P.; Li, W.; Thokchom, B.; Park, B.; Cui, M.; Zhao, D.; Khim, J. Uniform core–shell structured magnetic mesoporous TiO2 nanospheres as a highly efficient and stable sonocatalyst for the degradation of bisphenol-A. J. Mater. Chem. A 2015, 3, 6492–6500. [Google Scholar] [CrossRef]
- Hao, Z.; Chen, Q.; Dai, W.; Ren, Y.; Zhou, Y.; Yang, J.; Xie, S.; Shen, Y.; Wu, J.; Chen, W.; et al. Oxygen-deficient blue TiO2 for ultrastable and fast lithium storage. Adv. Energy Mater. 2020, 10, 1903107. [Google Scholar] [CrossRef]
- Wang, H.; Hu, X.; Ma, Y.; Zhu, D.; Li, T.; Wang, J. Nitrate-Group-Grafting-Induced Assembly of Rutile TiO2 Nanobundles for Enhanced Photocatalytic Hydrogen Evolution. Chin. J. Catal. 2020, 41, 95–102. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, G.; Liu, C.; Lan, H.; Liu, H.; Qu, J. Interface Stabilization of Undercoordinated Iron Centers on Manganese Oxides for Nature-inspired Peroxide Activation. ACS Catal. 2018, 8, 1090–1096. [Google Scholar] [CrossRef]
- Skinner, D.; Colombo, D.; Cavaleri, J.; Bowman, R. Femtosecond Investigation of Electron Trapping in Semiconductor Nanoclusters. J. Phys. Chem. 1995, 99, 7853–7856. [Google Scholar] [CrossRef]
- Lan, K.; Liu, Y.; Zhang, W.; Liu, Y.; Elzatahry, A.; Wang, R.; Xia, Y.; Al-Dhayan, D.; Zheng, N.; Zhao, D. Uniform Ordered Two-Dimensional Mesoporous TiO2 Nanosheets from Hydrothermal-Induced Solvent-Confined Monomicelle Assembly. J. Am. Chem. Soc. 2018, 140, 4135–4143. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhao, Y.; Shi, R.; Wang, B.; Waterhouse, G.I.N.; Wu, L.; Tung, C.; Zhang, T. Tuning Oxygen Vacancies in Ultrathin TiO2 Nanosheets to Boost Photocatalytic Nitrogen Fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482. [Google Scholar] [CrossRef]
- Wu, J.; Qiao, P.; Li, H.; Xu, Y.; Yang, W.; Yang, F.; Lin, K.; Pan, K.; Zhou, W. Engineering surface defects on two-dimensional ultrathin mesoporous anatase TiO2 nanosheets for efficient charge separation and exceptional solar-driven photocatalytic hydrogen evolution. J. Mater. Chem. C 2020, 8, 3476. [Google Scholar] [CrossRef]
- Bae, D.; Pedersen, T.; Seger, B.; Malizia, M.; Kuznetsov, A.; Hansen, O.; Chorkendorffa, I.; Vesborg, P. Back-illuminated Si photocathode: A combined experimental and theoretical study for photocatalytic hydrogen evolution. Energy Environ. Sci. 2015, 8, 650–660. [Google Scholar] [CrossRef] [Green Version]
- Yi, L.; Ci, S.; Luo, S.; Shao, P.; Hou, Y.; Wen, Z. Scalable and Low-cost Synthesis of Black Amorphous Al-Ti-O Nanostructure for High- efficient Photothermal Desalination. Nano Energy 2017, 41, 600–608. [Google Scholar] [CrossRef]
- Bae, D.; Kanellos, G.; Faasse, G.M.; Dražević, E.; Venugopal, A.; Smith, W.A. Design principles for efficient photoelectrodes in solar rechargeable redox flow cell applications. Commun. Mater. 2020, 1, 17. [Google Scholar] [CrossRef]
- Abed, J.; Rajput, N.S.; El Moutaouakil, A.; Jouiad, M. Recent Advances in the Design of Plasmonic Au/TiO2 Nanostructures for Enhanced Photocatalytic Water Splitting. Nanomaterials 2020, 10, 2260. [Google Scholar] [CrossRef]
- Song, W.; Ji, J.; Guo, K.; Wang, X.; Wei, X.; Cai, Y.; Tan, W.; Li, L.; Sun, J.; Tang, C.; et al. Solid-phase impregnation promotes Ce doping in TiO2 for boosted denitration of CeO2/TiO2 catalysts. Chin. Chem. Lett. 2022, 33, 935–938. [Google Scholar] [CrossRef]
- Zhu, Y.; Shah, M.; Wang, C. Insight into the role of Ti3+ in photocatalytic performance of shuriken-shaped BiVO4/TiO2−x heterojunction. Appl. Catal. B Environ. 2017, 203, 526–532. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Xiao, X.; Meng, H.; Wu, J.; Guo, C.; Zheng, M.; Wang, X.; Guo, S.; Jiang, B. Engineering of SnO2/TiO2 heterojunction compact interface with efficient charge transfer pathway for photocatalytic hydrogen evolution. Chin. Chem. Lett. 2022, in press. [Google Scholar] [CrossRef]
- Jia, M.; Yang, Z.; Xiong, W.; Cao, J.; Xiang, Y.; Peng, H.; Jing, Y.; Zhang, C.; Xu, H.; Song, P. Magnetic heterojunction of oxygen-deficient Ti3+-TiO2 and Ar-Fe2O3 derived from metal-organic frameworks for efficient peroxydisulfate (PDS) photo-activation. Appl. Catal. B Environ. 2021, 298, 120513. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.; Menon, A.; Bose, S. Graphene templated growth of copper sulphide ‘flowers’ can suppress electromagnetic interference. Nanoscale Adv. 2020, 2, 3292–3303. [Google Scholar] [CrossRef]
- Wang, X.; Meng, G.; Zhu, C.; Huang, Z.; Qian, Y.; Sun, K.; Zhu, X. A generic synthetic approach to large-scale pristine-graphene/metal-nanoparticles hybrids. Adv. Funct. Mater. 2013, 23, 5685. [Google Scholar] [CrossRef]
- Qiu, B.; Xing, M.; Zhang, J. Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5852–5855. [Google Scholar] [CrossRef]
- Xu, C.; Wang, C.; He, X.; Lyu, M.; Wang, S.; Wang, L. Processable graphene oxideembedded titanate nanofiber membranes with improved filtration performance. J. Hazard. Mater. 2017, 325, 214–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balsamo, S.; Fiorenza, R.; Condorelli, M.; Pecoraro, R.; Brundo, M.; Presti, F.; Sciré, S. One-Pot Synthesis of TiO2-rGO Photocatalysts for the Degradation of Groundwater Pollutants. Materials 2021, 14, 5938. [Google Scholar] [CrossRef]
- Zouzelka, R.; Remzova, M.; Plšek, J.; Brabec, L.; Rathousky, J. Immobilized rGO/TiO2 Photocatalyst for Decontamination of Water. Catalysts 2019, 9, 708. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Cai, J.; Mao, J.; Li, S.; Shen, J.; Gao, S.; Huang, J.; Wang, X.; Parkin, I.P.; Lai, Y. Defective black Ti3+ self-doped TiO2 and reduced graphene oxide composite nanoparticles for boosting visible-light driven photocatalytic and photoelectrochemical activity. Appl. Surf. Sci. 2019, 467–468, 45–55. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, W.; Zhang, K.; Wang, J.; Sun, B.; Li, H.; Qiao, P.; Wang, L.; Zhou, W. Ti3+ Self-Doped Black TiO2 Nanotubes with Mesoporous Nanosheet Architecture as Efficient Solar-Driven Hydrogen Evolution Photocatalysts. ACS Sustain. Chem. Eng. 2017, 5, 6894–6901. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Cote, L.J.; Kim, F.; Huang, J. Langmuir-blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 2009, 131, 1043–1049. [Google Scholar] [CrossRef]
- Yu, C.; Li, M.; Yang, D.; Pan, K.; Yang, F.; Xu, Y.; Yuan, L.; Qu, Y.; Zhou, W. NiO nanoparticles dotted TiO2 nanosheets assembled nanotubes P-N heterojunctions for efficient interface charge separation and photocatalytic hydrogen evolution. Appl. Surf. Sci. 2021, 568, 150981. [Google Scholar] [CrossRef]
- Chen, C.; Yang, S.; Ding, J.; Wang, G.; Zhong, L.; Zhao, S.; Zang, Y.; Jiang, J.; Ding, L.; Zhao, Y.; et al. Non-covalent self-assembly synthesis of AQ2S@rGO nanocomposite for the degradation of sulfadiazine under solar irradiation: The indispensable effect of chloride. Appl. Catal. B Environ. 2021, 298, 120495. [Google Scholar] [CrossRef]
- Sang, Y.; Zhao, Z.; Tian, J.; Hao, P.; Jiang, H.; Liu, H.; Claverie, J.P. Enhanced Photocatalytic Property of Reduced Graphene Oxide/TiO2 Nanobelt Surface Heterostructures Constructed by an In Situ Photochemical Reduction Method. Small 2014, 18, 3775–3782. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, F.; Zhou, F.; Yang, X.; Zhang, D.; Chen, Y. Synergistic effect of RGO/TiO2 nanosheets with exposed (001) facets for boosting visible light photocatalytic activity. Appl. Surf. Sci. 2020, 510, 145451. [Google Scholar] [CrossRef]
- Kronik, L.; Shapira, Y. Surface photovoltage phenomena: Theory, experiment, and applications. Surf. Sci. Rep. 1999, 37, 1–206. [Google Scholar] [CrossRef]
- Yang, F.; Li, H.; Pan, K.; Wang, S.; Sun, H.; Xie, Y.; Xu, Y.; Wu, J.; Zhou, W. Engineering Surface N-Vacancy Defects of Ultrathin Mesoporous Carbon Nitride Nanosheets as Efficient Visible-Light-Driven Photocatalysts. Sol. RRL 2020, 5, 2000610. [Google Scholar] [CrossRef]
- Gupta, B.; Melvin, A.; Matthews, T.; Dhara, S.; Dash, S.; Tyagi, A. Facile gamma radiolytic methodology for TiO2-rGO synthesis: Effect on photo-catalytic H2 evolution. Int. J. Hydrogen Energy 2015, 40, 5815–5823. [Google Scholar] [CrossRef]
- Bharad, P.; Sivaranjani, K.; Gopinath, C. A rational approach towards enhancing solar water splitting: A case study of Au-RGO/N-RGO-TiO2. Nanoscale 2015, 7, 11206–11215. [Google Scholar] [CrossRef]
- Ma, J.; Dai, J.; Duan, Y.; Zhang, J.; Qiang, L.; Xue, J. Fabrication of PANI-TiO2/rGO hybrid composites for enhanced photocatalysis of pollutant removal and hydrogen production. Renew. Energ. 2020, 156, 1008–1018. [Google Scholar] [CrossRef]
- Tudu, B.; Nalajala, N.; Reddy, K.; Saikia, P.; Gopinath, C. Electronic integration and thin film aspects of Au–Pd/rGO/TiO2 for improved solar hydrogen generation. ACS Appl. Mater. Inter. 2019, 11, 32869–32878. [Google Scholar] [CrossRef]
- Agegnehu, A.; Pan, C.; Tsai, M.; Rick, J.; Su, W.; Lee, J.; Hwang, B. Visible light responsive noble metal-free nanocomposite of V-doped TiO2 nanorod with highly reduced graphene oxide for enhanced solar H2 production. Int. J. Hydrogen Energy 2016, 41, 6752–6762. [Google Scholar] [CrossRef]
- Wei, X.; Cao, J.; Fang, F. A novel multifunctional Ag and Sr2+ co-doped TiO2@rGO ternary nanocomposite with enhanced p-nitrophenol degradation, and bactericidal and hydrogen evolution activity. RSC Adv. 2018, 8, 31822–31829. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Yang, D.; Chu, H.; Guo, L.; Chen, T.; Mu, Y.; He, X.; Zhong, X.; Huang, B.; Zhang, S.; et al. Efficient Charge Transfer Channels in Reduced Graphene Oxide/Mesoporous TiO2 Nanotube Heterojunction Assemblies toward Optimized Photocatalytic Hydrogen Evolution. Nanomaterials 2022, 12, 1474. https://doi.org/10.3390/nano12091474
Li Z, Yang D, Chu H, Guo L, Chen T, Mu Y, He X, Zhong X, Huang B, Zhang S, et al. Efficient Charge Transfer Channels in Reduced Graphene Oxide/Mesoporous TiO2 Nanotube Heterojunction Assemblies toward Optimized Photocatalytic Hydrogen Evolution. Nanomaterials. 2022; 12(9):1474. https://doi.org/10.3390/nano12091474
Chicago/Turabian StyleLi, Zhenzi, Decai Yang, Hongqi Chu, Liping Guo, Tao Chen, Yifan Mu, Xiangyi He, Xueyan Zhong, Baoxia Huang, Shiyu Zhang, and et al. 2022. "Efficient Charge Transfer Channels in Reduced Graphene Oxide/Mesoporous TiO2 Nanotube Heterojunction Assemblies toward Optimized Photocatalytic Hydrogen Evolution" Nanomaterials 12, no. 9: 1474. https://doi.org/10.3390/nano12091474
APA StyleLi, Z., Yang, D., Chu, H., Guo, L., Chen, T., Mu, Y., He, X., Zhong, X., Huang, B., Zhang, S., Gao, Y., Wei, Y., Wang, S., & Zhou, W. (2022). Efficient Charge Transfer Channels in Reduced Graphene Oxide/Mesoporous TiO2 Nanotube Heterojunction Assemblies toward Optimized Photocatalytic Hydrogen Evolution. Nanomaterials, 12(9), 1474. https://doi.org/10.3390/nano12091474