N-Rich Doped Anatase TiO2 with Smart Defect Engineering as Efficient Photocatalysts for Acetaldehyde Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of H3PO4-Modified Anatase TiO2 Nanoparticles
2.2. Synthesis of Nitrogen-Doped PTO
2.3. Defects Healing of NPTO
2.4. Oxidation Healing Process
2.5. Photocatalytic Activity Evaluation
2.6. Characterizations
3. Results
3.1. N-Rich Doping
3.2. Defect Healing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tong, H.; Ouyang, S.X.; Bi, Y.P.; Umezawa, N.; Oshikiri, M.; Ye, J.H. Nano-photocatalytic Materials: Possibilities and Challenges. Adv. Mater. 2012, 24, 229. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.L.; Xu, M.; Peng, T.Y.; Zhang, C.X.; Li, T.; Hussain, I.; Wang, J.Y.; Tan, B. Porous Hypercrosslinked Polymer-TiO2-Graphene Composite Photocatalysts for Visible-Light-Driven CO2 Conversion. Nat. Commun. 2019, 10, 676. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Monteiro, N.; Hamandi, M.; Higuita, M.A.U.; Guillard, C.; Dappozze, F.; Jamon, D.; Vocanson, F.; Jourlin, Y. Influence of the Micro-Nanostructuring of Titanium Dioxide Films on the Photocatalytic Degradation of Formic Acid under Uv Illumination. Nanomaterials 2022, 12, 1008. [Google Scholar] [CrossRef] [PubMed]
- Hunge, Y.M.; Yadav, A.A.; Kang, S.W.; Kim, H. Photocatalytic degradation of tetracycline antibiotics using hydrothermally synthesized two-dimensional molybdenum disulfide/titanium dioxide composites. J. Colloid Interf. Sci. 2022, 606, 454–463. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Dhodamani, A.G.; Suzuki, N.; Terashima, C.; Fujishima, A.; Mathe, V.L. Enhanced photocatalytic performance of ultrasound treated GO/TiO2 composite for photocatalytic degradation of salicylic acid under sunlight illumination. Ultrason. Sonochem. 2020, 61, 104849. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Khan, S.; Takagi, K.; Suzuki, N.; Teshima, K.; Terashima, C.; Fujishima, A. Photocatalytic degradation of bisphenol A using titanium dioxide@nanodiamond composites under UV light illumination. J. Colloid Interface Sci. 2021, 582, 1058–1066. [Google Scholar] [CrossRef]
- Zhang, W.; He, H.L.; Li, H.Z.; Duan, L.L.; Zu, L.H.; Zhai, Y.P.; Li, W.; Wang, L.Z.; Fu, H.G.; Zhao, D.Y. Visible-Light Responsive TiO2-Based Materials for Efficient Solar Energy Utilization. Adv. Energy Mater. 2021, 11, 2003303. [Google Scholar] [CrossRef]
- Milosevic, I.; Jayaprakash, A.; Greenwood, B.; van Driel, B.; Rtimi, S.; Bowen, P. Synergistic Effect of Fluorinated and N Doped TiO2 Nanoparticles Leading to Different Microstructure and Enhanced Photocatalytic Bacterial Inactivation. Nanomaterials 2017, 7, 391. [Google Scholar] [CrossRef] [Green Version]
- Piątkowska, A.; Janus, M.; Szymański, K.; Mozia, S. C-, N- and S-Doped TiO2 Photocatalysts: A Review. Catalysts 2021, 11, 144. [Google Scholar] [CrossRef]
- Lin, Y.P.; Isakovica, I.; Gopejenko, A.; Ivanova, A.; Zacinskis, A.; Eglitis, R.I.; D‘Yachkov, P.N.; Piskunov, S. Time-Dependent Density Functional Theory Calculations of N- and S-Doped TiO2 Nanotube for Water-Splitting Applications. Nanomaterials 2021, 11, 2900. [Google Scholar] [CrossRef]
- Li, Y.Y.; Peng, Y.K.; Hu, L.S.; Zheng, J.W.; Prabhakaran, D.; Wu, S.; Puchtler, T.J.; Li, M.; Wong, K.Y.; Taylor, R.A.; et al. Photocatalytic Water Splitting by N-TiO2 on MgO (111) with Exceptional Quantum Efficiencies at Elevated Temperatures. Nat. Commun. 2019, 10, 4421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varley, J.B.; Janotti, A.; Van de Walle, C.G. Mechanism of Visible-Light Photocatalysis in Nitrogen-Doped TiO2. Adv. Mater. 2011, 23, 2343–2347. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.Z.; Feng, Y.J.; Luan, Y.B.; Fu, X.D.; Jing, L.Q. Facile Synthesis of N-Doped TiO2 and Its Enhanced Photocatalytic Activity for Degrading Colorless Pollutants. ChemPlusChem 2014, 79, 737–742. [Google Scholar] [CrossRef]
- Lazzeri, M.; Vittadini, A.; Selloni, A. Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B 2001, 63, 155409. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal. B 2012, 125, 331. [Google Scholar] [CrossRef] [Green Version]
- Song, X.Y.; He, D.; Li, W.Q.; Ke, Z.J.; Liu, J.C.; Tang, C.Y.; Cheng, L.; Jiang, C.Z.; Wang, Z.Y.; Xiao, X.H. Anionic Dopant Delocalization through P-Band Modulation to Endow Metal Oxides with Enhanced Visible-Light Photoactivity. Angew. Chem. Int. Ed. 2019, 58, 16660–16667. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L.; Cao, X.X.; Lin, B.Z.; Gao, B.F. Origin of the Visible-Light Photoactivity of NH3-Treated TiO2: Effect of Nitrogen Doping and Oxygen Vacancies. Appl. Surf. Sci. 2013, 264, 845–852. [Google Scholar] [CrossRef]
- Wang, X.C.; Yu, J.C.; Chen, Y.L.; Wu, L.; Fu, X.Z. ZrO2-Modified Mesoporous Nanocrystalline TiO2-xNx as Efficient Visible Light Photocatalysts. Environ. Sci. Technol. 2006, 40, 2369–2374. [Google Scholar] [CrossRef]
- Xu, P.; Lu, J.; Xu, T.; Gao, S.M.; Huang, B.B.; Dai, Y. I2-Hydrosol-Seeded Growth of (I2)n-C-Codoped Meso/Nanoporous TiO2 for Visible Light-Driven Photocatalysis. J. Phys. Chem. C 2010, 114, 9510–9517. [Google Scholar] [CrossRef]
- Luan, Y.B.; Jing, L.Q.; Wu, J.; Xie, M.Z.; Feng, Y.J. Long-Lived Photogenerated Charge Carriers of 001-Facet-Exposed TiO2 with Enhanced Thermal Stability as an Efficient Photocatalyst. Appl. Catal. B 2014, 147, 29–34. [Google Scholar] [CrossRef]
- Esmat, M.; El-Hosainy, H.; Tahawy, R.; Jevasuwan, W.; Tsunoji, N.; Fukata, N.; Ide, Y. Nitrogen Doping-Mediated Oxygen Vacancies Enhancing Co-Catalyst-Free Solar Photocatalytic H2 Production Activity in Anatase TiO2 Nanosheet Assembly. Appl. Catal. B 2021, 285, 119755. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Yin, L.C.; Gong, Y.; Niu, P.; Wang, J.Q.; Gu, L.; Chen, X.Q.; Liu, G.; Wang, L.Z.; Cheng, H.M. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies. Adv. Mater. 2018, 30, 1704479. [Google Scholar] [CrossRef] [PubMed]
- Rajaraman, T.S.; Parikh, S.P.; Gandhi, V.G. Black TiO2: A review of its properties and conflicting trends. Chem. Eng. J. 2020, 389, 123918. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Zhao, Y.F.; Shi, R.; Wang, B.; Waterhouse, G.I.; Wu, L.Z.; Tung, C.H.; Zhang, T. Tuning Oxygen Vacancies in Ultrathin TiO2 Nanosheets to Boost Photocatalytic Nitrogen Fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482. [Google Scholar] [CrossRef]
- Lettieri, S.; Gargiulo, V.; Alfè, M.; Amati, M.; Zeller, P.; Maraloiu, V.A.; Borbone, F.; Pavone, M.; Muñoz-García, A.B.; Maddalena, P. Simple ethanol refluxing method for production of blue-colored titanium dioxide with oxygen vacancies and visible light-driven photocatalytic properties. J. Phys. Chem. C. 2020, 124, 3564. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, Z.; Liu, X.; Li, Z.; Wu, X.; Jiang, J.; Li, M.; Zhu, Q.; Zhou, W. Ti3+ self-doped blue TiO2(B) single-crystalline nanorods for efficient solar-driven photocatalytic performance. ACS Appl. Mater. Interfaces 2016, 8, 426851. [Google Scholar] [CrossRef]
- Xu, M.J.; Chen, Y.; Qin, J.T.; Feng, Y.W.; Li, W.; Chen, W.; Zhu, J.; Li, H.X.; Bian, Z.F. Unveiling the Role of Defects on Oxygen Activation and Photodegradation of Organic Pollutants. Environ. Sci. Technol. 2018, 52, 13879–13886. [Google Scholar] [CrossRef]
- Liu, G.; Pan, J.; Yin, L.C.; Irvine, J.T.; Li, F.; Tan, J.; Wormald, P.; Cheng, H.M. Heteroatom-Modulated Switching of Photocatalytic Hydrogen and Oxygen Evolution Preferences of Anatase TiO2 Microspheres. Adv. Funct. Mater. 2012, 22, 3233. [Google Scholar] [CrossRef]
- Liu, G.; Yin, L.C.; Wang, J.Q.; Zhen, C.; Xie, Y.P.; Cheng, H.M. A red anatase TiO2 photocatalyst for solar energy conversion. Energy Environ. Sci. 2012, 5, 9603. [Google Scholar] [CrossRef]
- Cheng, X.M.; Zu, L.H.; Jiang, Y.; Shi, D.L.; Cai, X.M.; Ni, Y.H.; Lin, S.J.; Qin, Y. A titanium-based photo-Fenton bifunctional catalyst of mp-MXene/TiO2-x nanodots for dramatic enhancement of catalytic efficiency in advanced oxidation processes. Chem. Commun. 2018, 54, 11622–11625. [Google Scholar] [CrossRef] [Green Version]
- Zeng, B.; Wang, S.Y.; Xiao, Y.J.; Zeng, G.; Zhang, X.W.; Li, R.G.; Li, C. Surface Phosphate Functionalization for Boosting Plasmon-Induced Water Oxidation on Au/TiO2. J. Phys. Chem. C 2022, 126, 5167–5174. [Google Scholar] [CrossRef]
- Wang, Z.; Mahmooda, A.; Xie, X.F.; Wang, X.; Qiu, H.X.; Sun, J. Surface adsorption configurations of H3PO4 modified TiO2 and its influence on the photodegradation intermediates of gaseous o-xylene. Chem. Eng. J. 2020, 393, 124723. [Google Scholar] [CrossRef]
- Li, Z.J.; Luan, Y.B.; Qu, Y.; Jing, L.Q. Modification strategies with inorganic acids for efficient photocatalysts by promoting the adsorption of O2. ACS Appl. Mater. Interfaces 2015, 7, 22727. [Google Scholar] [CrossRef] [PubMed]
- Ferus, M.; Kavan, L.; Zukalová, M.; Zukal, A.; Klementová, M.; Civiš, S. Spontaneous and Photoinduced Conversion of CO2 on TiO2 Anatase (001)/(101) Surfaces. J. Phys. Chem. C 2014, 118, 26845–26850. [Google Scholar] [CrossRef]
- Kertmen, A.; Barbé, E.; Szkoda, M.; Siuzdak, K.; Babačić, V.; Torruella, P.; Iatsunskyi, I.; Kotkowiak, M.; Rytel, K.; Estradé, S.; et al. Photoelectrochemically Active N-Adsorbing Ultrathin TiO2 Layers for Water-Splitting Applications Prepared by Pyrolysis of Oleic Acid on Iron Oxide Nanoparticle Surfaces under Nitrogen Environment. Adv. Mater. Interfaces 2018, 6, 1801286. [Google Scholar] [CrossRef]
- Wang, J.; Tafen, D.N.; Lewis, J.P.; Hong, Z.L.; Manivannan, A.; Zhi, M.J.; Li, M.; Wu, N.Q. Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts. J. Am. Chem. Soc. 2009, 131, 12290. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Chai, S.P.; Yong, S.T.; Mohamed, A.R. Self-Assembly of Nitrogen-Doped TiO2 with Exposed {001} Facets on a Graphene Scaffold as Photo-Active Hybrid Nanostructures for Reduction of Carbon Dioxide to Methane. Nano Res. 2014, 7, 1528–1547. [Google Scholar] [CrossRef]
- Ou, G.; Xu, Y.S.; Wen, B.; Lin, B.H.; Tang, Y.; Liang, Y.W.; Yang, C.; Huang, K.; Zu, D.; Yu, R.; et al. Tuning Defects in Oxides at Room Temperature by Lithium Reduction. Nat. Commun. 2018, 9, 1302. [Google Scholar] [CrossRef] [Green Version]
- Giannakas, A.E.; Seristatidou, E.; Deligiannakis, Y.; Konstantinou, I. Photocatalytic Activity of N-Doped and N–F Co-Doped TiO2 and Reduction of Chromium(Vi) in Aqueous Solution: An EPR Study. Appl. Catal. B 2013, 132–133, 460–468. [Google Scholar] [CrossRef]
- Wang, Z.H.; Ma, W.H.; Chen, C.C.; Ji, H.W.; Zhao, J.C. Probing Paramagnetic Species in Titania-Based Heterogeneous Photocatalysis by Electron Spin Resonance (ESR) Spectroscopy-A Mini Review. Chem. Eng. J. 2011, 170, 353–362. [Google Scholar] [CrossRef]
- Khalilzadeh, A.; Fatemi, S. Modification of Nano-TiO2 by Doping with Nitrogen and Fluorine and Study Acetaldehyde Removal under Visible Light Irradiation. Clean Technol. Environ. Policy 2013, 16, 629–636. [Google Scholar] [CrossRef]
- Vahidzadeh, E.; Fatemi, S.; Nouralishahi, A. Synthesis of a Nitrogen-Doped Titanium Dioxide–Reduced Graphene Oxide Nanocomposite for Photocatalysis under Visible Light Irradiation. Particuology 2018, 41, 48–57. [Google Scholar] [CrossRef]
- Xie, C.; Fan, T.; Wang, A.; Chen, S.L. Enhanced Visible-Light Photocatalytic Activity of a TiO2 Membrane-Assisted with N-Doped Carbon Quantum Dots and SiO2 Opal Photonic Crystal. Ind. Eng. Chem. Res. 2018, 58, 120–127. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, M.; Li, Z.; Chen, P.; Sun, L.; Kang, S.; Dou, T.; Qu, Y.; Jing, L. N-Rich Doped Anatase TiO2 with Smart Defect Engineering as Efficient Photocatalysts for Acetaldehyde Degradation. Nanomaterials 2022, 12, 1564. https://doi.org/10.3390/nano12091564
Wei M, Li Z, Chen P, Sun L, Kang S, Dou T, Qu Y, Jing L. N-Rich Doped Anatase TiO2 with Smart Defect Engineering as Efficient Photocatalysts for Acetaldehyde Degradation. Nanomaterials. 2022; 12(9):1564. https://doi.org/10.3390/nano12091564
Chicago/Turabian StyleWei, Mingzhuo, Zhijun Li, Peijiao Chen, Lei Sun, Shilin Kang, Tianwei Dou, Yang Qu, and Liqiang Jing. 2022. "N-Rich Doped Anatase TiO2 with Smart Defect Engineering as Efficient Photocatalysts for Acetaldehyde Degradation" Nanomaterials 12, no. 9: 1564. https://doi.org/10.3390/nano12091564
APA StyleWei, M., Li, Z., Chen, P., Sun, L., Kang, S., Dou, T., Qu, Y., & Jing, L. (2022). N-Rich Doped Anatase TiO2 with Smart Defect Engineering as Efficient Photocatalysts for Acetaldehyde Degradation. Nanomaterials, 12(9), 1564. https://doi.org/10.3390/nano12091564