Raman Study of the Diamond to Graphite Transition Induced by the Single Femtosecond Laser Pulse on the (111) Face
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Main Principles of Laser Graphitization and Ablation under Femtosecond Irradiation
3.2. Correlation between Graphitization Regimes and the Structure of Raman Spectra in the Region of D and G Lines
3.3. Specific Features of the Raman Spectra of the Phase Graphitized on the (111) Surface in the Low- and High-Frequency Ranges
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, B.; Litvinyuk, I.V.; Rybachuk, M. Femtosecond laser micromachining of diamond: Current research status, applications and challenges. Carbon 2021, 179, 209–226. [Google Scholar] [CrossRef]
- Bharadwaj, V.; Jedrkiewicz, O.; Hadden, J.P.; Sotillo, B.; Vázquez, M.R.; Dentella, P.; Fernandez, T.T.; Chiappini, A.; Giakoumaki, A.N.; Phu, T.L.; et al. Femtosecond laser written photonic and microfluidic circuits in diamond. J. Phys. Photonics 2019, 1, 022001. [Google Scholar] [CrossRef]
- Sundaram, S.K.; Mazur, E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mater. 2002, 1, 217–224. [Google Scholar] [CrossRef]
- Medvedev, N.; Ziaja, B. Multistep transition of diamond to warm dense matter state revealed by femtosecond X-ray diffraction. Sci. Rep. 2018, 8, 5284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayan, J.; Gupta, S.; Bhaumik, A.; Sachan, R.; Cellini, F.; Riedo, E. Q-carbon harder than diamond. MRS Commun. 2018, 8, 428–436. [Google Scholar] [CrossRef]
- Girolami, M.; Bellucci, A.; Calvani, P.; Orlando, S.; Valentini, V.; Trucchi, D.M. Raman investigation of femtosecond laser-induced graphitic columns in single-crystal diamond. Appl. Phys. A 2014, 117, 143–147. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Janulewicz, K.A. Structural transformation of monocrystalline diamond driven by ultrashort laser pulses. Diam. Relat. Mater. 2016, 70, 194–200. [Google Scholar] [CrossRef]
- De Feudis, M.; Caricato, A.P.; Taurino, A.; Ossi, P.M.; Castiglionie, C.; Brambilla, L.; Maruccio, G.; Monteduro, A.G.; Broitman, E.; Chiodini, G.; et al. Diamond graphitization by laser-writing for all-carbon detector applications. Diam. Relat. Mater. 2017, 75, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Ali, B.; Xu, H.; Chetty, D.; Sang, R.T.; Litvinyuk, I.V.; Rybachuk, M. Laser-induced graphitisation of diamond under 30 fs laser pulse irradiation. J. Phys. Chem. Lett. 2022, 13, 2679–2685. [Google Scholar] [CrossRef]
- Wu, M.; Guo, B.; Zhao, Q.; He, P.; Zeng, Z.; Zang, J. The influence of the ionization regime on femtosecond laser beam machining mono-crystalline diamond. Opt. Las. Technol. 2018, 106, 34–39. [Google Scholar] [CrossRef]
- Cadot, G.B.J.; Thomas, K.; Best, J.P.; Taylor, A.A.; Michler, J.; Axinte, D.A.; Billingham, J. Investigation of the microstructure change due to phase transition in nanosecond pulsed laser processing of diamond. Carbon 2018, 127, 349–365. [Google Scholar] [CrossRef]
- Zhao, L.; Song, C.; Zhang, J.; Huang, Y.; Zhang, C.; Liu, Y.; Dong, B.; Xu, Z.; Li, G.; Sun, T. Growth of highly oriented graphite by ultraviolet nanosecond pulsed laser ablation of monocrystalline diamond. Appl. Surf. Sci. 2022, 578, 151995. [Google Scholar] [CrossRef]
- Abubakr, E.; Zkria, A.; Katamune, Y.; Ohmagari, S.; Imokawa, K.; Ikenoue, H.; Yoshitake, T. Formation of low resistivity layers on singlecrystalline diamond by excimer laser irradiation. Diam. Relat. Mater. 2019, 95, 166–173. [Google Scholar] [CrossRef]
- Abubakr, E.; Ohmagari, S.; Zkria, A.; Ikenoue, H.; Pernot, J.; Yoshitake, T. Formation of p-n+ diamond homojunctions by shallow doping of phosphorus through liquid emersion excimer laser irradiation. Mater. Res. Lett. 2022, 10, 666–674. [Google Scholar] [CrossRef]
- De Vita, A.; Galli, G.; Canning, A.; Car, R. A microscopic model for surface-induced diamond-to- graphite transitions. Nature 1996, 379, 523–526. [Google Scholar] [CrossRef]
- Wang, C.Z.; Ho, K.M.; Shirk, M.D.; Molian, P.A. Laser-Induced Graphitization on a Diamond (111) Surface. Phys. Rev. Lett. 2000, 85, 4092–4095. [Google Scholar] [CrossRef]
- Kononenko, V.V.; Khomich, A.A.; Khomich, A.V.; Khmelnitskii, R.A.; Gololobov, V.M.; Komlenok, M.S.; Orekhov, A.S.; Konov, V.I. Highly oriented graphite produced by femtosecond laser on diamond. Appl. Phys. Lett. 2019, 114, 251903. [Google Scholar] [CrossRef]
- van Enckevort, W.J.P. The effect of crystallographic orientation on the optical anisotropy of graphite Layers on Diamond Surfaces. J. Appl. Cryst. 1987, 20, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Ushizawa, K.; Watanabe, K.; Ando, T.; Sakaguchi, I.; Nishitani-Gamo, M.; Sato, Y.; Kanda, H. Boron concentration dependence of Raman spectra on {100} and {111} facets of B-doped CVD diamond. Diam. Relat. Mater. 1998, 7, 1719–1722. [Google Scholar] [CrossRef]
- Kato, H.; Makino, T.; Yamasaki, S.; Okushi, H. n-type diamond growth by phosphorus doping on (0 0 1)-oriented surface. J. Phys. D 2007, 40, 6189–6200. [Google Scholar] [CrossRef]
- Takano, Y.; Takenouchi, T.; Ishii, S.; Ueda, S.; Okutsu, T.; Sakaguchi, I.; Umezawa, H.; Kawarada, H.; Tachiki, M. Superconducting properties of homoepitaxial CVD diamond. Diam. Relat. Mater. 2007, 16, 911–914. [Google Scholar] [CrossRef]
- Edmonds, A.M.; D’Haenens-Johansson, U.F.S.; Cruddace, R.J.; Newton, M.E.; Fu, K.M.C.; Santori, C.; Beausoleil, R.G.; Twitchen, D.J.; Markham, M.L. Production of oriented nitrogen-vacancy color centers in synthetic diamond. Phys. Rev. B 2012, 86, 035201. [Google Scholar] [CrossRef] [Green Version]
- Ozawa, H.; Hatano, Y.; Iwasaki, T.; Harada, Y.; Hatano, M. Formation of perfectly aligned high-density NV centers in (111) CVD-grown diamonds for magnetic field imaging of magnetic particles. Jpn. J. Appl. Phys. 2019, 58, SIIB26. [Google Scholar] [CrossRef]
- Zaitsev, A.M.; Kazuchits, N.M.; Moe, K.S.; Butler, J.E.; Korolik, O.V.; Rusetsky, M.S.; Kazuchits, V.N. Luminescence of brown CVD diamond: 468 nm luminescence center. Diam. Relat. Mater. 2021, 113, 108255. [Google Scholar] [CrossRef]
- Khomich, A.A.; Khmelnitsky, R.A.; Khomich, A.V. Probing the nanostructure of neutron-irradiated diamond using Raman spectroscopy. Nanomaterials 2020, 10, 1166. [Google Scholar] [CrossRef]
- Kononenko, V.V.; Zavedeev, E.V.; Latushko, M.I.; Konov, V.I. Observation of fs laser-induced heat dissipation in diamond bulk. Las. Phys. Lett. 2013, 10, 036003. [Google Scholar] [CrossRef]
- Stoian, R.; Ashkenasi, D.; Rosenfeld, A.; Campbell, E. Coulomb explosion in ultrashort pulsed laser ablation of Al2O3. Phys. Rev. B 2000, 62, 13167. [Google Scholar] [CrossRef]
- Dumitru, G.; Romano, V.; Weber, H.P.; Pimenov, S.; Kononenko, T.; Sentis, M.; Hermann, J.; Bruneau, S. Femtosecond laser ablation of diamond-like carbon films. Appl. Surf. Sci. 2004, 222, 226–233. [Google Scholar] [CrossRef]
- Komlenok, M.S.; Dezhkina, M.A.; Khomich, A.A.; Orekhov, A.S.; Konov, V.I. Measuring the local thickness of laser-induced graphitized layer on diamond surface by Raman spectroscopy. Phys. Status Solidi B 2019, 256, 1800686. [Google Scholar] [CrossRef]
- Takabayashi, K.; Mimura, K.; Tomita, T.; Yamaguchi, M. Characterization of femtosecond laser-induced structural changes in CVD diamond by Raman spectroscopy. J. Laser Micro/Nanoeng. 2022, 17, 103–106. [Google Scholar]
- Querry, M.R. Optical Constants, Contractor Report, CRDC-CR-85034; Missouri University: Columbia, MO, USA, 1985. [Google Scholar]
- Ferrari, A.C.; Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamond-like carbon. Phys. Rev. B 2001, 64, 075414. [Google Scholar] [CrossRef]
- Thomsen, C.; Reich, S. Double resonant Raman scattering in graphite. Phys. Rev. Lett. 2000, 85, 5214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venezuela, P.; Lazzeri, M.; Mauri, F. Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands. Phys. Rev. B 2011, 84, 035433. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.M.; Falicov, L.M. Resonant Raman Scattering. In Light Scattering in Solids. Topics in Applied Physics; Cardona, M., Ed.; Springer: Heidelberg/Berlin, Germany, 1975; Volume 8, p. 80. [Google Scholar]
- Lucchese, M.M.; Stavale, F.; Martins Ferreira, E.H.; Vilani, C.; Moutinho, M.V.O.; Capaz, R.B.; Achete, C.A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592. [Google Scholar] [CrossRef]
- Calvani, P.; Bellucci, A.; Girolami, M.; Orlando, S.; Valentini, V.; Lettino, A.; Trucchi, D.M. Optical properties of femtosecond laser-treated diamond. Appl. Phys. A 2014, 117, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Calvani, P.; Bellucci, A.; Girolami, M.; Orlando, S.; Valentini, V.; Polini, R.; Trucchi, D.M. Absorptance enhancement in fs-laser-treated CVD diamond. Phys. Status Solidi A 2015, 212, 2463–2467. [Google Scholar] [CrossRef] [Green Version]
- Merlen, A.; Buijnsters, J.G.; Pardanaud, C. A guide to and review of the use of multiwavelength Raman spectroscopy for characterizing defective aromatic carbon solids: From graphene to amorphous carbons. Coatings 2017, 7, 153. [Google Scholar] [CrossRef]
- Rouzaud, J.N.; Oberlin, A.; Beny-bassez, C. Preparation and characterization carbon films: Structure and microtexture (optical and electron microscopy, Raman spectroscopy). Thin Solid Film. 1983, 105, 75–96. [Google Scholar] [CrossRef]
- Benybassez, C.; Rouzaud, J.N. Characterization of carbonaceous materials by correlated electron and optical microscopy and raman microspectroscopy. Scan. Electr. Microsc. 1985, 1, 119–132. [Google Scholar]
- Pardanaud, C.; Martin, C.; Roubin, P. Multiwavelength Raman spectroscopy analysis of a large sampling of disordered carbons extracted from the Tore Supra tokamak. Vib. Spectrosc. 2014, 70, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Saito, R.; Hofmann, M.; Dresselhaus, G.; Jorio, A.; Dresselhaus, M.S. Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 2011, 60, 413–550. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cançado, L.G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290. [Google Scholar] [CrossRef] [PubMed]
- Khomich, A.A.; Kononenko, V.V. Transformations of fast neutron-irradiated diamonds under femtosecond laser radiation. J. Phys. Conf. Ser. 2022, 2227, 012001. [Google Scholar] [CrossRef]
- Vertivendan, E.; Hareesh, R.; Ningshen, S. Synthesis and characterization of chemical vapour deposited pyrolytic graphite. Thin Solid Film. 2022, 749, 139180. [Google Scholar] [CrossRef]
- Kawashima, Y.; Katagiri, G. Fundamentals, overtones, and combinations in the Raman spectrum of graphite. Phys. Rev. B 1995, 52, 10053. [Google Scholar] [CrossRef]
- Pardanaud, C.; Cartry, G.; Lajaunie, L.; Arenal, R.; Buijnsters, J.G. Investigating the possible origin of Raman bands in defective sp2/sp3 carbons below 900 cm−1: Phonon density of states or double resonance mechanism at play? J. Carb. Res. C 2019, 5, 79. [Google Scholar] [CrossRef] [Green Version]
- Piscanec, S.; Lazzeri, M.; Mauri, F.; Ferrari, A.C.; Robertson, J. Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett. 2004, 93, 185503. [Google Scholar] [CrossRef] [Green Version]
- Bosak, A.; Krisch, M. Phonon density of states probed by inelastic X-ray scattering. Phys. Rev. B 2005, 72, 224305. [Google Scholar] [CrossRef]
- Wirtz, L.; Rubio, A. The phonon dispersion of graphite revisited. Solid State Commun. 2004, 131, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, B.; Biswas, P.; Atta-Fynn, R.; Drabold, D.A. Amorphous graphene: A constituent part of low density amorphous carbon. Phys. Chem. 2018, 20, 19546–19551. [Google Scholar] [CrossRef]
- Terrones, H.; Terrones, M.; Hernández, E.; Grobert, N.; Charlier, J.-C.; Ajayan, P.M. New metallic allotropes of planar and tubular Carbon. Phys. Rev. Lett. 2000, 84, 1716–1719. [Google Scholar] [CrossRef] [Green Version]
- Kotakoski, J.; Krasheninnikov, A.V.; Kaiser, U.; Meyer, J.C. From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 2011, 106, 105505. [Google Scholar] [CrossRef] [PubMed]
- Kapko, V.; Drabold, D.A.; Thorpe, M.F. Electronic structure of a realistic model of amorphous graphene. Phys. Status Solid B 2010, 247, 1197–1200. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Kumar, C.N.S.; Korvink, J.G.; Kubel, C. Evolution of glassy carbon microstructure: In situ transmission electron microscopy of the pyrolysis process. Sci. Rep. 2018, 8, 16282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohiuddin, T.; Lombardo, A.; Nair, R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D.; Galiotis, C.; Marzari, N.; et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433. [Google Scholar] [CrossRef]
- Gupta, A.K.; Nisoli, C.; Lammert, P.E.; Crespi, V.H.; Eklund, P.C. Curvature-induced D-band Raman scattering in folded graphene. J. Phys. Cond. Matt. 2010, 22, 334205. [Google Scholar] [CrossRef]
- Cong, C.; Yu, T.; Saito, R.; Dresselhaus, G.F.; Dresselhaus, M.S. Second-order overtone and combination Raman modes of graphene layers in the range of 1690–2150 cm−1. ACS Nano 2011, 5, 1600–1605. [Google Scholar] [CrossRef]
- Fantini, C.; Pimenta, M.A.; Strano, M.S. Two-phonon combination Raman modes in covalently functionalized single-wall carbon nanotubes. J. Phys. Chem. C 2008, 112, 13150–13155. [Google Scholar] [CrossRef]
- Tan, P.H.; Dimovski, S.; Gogotsi, Y. Raman scattering of non-planar graphite: Arched edges, polyhedral crystals, whiskers, and cones. Phil. Trans. R. Soc. Lond. A 2004, 362, 2289–2310. [Google Scholar] [CrossRef]
- Casari, C.S.; Giannuzzi, C.S.; Russo, V. Carbon-atom wires produced by nanosecond pulsed laser deposition in a background gas. Carbon 2016, 104, 190–195. [Google Scholar] [CrossRef] [Green Version]
- O’Bannon, E.; Xia, G.; Shi, F.; Wirth, R.; King, A.; Dobrzhinetskaya, L. The transformation of diamond to graphite: Experiments reveal the presence of an intermediate linear carbon phase. Diam. Relat. Mater. 2020, 108, 107876. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khomich, A.A.; Kononenko, V.; Kudryavtsev, O.; Zavedeev, E.; Khomich, A.V. Raman Study of the Diamond to Graphite Transition Induced by the Single Femtosecond Laser Pulse on the (111) Face. Nanomaterials 2023, 13, 162. https://doi.org/10.3390/nano13010162
Khomich AA, Kononenko V, Kudryavtsev O, Zavedeev E, Khomich AV. Raman Study of the Diamond to Graphite Transition Induced by the Single Femtosecond Laser Pulse on the (111) Face. Nanomaterials. 2023; 13(1):162. https://doi.org/10.3390/nano13010162
Chicago/Turabian StyleKhomich, Andrey A., Vitali Kononenko, Oleg Kudryavtsev, Evgeny Zavedeev, and Alexander V. Khomich. 2023. "Raman Study of the Diamond to Graphite Transition Induced by the Single Femtosecond Laser Pulse on the (111) Face" Nanomaterials 13, no. 1: 162. https://doi.org/10.3390/nano13010162
APA StyleKhomich, A. A., Kononenko, V., Kudryavtsev, O., Zavedeev, E., & Khomich, A. V. (2023). Raman Study of the Diamond to Graphite Transition Induced by the Single Femtosecond Laser Pulse on the (111) Face. Nanomaterials, 13(1), 162. https://doi.org/10.3390/nano13010162