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Abstract: In recent years, the continuous development of electronic chips and the increasing in-
tegration of devices have led to extensive research on the thermal properties of ultrathin metallic
materials. In particular, accurate characterization of their thermal transport properties has become a
research hotspot. In this paper, we review the characterization methods of metallic nanomaterials,
focusing on the principles of the transient electrothermal (TET) technique and the differential TET
technique. By using the differential TET technique, the thermal conductivity, electrical conductivity,
and Lorenz number of extremely confined metallic nanostructures can be characterized with high
measurement accuracy. At present, we are limited by the availability of existing coating machines
that determine the thickness of the metal films, but this is not due to the measurement technology
itself. If a material with a smaller diameter and lower thermal conductivity is used as the substrate,
much thinner nanostructures can be characterized.
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1. Introduction

As an integral part of the semiconductor field, ultra-thin metallic materials are used in
solar cells [1], communication [2], aerospace [3], and other applications [4–6]. As one of the
important criteria for evaluating the performance of different nanomaterials and accurately
characterizing the thermal diffusivity of ultrathin metallic materials, thermal transport
properties have become an important research direction [7]. However, compared to the
electrical transport properties, the characterization of thermal transport within nano-thick
metal films is a challenge [8].

Wiedemann et al. [9] first discovered that at room temperature, the ratio of electrical
conductivity to thermal conductivity was very close for most metals. Later, Lorenz [10]
revealed that the ratio was positively correlated with temperature and related to the quan-
tum of electrical charge and the Boltzmann constant. This is the famous Wiedemann–Franz
(WF) law, but the WF law is not applicable to nanoscale metal film materials [11–16]. Based
on the theoretical works related to the optimization of WF law and electrical conductiv-
ity [17–24], a series of methods have been developed to experimentally measure the thermal
transport properties of metallic nanofilms and metallic nanowires. These methods include
the 3ωmethod [25–28], the photothermal reflection technique [29,30], the femtosecond laser
pumping detection method [31] and the non-stationary electrical heating method [32–35].

A distinctive feature of the 3ωmethod is that it is universally applicable to a variety
of materials [36,37]. However, this method fails in the films thinner than 100 nm, mainly
because the thermal contact resistance between the microsensor and the tested film is
large and comparable or even larger than the equivalent thermal resistance of the film [38].
Nakamura et al. [39] first measured the thermal diffusivity of 90 nm-thick Pt films on glass
substrates at low temperatures from 15 K to 273 K using a post-heating pre-detection type
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(RF-type) femtosecond thermal reflectometry system. This RF-type system provided the
thermal diffusivity of the films at low temperatures, and more information about non-
thermal energy transfer processes. Wang et al. [40] studied the heat-transfer mechanism
of metal nanofilms under ultrashort pulse laser heating, simultaneously establishing a
femtosecond (fs) transient thermal reflection (TTR) technique to measure the transient
electron temperature response induced by fs laser heating. They also used a pump-probe
technique to ensure the fs time resolution of the experiment. Applying a back heating-front
probing mode ensured the electron temperature response, which allowed the authors
to determine the electron–phonon coupling coefficient and the propagation velocity of
temperature oscillations. Finally, a non-equilibrium thermal diffusion model was employed
to fit the temperature profiles of Au films with the thicknesses from 27.2 nm to 55.5 nm.

Laser-based ultrafast time-domain thermal reflection (TDTR) techniques are widely
used to measure the thermal conductivity of bulk and thin-film materials [41]. As a pump
measurement technique, TDTR requires neither the precisely designed electric heater nor
temperature sensor, but only a small amount of sample, which enables one to operate under
routine conditions. The frequency-dependent TDTR method is also applicable to thin-film
materials. However, their thickness should be greater than the thermal penetration depth
through the plane. Liu et al. [42] used this method to determine both the out-of-plane
thermal conductivity and the bulk heat capacity for organic–inorganic Zn basin hybrid
films with thickness in the range of 40–400 nm.

The photo-thermal technique usually deals with metal samples that act as both the
heater and temperature sensor, making the equipment and electrode fabrication process
difficult. On the contrary, the electrothermal route is faster and simpler compared with the
above methods. Ma et al. [43] measured the in-plane thermal and electrical conductivity
of metal nanofilms via direct current heating of suspended films. The advantage of the
proposed approach is that contact resistance and thermal resistance can be completely
eliminated by integrating the suspended Pt and Au nanofilms with the probe electrodes.
Using this method, Boiko et al. [44] determined the thermal and electrical conductivities of
20–60 nm Pt and Au polycrystalline films in the temperature range of 80–300 K. Guo et al.
first developed the TET technique to significantly improve the signal electrical frequency.
To assess the accuracy of the method, they measured a 25 µm-diameter platinum wire. The
thermal diffusivity of the three Pt wires is 2.53× 10−5, 2.54× 10−5, and 2.78 × 10−5 m2 s−1,
respectively, which are close to the literature value of 2.51 × 10−5 m2 s−1 (at 300 K). By
means of gold coating, the technology can also measure non-conductive nanowires and
tubes, but the gold coating needs to be as thin as possible.

The TET technique is an effective and accurate method (the total uncertainty for
thermal diffusivity is 6%) for evaluating the thermal diffusivity of one-dimensional solid
materials (including metals and dielectric materials), such as single-walled carbon nanotube
bundles [45], graphene materials [46–49], silkworm silks, [50] silver nanowire network, [51]
freestanding micrometer-thick poly films [52], carbon fibers [53,54], etc. In this review, we
will focus primarily on the characterization of thermal transport in extremely confined
metallic nanostructures using the TET and differential TET technique.

2. TET Technique

The typical experimental setup of the TET technique is shown in Figure 1. During
the experiment, both ends of the specimen are suspended between two electrodes. The
contact points between the end and the electrode are fixed with a conductive silver glue
to increase the electrical and thermal contacts between the sample and the electrodes.
The measurement is conducted in a vacuum chamber to eliminate the heat loss through
thermal convection.
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Figure 1. Schematic of the experimental principle and setup for the TET experiment.

In the process of the experiment, the step dc current is applied to the material to
increase its temperature. The temperature rise in the sample causes the resistance to
vary, consequently altering the voltage, which is recorded by an oscilloscope. Since the
applied current and the resistance-temperature coefficient of the sample in a narrow tem-
perature range are constant, the temperature change could be derived from the recorded
voltage evolution. The thermal diffusivity of the sample is then determined based on the
temperature/voltage changing rate.

It is noteworthy that direct measurement is possible only if the material is electrically
conductive. Otherwise, the surface of the material is covered with a layer of metal to make
it conductive, so the effect of the metallic film should be evaluated and removed.

The length of sample is much larger than its diameter or width and thickness. There-
fore, the heat transfer in the samples can be simplified as one-dimensional heat conduction
along the length direction. The heat transfer can be described using the equation below [55]:

1
α

∂θ(x, t)
∂t

=
∂2θ(x, t)

∂x2 +
I2R0

kLA
+

Q
kLA

(1)

where θ = T − T0 T0 is the room temperature, I is the constant current flowing through the
sample, α is the thermal diffusivity, k is the thermal conductivity, and R0 is the electrical
resistance before electrical heating. L and A are the length and cross-sectional area of
the sample, respectively, and Q is the thermal radiation rate. It can be assumed that the
electrical heating power per unit volume of the sample is uniform. During Joule heating,
the temperature in the sample rises sharply, while the temperature of the electrodes remains
constant because of their relatively much larger volume and heat capacity. At the same
time, heat flow is transferred from the sample to the electrodes and dissipates from the
sample to the surroundings via thermal radiation. Therefore, the boundary conditions
are θ(0, t) = θ(L, t) = θ(x, 0). The solution to Equation (1) can be obtained by integrating
Green’s function.

The normalized temperature rise (T*) is defined as T*(t) = [T (t)−T0]/ [T (t→∞)−T0],
which can be represented as:

T∗ ∼=
48
π4

∞

∑
m=1

1− (−1)m

m2
1− exp

[
−m2π2αefft/L2]

m2 (2)
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where αeff is the measured thermal diffusivity. The relationship between the voltage
variation recorded by the oscilloscope during the experiment and the mean temperature
variation of the sample is as follows:

Vsample = IR0 + Iη
4q0L2

kπ4 ×
∞

∑
m=1

1− (−1)m

m2
1− exp

[
−m2π2αefft/L2]

m2 (3)

where η is the temperature resistivity coefficient and q0 is the electrical power per unit volume.
The normalized temperature rise (T∗) is calculated from the experimental data as

T∗ =
(

Vsample −V0

)
/(V1 −V0), where V0 and V1 are the initial and steady-state voltages

of the sample. After obtaining T∗, different values of αeff are used to fit the experimental
results T∗ based on Equation (2). According to the least squares fitting technique, the value
giving the best fit of T∗ is used as the αeff of the sample.

For the non-conductive materials, the value of αeff includes thermal radiation and
metal coating effects. Thus, it can be written as [56–58]:

αs = αeff −
1

ρcp

16εrσT3
0

D
L2

π2 −
LLorenzTaveL

RAρcp
(4)

where αs is the thermal diffusivity of the substrate, D is the diameter of the sample to be
measured, εr is the surface emissivity, σ=5.67 × 10−8 W·m−2·K−4 is the Stefan–Boltzmann
constant, and ρcp is the volumetric specific heat of the material. LLorenz is the Lorenz
number, Tave and R are the average temperature and resistance of the sample during the
TET. The second term on the right side of the equation is the thermal radiation effect, and
the third term refers to the coating effect. The radiation effect can be taken out by linearly
fitting the αeff–L2/D curve to L2/D = 0. The slope of the fitting line is 16εrσT0

3/(π2ρcp).
As the other parameters are all known, the emissivity of samples can be calculated from
the slope of the curve. If the material is electrically conductive, it requires no metal coating;
in this case, only the radiation impact should be considered.

3. Differential TET Technique

Since the independent structure of nanometer-thick materials is relatively weak to
suspend, the differential TET technique [58–60] was developed to measure the in-plane
thermal transport of metallic nanostructures so as to accurately represent their electrical
conductivity, thermal conductivity, and Lorenz number.

Since the low-dimensional materials possess low thermal conductivity, they can be
used as the substrates to brace the ultrathin films during testing. As shown in Figure 2a,b, a
metallic layer is applied in the TET experiment to measure αeff. It is clear from Equation (4)
that αeff is influenced by three factors, which are αs, the thermal radiation effect, and the
coating effect. Among them, αs is a constant and the thermal radiation influence remains
generally unchanged and can be neglected. If the coating is added, the value αeff will be
changed accordingly. Therefore, the relation between αeff and the number of layers can
be established. The effective thermal diffusivity of the sample has an expression as [56]
αeff = αs +

4·n·δmax
πD(ρcp)s

[
kc − αs(ρcp)c

]
, where αs is the thermal diffusivity of the substrate,

being a constant value. The subscript c indicates the metallic structure. As shown in
Figure 2c, αeff changes with n conforming to a linear law, and its slope can be obtained
from the fitting. Therefore, the inherent thermal conductivity of a thin coating structure
can be accurately obtained according to the theoretical model. Using the same method, the
electrical conductivity and Lorenz number can also be determined.
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Figure 2. (a) Schematic cross-section of a substrate coated with different layers of nanofilms. The
effective thermal diffusivity variation against the amount of metallic coating layers and electrical
conductance (R−1) used to obtain the Lorenz number, thermal conductivity, and electrical conductivity.
(b) The effective thermal diffusivity versus the inverse electrical resistance of a substrate coated with
6.4 nm-thick Ir layers. (c) Linear fitting curves of the effective thermal diffusivity and resistance
change with the number of Ir layers on the substrate. (Reprinted with permission from Ref. [56]
Copyright John Wiley and Sons Small.).
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Lin et al. measured k of 6.4 nm-thick gold films [61] and 7 nm-to-subnanometrically
thick Ir films [56,60] by applying the differential TET technique. The average thermal
conductivity of Ir films deposited on glass fibers was reduced by 51.2% compared with
the bulk value (147 W·m−1·K−1) at 311 K. Moreover, the decrease in electrical conductivity
was much faster than in thermal conductivity, which caused the Lorenz number to increase
to 6–8 × 10−8 W Ω K −2. It was noted that the thermal conductivity of the Au film on
silkworm silks was 50% of that on glass fibers. However, the thermal conductivity of the
6.4 nm-thick Ir film on silkworm silks was only slightly higher than that on the glass fiber.
These variations in thermal conductivity are probably caused by the difference between the
film structures; that is, Ir film has a finer crystalline size than that of Au.

Dong et al. characterized the thermal and electronic transport properties of 3.2 nm
gold films applied onto the alginate fibers via the differential TET technique [62]. It
was concluded that the thermal and electrical conductivity were significantly reduced by
76.2% and 93.9%, respectively, compared to the corresponding values of the bulk material.
Meanwhile, the calculated Lorenz number was almost three times higher than the Lorenz
number of the bulk material.

The thermal and electrical conductivity of the metallic structures deposited on the
substrates are lower than those of the bulk material. Additionally, the substrate structure
exerts an important impact on the electrical and thermal properties of the metallic structure.
For instance, the silkworm silk has lower thermal conductivity, and the electron tunneling
along with hopping in this type of fiber can improve the electron conductivity of the
metallic structure. Therefore, the silkworm silk is more suitable as a substrate material in
flexible electronic devices.

Liu et al. [63] measured k of the chemical vapor deposited (CVD) graphene supported
on poly(methyl methacrylate) (PMMA) using the differential TET technique shown in
Figure 3. k of 1.33-layered, l.53-layered, 2.74-layered, and 5.2-layered supported graphene
were 365 W·m−1·K−1, 359 W·m−1·K−1, 273 W·m−1·K−1, and 33.5 W·m−1·K−1, respectively.
These values were, on average, eight times lower than those reported for suspended
graphene (k = 3000 W·m−1·K−1). The reduction in k was due to the suppression of ZA
phonons by the substrate. The abundant C atoms in PMMA were more readily coupled
with graphene than other atomic substrates. Hence, the differential TET technique is a fast
and reliable method used to measure k of graphene. This work shows that the differential
TET technique has great potential for future research on the thermal properties of graphene.
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4. Summary and Prospects

In summary, the differential TET technique is one of the most optimal techniques for
characterizing thermal transport properties in extremely confined metallic nanostructures,
allowing one to precisely determine their thermal conductivity, electrical conductivity,
and Lorenz number. Moreover, it possesses significant advantages over other widely
used methods in terms of implementation simplicity, high signal-to-noise ratio, and high
measurement accuracy. The disadvantages of the TET technique are that it cannot measure
samples with extremely low resistance (less than 1 ohm) and measurement needs to be
performed in a vacuum environment. The surface radiation effect cannot be ignored if the
sample has a very large aspect ratio (L/D).

At present, the coating thickness can be explicitly controlled to the order of 0.1 nm.
Additionally, we are limited by the availability of existing coating machines that determine
the thickness of the metal films, but this is not due to the measurement technology itself.
If the thermal conductivity of a substrate material is extremely low, the heat transfer
between the substrate and the metal coating can be effectively reduced. Therefore, the
substrates with low thermal conductivity and small diameter will soon make it possible
to use very thin metallic structures. The TET technique will provide powerful aid in
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mastering the intrinsic heat transport properties of new materials, and it will be helpful for
the development of new materials.
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