Bright Single-Photon Sources for the Telecommunication O-Band Based on an InAs Quantum Dot with (In)GaAs Asymmetric Barriers in a Photonic Nanoantenna
Abstract
:1. Introduction
2. Sample Fabrication and Experimental Techniques
3. Single-Photon Emitters with Single-Mode Nanoantenna
4. Measurements and Quantum Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karray, K.; Warburton, R.J.; Schulhauser, C.; Högele, A.; Urbaszek, B.; McGhee, E.J.; Govorov, A.O.; Garcia, J.M.; Geradot, B.D.; Petroff, P.M. Hybridization of electronic states in quantum dots through photon emission. Nature 2004, 16, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145–195. [Google Scholar] [CrossRef] [Green Version]
- Bouwmeester, D.; Ekert, A.; Zeilinger, A. The Physics of Quantum Optics; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Walss, D.F.; Milburn, G.J. Quantum Optics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Sapienza, L.; Davanco, M.; Badolato, A.; Srinivasan, K. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat. Commun. 2015, 6, 7833. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; He, Y.-M.; Chung, T.-H.; Hu, H.; Yu, Y.; Chen, S.; Ding, X.; Chen, M.-C.; Qin, J.; Yang, X.; et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photon. 2019, 13, 770–775. [Google Scholar] [CrossRef]
- Reimer, M.E.; Bulgarini, G.; Akopian, N.; Hocevar, M.; Bavinck, M.B.; Verheijen, M.A.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.; Zwiller, V. Bright single-photon sources in bottom-up tailored nanowire. Nat. Commun. 2012, 3, 737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Zopf, M.; Keil, R.; Ding, F.; Schmidt, O.G. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat. Commun. 2018, 9, 2994. [Google Scholar] [CrossRef]
- Seguin, R.; Schliwa, A.; Rodt, S.; Pötschke, K.; Pohl, U.W.; Bimberg, D. Size-dependent fine-structure splitting in self organized InAs/GaAs quantum dots. Phys. Rev. Lett. 2005, 95, 257402. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.quandela.com (accessed on 1 May 2022).
- Available online: https://sparrowquantum.com (accessed on 1 May 2022).
- Chen, Z.S.; Ma, B.; Shang, X.-J.; He, Y.; Zhang, L.-C.; Ni, H.-Q.; Wang, J.-L.; Niu, Z.-C. Telecommunication Wavelength-Band Single-Photon Emission from Single Large InAs Quantum Dots Nucleated on Low-Density Seed Quantum Dots. Nanoscale Res. Lett. 2016, 11, 382. [Google Scholar] [CrossRef] [Green Version]
- Gao, T.; Ricket, L.; Urban, F.; Grobe, J.; Srocka, N.; Rodt, S.; Musial, A.; Zolnacz, K.; Mergo, P.; Dybka, K.; et al. A quantum key distribution testbed using a plug&play telecom-wavelength single-photon source. Appl. Phys. Rev. 2022, 9, 011412. [Google Scholar]
- Kolatschek, S.; Nawrath, C.; Bauer, S.; Huang, J.; Fischer, J.; Sittig, R.; Jetter, M.; Portalupi, S.L.; Michler, P. Bright Purcell Enhanced Single-Photon Source in the Telecom O-Band Based on a Quantum Dot in a Circular Bragg Grating. Nano Lett. 2021, 21, 7740–7745. [Google Scholar] [CrossRef]
- Tomm, N.; Javadi, A.; Antoniadis, N.O.; Najer, D.; Löbl, M.C.; Korsch, A.R.; Schott, R.; Valentin, S.R.; Wieck, A.D.; Ludwig, A.; et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 2021, 16, 399–403. [Google Scholar] [CrossRef]
- Leonard, D.; Pond, K.; Petroff, P.M. Critical layer thickness for self-assembled InAs islands on GaAs. Phys. Rev. B 1994, 50, 687. [Google Scholar] [CrossRef]
- Kaiser, S.; Mensing, T.; Worschech, L.; Klopf, F.; Reithmaier, J.P. Optical spectroscopy of single InAs/InGaAs quantum dots in quantum well. Appl. Phys. Lett. 2002, 81, 4898. [Google Scholar] [CrossRef]
- Seravalli, L.; Trevesi, G.; Frigeri, P.; Rivas, D.; Munoz-Matutano, G.; Suárez, I.; Alén, B.; Canet-Ferrer, J.; Martínez-Pastor, J.P. Single quantum dot emission at telecom wavelengths from metamorphic InAs/InGaAs nanostructures grown on GaAs substrates. Appl. Phys. Lett. 2011, 98, 173112. [Google Scholar] [CrossRef] [Green Version]
- Alloing, B.; Zinoni, C.; Zwiller, V.; Li, L.H.; Monat, C.; Gobet, M.; Buchs, G.; Fiore, A.; Pelucchi, E.; Kapon, E. Growth and characterization of single quantum dots emitting at 1300 nm. Appl. Phys. Lett. 2005, 86, 101908. [Google Scholar] [CrossRef] [Green Version]
- Ward, M.B.; Dean, M.C.; Stevenson, R.M.; Bennett, A.J.; Ellis, D.J.P.; Cooper, K.; Farrer, I.L.; Nicoll, C.A.; Ritchie, D.A.; Shields, A.J. Coherent dynamics of a telecom-wavelength entangled photon source. Nat. Commun. 2014, 5, 3316. [Google Scholar] [CrossRef] [Green Version]
- Al-Khuzheyri, R.; Dada, A.C.; Huwer, J.; Santana, T.S.; Skiba-Szymanska, J.; Felle, M.; Ward, M.B.; Stevenson, R.M.; Farrer, I.; Tanner, M.G.; et al. Resonance fluorescence from a telecom-wavelength quantum dot. Appl. Phys. Lett. 2016, 109, 163104. [Google Scholar] [CrossRef] [Green Version]
- Rai, A.; Bhaskar, S.; Battampara, P.; Reddy, N.; Ramamurthy, S.S. Integrated Photo-Plasmonic coupling of bioinspired Sharp-Edged silver Nano-particles with Nano-films in extended cavity functional interface for Cellphone-aided femtomolar sensing. Mater. Lett. 2022, 316, 132025. [Google Scholar] [CrossRef]
- Rai, A.; Bhaskar, S.; Ganesh, K.M.; Ramamurthy, S.S. Gelucire-mediated heterometallic AgAu nanohybrid engineering for femtomolar cysteine detection using smartphone-based plasmonics technology. Mater. Chem. Phys. 2022, 279, 125747. [Google Scholar] [CrossRef]
- Friedler, I.; Sauvan, C.; Hugonin, J.P.; Lalanne, P.; Claudon, J.; Gérard, J.-M. Solid-state single photon sources: The nanowire antenna. Opt. Express 2009, 17, 2095. [Google Scholar] [CrossRef]
- Claudon, J.; Bleuse, J.; Malik, N.S.; Bazin, M.; Jaffrennou, P.; Gregersen, N.; Sauvan, C.; Lalanne, P.; Gerard, J.-M. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics 2010, 4, 174–177. [Google Scholar] [CrossRef]
- Rakhlin, M.V.; Belyev, K.G.; Sorokin, S.V.; Sedova, I.V.; Kirilenko, D.A.; Mozharov, A.M.; Mukhin, I.S.; Kulagina, M.M.; Zadiranov, Y.M.; Ivanov, S.V.; et al. Single-Photon Emitter at 80 K Based on a Dielectric Nanoantenna with a CdSe/ZnSe Quantum Dot. JETP Lett. 2018, 108, 201–205. [Google Scholar] [CrossRef]
- Rakhlin, M.; Sorokin, S.; Kazanov, D.; Sedova, I.; Shubina, T.; Ivanov, S.V.; Mikhailovskii, V.; Toropov, A. Bright single-Photon Emitters with CdSe quantum dot and multimode tapered nanoantenna for the visible spectral range. Nanomaterials 2021, 11, 916. [Google Scholar] [CrossRef] [PubMed]
- Bleuse, J.; Claudon, J.; Creasey, M.; Malik, N.S.; Gerard, J.-N.; Maksymov, I.; Hugonin, J.-P.; Lalanne, P. Inhibition, Enhancement, and Control of Spontaneous Emission in Photonic Nanowires. Phisical Rev. Lett. 2011, 106, 103601. [Google Scholar] [CrossRef]
- Maslov, A.V.; Ning, C.Z. Far-field emission of a semiconductor nanowire laser. Opt. Lett. 2004, 29, 527. [Google Scholar] [CrossRef]
- Mantynen, H.; Anttu, N.; Sun, Z.; Lipsanen, H. Single-photon sources with quantum dots in III-V nanowires. Nanophotonics 2019, 8, 747–769. [Google Scholar] [CrossRef]
- Chem, Z.; Deng, C.; Xi, X.; Chen, Y.; Feng, Y.; Jiang, S.; Chem, W.; Kang, X.; Wang, Q.; Zhang, G.; et al. Study on Localized Surface Plasmon Coupling with Many Radiators. Nanomaterials 2021, 11, 3105. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, S.; Das, P.; Srinivasan, V.; Shivakiran, S.B.N.; Ramamurthy, S.S. Plasmonic-Silver Sorets and Dielectric-Nd2O3 nanorods for Ultrasensitive Photonic Crystal-Coupled Emission. Mater. Res. Bull. 2022, 145, 111558. [Google Scholar] [CrossRef]
- Toropov, A.A.; Shubina, T.V. Plasmonic Effects in Metal-Semiconductor Nanostructures; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Loudon, R. The Quantum Theory of Light, 3rd ed.; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Brouri, R.; Beveratos, A.; Poizat, J.-P.; Grangier, P. Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 2000, 25, 1294–1296. [Google Scholar] [CrossRef] [Green Version]
- Bimberg, D. Semiconductor Nanostructures; Springer: Berlin, Germany, 2008. [Google Scholar]
- Michler, P. Single Semiconductors Quantum Dots; Springer: Berlin, Germany, 2009. [Google Scholar]
- Ding, X.; He, Y.; Duan, Z.-C.; Gregersen, N.; Chen, M.-C.; Unsleber, S.; Maier, S.; Schneider, C.; Kamp, M.; Höfling, S.; et al. On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. Phys. Rev. Lett. 2016, 116, 020401. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakhlin, M.; Klimko, G.; Sorokin, S.; Kulagina, M.; Zadiranov, Y.; Kazanov, D.; Shubina, T.; Ivanov, S.; Toropov, A. Bright Single-Photon Sources for the Telecommunication O-Band Based on an InAs Quantum Dot with (In)GaAs Asymmetric Barriers in a Photonic Nanoantenna. Nanomaterials 2022, 12, 1562. https://doi.org/10.3390/nano12091562
Rakhlin M, Klimko G, Sorokin S, Kulagina M, Zadiranov Y, Kazanov D, Shubina T, Ivanov S, Toropov A. Bright Single-Photon Sources for the Telecommunication O-Band Based on an InAs Quantum Dot with (In)GaAs Asymmetric Barriers in a Photonic Nanoantenna. Nanomaterials. 2022; 12(9):1562. https://doi.org/10.3390/nano12091562
Chicago/Turabian StyleRakhlin, Maxim, Grigorii Klimko, Sergey Sorokin, Marina Kulagina, Yurii Zadiranov, Dmitrii Kazanov, Tatiana Shubina, Sergey Ivanov, and Alexey Toropov. 2022. "Bright Single-Photon Sources for the Telecommunication O-Band Based on an InAs Quantum Dot with (In)GaAs Asymmetric Barriers in a Photonic Nanoantenna" Nanomaterials 12, no. 9: 1562. https://doi.org/10.3390/nano12091562
APA StyleRakhlin, M., Klimko, G., Sorokin, S., Kulagina, M., Zadiranov, Y., Kazanov, D., Shubina, T., Ivanov, S., & Toropov, A. (2022). Bright Single-Photon Sources for the Telecommunication O-Band Based on an InAs Quantum Dot with (In)GaAs Asymmetric Barriers in a Photonic Nanoantenna. Nanomaterials, 12(9), 1562. https://doi.org/10.3390/nano12091562