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Abstract: Here, we present a review of the major achievements in kinetics, electronic properties, and
engineering in the Fermi level of single-walled carbon nanotubes (SWCNTs). Firstly, the kinetics of
metal-filled SWCNTs were revealed with precision over several minutes. Secondly, the growth rates
of nanotubes were calculated. Thirdly, the activation energies of nanotubes were measured. Fourthly,
the methods of the quantitative analysis of the doping level were developed. Indeed, only qualitative
analysis has been previously performed. The quantitative analysis allowed us to obtain quantitative
data on charge transfer. Fifthly, the correlation between the physical properties, chemical properties,
electronic properties of SWCNTs was elucidated.

Keywords: metal; metal halogenide; carbon nanotube

1. Introduction

The filling of single-walled carbon nanotubes (SWCNTs) [1–10] is made using a gas
phase and liquid phase approach. Metals are introduced inside SWCNTs via a solution
method, and metal halogenides are filled inside SWCNTs through the melt method [10].
These methods are very promising and allow high filling ratios to be obtained [10].

Significant progress has been made in the understanding of kinetics and the electronic
properties of filled SWCNTs and the precise control of the Fermi level, which put SWCNTs
a step forward toward their use in applications. The kinetics and electronic properties
were analyzed using Raman spectroscopy, near edge X-ray absorption fine structure spec-
troscopy (NEXAFS), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron
spectroscopy (UPS), and optical absorption spectroscopy (OAS) [11–92]. It is high time to
review tremendous progress that has been made over the last five years [10]. There are
five major achievements: Firstly, the kinetics of metal-filled SWCNTs were revealed with
the precision of several minutes. Secondly, the growth rates of nanotubes were calculated.
Thirdly, the activation energies of nanotubes were measured. Fourthly, the methods of the
quantitative analysis of the doping level were developed. Indeed, only qualitative analysis
has previously been performed. The quantitative analysis allowed for the obtaining of
quantitative data on charge transfer. Fifthly, the correlation between the physical properties,
chemical properties, and electronic properties of SWCNTs were elucidated.

The goal of this review is to be the central reference for researchers aiming at a precise
control of kinetics and electronic properties toward applications and to stimulate emerging
applications utilizing the physical and chemical properties.

Kinetics and the electronic properties of filled SWCNTs and the engineering of their
Fermi level are tailored for their use as applications. This review begins from the overview
of metal and metal halogenide filled inside SWCNTs. Then, the kinetics of metal-filled
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SWCNT growth are discussed. After that, the review discusses the results of the inves-
tigation of doping and hybridization effects in SWCNTs filled with metals and metal
halogenides using Raman spectroscopy, near edge X-ray absorption fine structure spec-
troscopy, photoemission spectroscopy, and optical absorption spectroscopy. The methods
of the quantification of charge transfer are described, and a discussion of the influence of
different metals and metal halogenides on the electronic properties is presented.

2. Overview of Substances Filled Inside SWCNTs

To date, more than 150 different substances have been succeeded [93–99]. The list
includes metals and metal halogenides.

Metals are introduced inside SWCNTs, including alkali metals (potassium [100]), p-
metals (bismuth [101]), transition metals (iron [102,102–105], cobalt [82,104], nickel [106],
manganese [104], vanadium [104], molybdenum [104], ruthenium [107], palladium [108],
silver [108–114], copper [109,115], rhenium [116–118], gold [108], platinum [108], tung-
sten [5,104,116,118], osmium [116,118]) and lanthanides (europium [119,120] and erbium [121]).

Chemical compounds are the largest group of substances introduced inside SWC-
NTs. The most popular among them are metal halogenides. SWCNTs were filled with
metal fluorides (SnF2 [122]), metal chlorides (sodium/cesium/copper/silver/tantal)
Cl [113,123–133], (manganese/iron/cobalt/nickel/zinc/cadmium/mercury/palladium/
lead)Cl2 [108,126,127,134–145], (iron/yttrium/ruthenium/gold/lanthan/neodym/
samarium/europium/ga-dolinium/terbium/thulium/praseodymium/holmium/erbium/
ytterbium/luthetium)Cl3, Al2Cl6 [102,103,107,108,121,126,127,134,139,142,146–152], (zirk-
onium/hafnium/platinum/ thorium)Cl4 [108,127,139,153–156], MoCl5 [126],WCl6 [126,127],
(KCl)x(UCl4)y [113,157], metal bromides (cesium/copper/silver)Br [113,123,124,127],
(manganese/iron/cobalt/nickel/zinc/cadmium/lead)Br2 [135–138,141,143,145,158,159]),
TbBr3 [151], LuBr3 [152], metal iodides (lithium/sodiu-m/potassium/rubidium/cesium/
copper/silver) I [123,124,127,154–157,160–168], (calcium/strontium/barium/iron/cobalt/
zinc/cadmium/lead)I2 [137,138,141,145,154–156,169–171], (lanthan/terbium/luthetium)I3,
Al2I6 [139,151,152,172,173], SnI4 [126,127]), their mixtures [113,126,127,154,157,160,174,175],
and other substances [176–180].

3. Kinetics

The kinetics of the growth of carbon nanotubes inside (C5H5)2Ni- and (C5H5)2Co-filled
SWCNTs were investigated [98,99]. The growth rates were calculated, and the activation
energies on nickel and cobalt clusters were measured to be between 0.5 and 2.7 eV. It
was shown that metal clusters catalyze the growth of nanotubes that continue for long
hours. Metal clusters grow in size with time and increasing annealing temperature. The
investigations were performed at temperature between 480 and 640 ◦C for nickel- and
cobalt-filled SWCNTs. The duration of growth was between 2 min and 5 days; however, it
can continue for an even longer period of investigation. Figure 1 shows the initial metal
clusters inside carbon nanotubes. They are seen as the dark contrast elements in the images.
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et al. Chiral vector and metal catalyst-dependent growth kinetics of single-walled carbon nanotube,
Carbon. 2018. V. 133. P. 283-292, Copyright (2018), with permission from Elsevier [98].

4. Electronic Properties
4.1. Filling of SWCNTs with Metals

The encapsulation of metals inside SWCNTs was performed in a saturated solution of
metal nitrate (AgNO3 [109–112,179] or Cu(NO3)2 [109,115]).

4.2. Filling of SWCNTs with Metal Halogenides

The embedding of metal halogenides inside SWCNTs was performed using the melt
method. Sealed quartz ampoule was heated above the melting temperature (Table 1), kept
at this temperature for some time, and then cooled down. The filling of the compound
inside SWCNTs occurred via capillary forces. This filling method allowed nanocomposites
with a large filling ratio (up to 90%) of SWCNTs to be obtained. The control of the cooling
procedure of the ampoule allowed for the crystallization of the salt inside SWCNTs and for
one-dimensional nanocrystals to be obtained.

Table 1. Synthesis temperatures of nanocomposites X@SWCNT using the melt filling method.

Filled Substance Tfilling, ◦C Reference Filled Substance Tfilling, ◦C Reference

manganese (II) chloride 750 [136,143] cadmium (II) bromide 669 [141]
manganese (II) bromide 798 [136,143] cadmium (II) iodide 488 [141]
iron (II) chloride 774 [138] lead (II) chloride 601 [145]
iron (II) bromide 784 [138] lead (II) bromide 471 [145]
iron (II) iodide 687 [138] lead (II) iodide 502 [145]
cobalt (II) bromide 778 [158] terbium (III) chloride 688 [142,149,151]
nickel (II) chloride 1101 [135] terbium (III) bromide 927 [151]
nickel (II) bromide 1063 [135,159] terbium (III) iodide 1057 [151]
copper (I) chloride 530 [124] praseodymium(III) chloride 886 [149,150]
copper (I) bromide 600 [124] erbium (III) chloride 900 [121]
copper (I) iodide 705 [124] thulium (III) chloride 924 [149,179]
zinc (II) chloride 400 [137,142] luthetium (III) chloride 940 [152]
zinc (II) bromide 494 [137] luthetium (III) bromide 1050 [152]
zinc (II) iodide 546 [137] luthetium (III) iodide 1100 [152]
rubidium (I) iodide 756 [168,175] mercury (II) chloride 290 [140]
rubidium-silver iodide 756 [175] silver (I) chloride 555 [123]
tin (II) fluoride 300 [122] silver (I) bromide 530 [123]
cadmium (II) chloride 668 [141,142,144] silver (I) iodide 660 [123]

4.3. Doping and Hybridization Effects
4.3.1. Optical Absorption Spectroscopy

The optical absorption spectroscopy (OAS) is an informative method used for the
investigation of the electronic properties of filled SWCNTs. It provides data about charge
transfer in filled SWCNTs. Many samples of filled SWCNTs can be investigated, and the
method is simple and quick. A comparison of the spectra of pristine and filled SWCNTs
reveals the modifications of the electronic structure of carbon nanotubes.

The OAS investigated SWCNTs filled with iron halogenides [138], cobalt bromide [158],
zinc halogenides [137], silver halogenides [123], cadmium halogenides [141], CuCl [129],
copper halogenides [124], PrCl3 [150], and TbCl3 [142]. In most cases, changes in the
spectrum were attributed to the modification of the electronic properties of SWCNTs.

Figure 2 compares the OAS spectra of pristine and CuCl-filled SWCNTs with increasing
exposure time [129]. There are ES

11, ES
22, ES

33, and EM
11 absorption bands. The ES

11 absorption
band vanishes after 5 h of exposure to CuCl gas; moreover, with increasing exposure time,
other absorption bands are also slightly reduced. This was attributed to canceling optical
transitions [129].
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The suppression of the ES
11 absorption band was also revealed [123,124,129,135–138,141,142,158].

Taking into account these data, the authors made a conclusion about doping. For metal
chalcogenide-filled SWCNTs, there are no noticeable changes [176,179,181–188].

4.3.2. Raman Spectroscopy

Raman spectroscopy is a very useful method of investigation for examining the elec-
tronic properties of filled SWCNTs. It is a simple, nondestructive, and informative technique
used to investigate the vibronic properties of carbon nanotubes upon filling. The nanotubes
have a radial breathing mode (RBM) and D, G, 2D bands of Raman spectra, which are
characteristic for a nanotube with a certain diameter, metallicity type, and chiral angle.

The Raman spectrum of pristine SWCNTs shows two dominant peaks in RBM (C1,
and C2) [110]. They are located at 156 and 172 cm−1 (Figure 3a) and belong to main-
diameter semiconducting and metallic SWCNTs, accordingly [189]. The G-line reveals
three components at 1540, 1567, and 1591 cm−1 (Figure 3a). The positions of the individual
peaks are very close to the predicted peak positions [190–192]. The G-band further backs
up this interpretation, as this shape is reminiscent of metallic SWCNTs [190,193,194].

The Raman spectra of Ag-filled SWCNTs show differences (Figure 3b). In the RBM-
band, there are just minuscule downshifts of the peaks by 3 cm−1. In the G-band, there are
shifts from 2 to 6 cm−1. The relative strength of the metallic component increases from 0.70
to 0.79. There is the charge transfer between the SWCNTs and silver with a rigid band shift
as the overall metallicity increases while the resonance conditions are preserved.

Besides silver [109,112,179], there are also similarities to copper [109,115]. This is in
line with the n-doping of SWCNTs, which is expected from the lower work functions of
metals as compared to nanotubes.

Raman spectroscopy was applied for manganese halogenides [136,143], iron halo-
genides [138], CoBr2 [158], nickel halogenides [135], ZnCl2 [142], zinc halogenides [137], sil-
ver halogenides [123], CuCl [129], CuI [161,165], copper halogenides [124], CdCl2 [142,144],
cadmium halogenides [141], lead halogenides [145], SnF2 [122], RbI [168], RbAg4I5 [175],
TbCl3 [142,149,151], TbBr3, TbI3 [151], TmCl3 [149,179], PrCl3 [149,150], luthetium halo-
genides [152], and HgCl2 [140].

The Raman spectra of pristine SWCNTs, electron acceptor PbCl2-filled SWCNTs [145],
and electron donor RbI-filled SWCNTs [168] are shown in Figure 4. In the RBM-band, there
are shifts in the peaks and an alteration in their relative intensities. In the D and 2D-bands,
there are shifts in the peaks and changes in their intensities. The G-band shows changes in
the peak positions and modifications inthe peak profiles [145,168].
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Figure 3. Raman spectra of the pristine SWCNTs (a) and silver-filled SWCNTs (b) recorded at 1.96 eV
(λex = 633 nm). The peak positions are indicated. Reproduced from M. V. Kharlamova et al. Donor
doping of single-walled carbon nanotubes by filling of channels with silver, Journal of Experimental
and Theoretical Physics, V. 115, № 3, p. 485–491, 2012, Springer Nature [110].

An analysis of Raman modes allows the doping effects of the filled SWCNTs to be
investigated in detail (Figure 5) [145,168]. In the RBM-band of the pristine SWCNTs
(Figure 5a), there are peaks at 154, 171, 185, and 196 cm−1. In the G-band, there are three
components, G−

LO, G+
TO, and G+

LO, positioned at 1544, 1566, and 1592 cm−1 [168,190,193].
In the RBM-band of the PbCl2-filled SWCNTs (Figure 5b), there are peaks at 165 and

173 cm−1, and relative intensities are changed from 1:1.83 to 1.63:1. In the G-band, there are
three peaks at 1554, 1575, and 1602. They are upshifted by 10, 9, and 10 cm−1 as compared
to the pristine nanotubes. The relative intensity of the metallic component decreases from
0.40 to 0.06 because of the transition into a semiconducting state [159]. This is similar
for other metal halogenides [122–124,129,135–138,140–144,149–151,158,161,165,179] and
metal chalcogenides [176,180].

In the RBM-band of the RbI-filled SWCNTs (Figure 5c), peak positions are shifted by
5–10 cm−1. However, the intensities are slightly altered due to resonance conditions. In the
G-band, peaks are upshifted by 9, 5, and 1 cm−1 as compared to the pristine nanotubes.
This was consistent with the n-doping of SWCNTs observed using the encapsulated RbI.

Modifications were also found to depend on the p-doping level of nanotubes with
CuCl [129]. The RBM-peaks were upshifted at low doping levels, and they were completely
suppressed at high doping levels. In the G-band, there is a gradual upshift when the doping
level increases.
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Figure 4. The Raman spectra of the pristine SWCNTs (a) [168] (reprinted with permission from [168],
copyright 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim), PbCl2@SWCNT (b) (reproduced
from M. V. Kharlamova et al. Revealing the doping effect of encapsulated lead halogenides on single-
walled carbon nanotubes, Appled Physics A, V. 125, article number 320, 2019, Springer Nature [145])
and RbI@SWCNT (c) [168] (reprinted with permission from [168], copyright 2019 Wiley-VCH Verlag
GmbH & Co. KGaA, Weinheim).

4.3.3. Near Edge X-ray Absorption Fine Structure Spectroscopy

Near edge X-ray absorption fine structure spectroscopy (NEXAFS) is a synchrotron-
based technique for the investigation of the electronic properties of filled SWCNTs. It
provides information about hybridization in filled SWCNTs and the formation of new
chemical bonds between the introduced substances and SWCNTs. It also reveals modi-
fications in the band structure of SWCNTs upon filling; moreover, it can differ between
chemical bonds for different substances and elements.
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Figure 5. Raman spectra of pristine SWCNTs (a) (reproduced from M. V. Kharlamova et al. Revealing
the doping effect of encapsulated lead halogenides on single-walled carbon nanotubes, Appled
Physics A, V. 125, article number 320, 2019, Springer Nature [145]) and the PbCl2-filled SWCNTs
(b) (reproduced from M. V. Kharlamova et al. Revealing the doping effect of encapsulated lead
halogenides on single-walled carbon nanotubes, Appled Physics A, V. 125, article number 320, 2019,
Springer Nature [145]) and RbI (c) (reprinted with permission from [168], copyright 2019 Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim) acquired at 1.96 eV-laser. The positions of the components are
denoted.

NEXAFS allows the formation of chemical bonds between nanotubes and encapsulated
substances to be investigated. In the literature, the C 1s NEXAFS spectra of SWCNTs filled
with iron halogenides [138], nickel halogenides [135], zinc halogenides [137], cadmium
halogenides [141], silver halogenides [123], copper halogenides [124], ErCl3 [121], and
HgCl2 [140] were reported.

Figure 6 compares the C 1s NEXAFS spectra of SWCNTs and HgCl2-filled SWC-
NTs [140]. There is also the π*-resonance at ~285 eV and the π*-resonance at ~292 eV. There
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is, however, an additional pre-edge peak in filled SWCNTs (see label A in Figure 6) before
the π*-resonance at ~284.0 eV. This is due to the hybridization of the π-orbitals of SWCNTs
with embedded mercury chloride.
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Figure 6. The C 1s NEXAFS spectra of SWCNTs and HgCl2-filled SWCNTs. The label A marks a new
feature. Reprinted with permission from Fedoseeva Y.V. et al. Single-walled carbon nanotube reactor
for redox transformation of mercury dichloride, ACS Nano. 2017. V.11. N.9. P.8643-8649. Copyright
2017 American Chemical Society [140].

There is an emergence of similar additional peaks for other metal halogeni-
des [121,123,124,135,137,138,141], because chemical bonds are formed between SWCNTs
and embedded substances.

4.3.4. Photoemission Spectroscopy

The X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy
(UPS) allow the electronic properties of filled SWCNTs to be investigated. In XPS, the mod-
ifications in the spectra of regions are observed. They are characteristic for different fillers.
This includes shifts of peaks and alterations of spectral shapes. In UPS, the changes in
the valence band spectra are revealed. These changes highlight the modifications of the
band structure.

Using photoemission spectroscopy (XPS and UPS) SWCNTs filled with Ag [109,110,179],
Cu [109,115], and Eu [120] were investigated, and more reports are expected.

In Figure 7, in the C 1s XPS spectrum, the first component is unchanged and is assigned
to carbon in the unfilled nanotubes, whereas the other two components belong to the silver-
filled SWCNTs, whose chemical composition is confirmed by the Ag 3d XPS spectrum (see
inset in Figure 7b) [110]. The second component appears upshifted by +0.33 eV due to
the raised Fermi level. The third component is not interpreted [110]. The same effects are
observed for copper-filled SWCNTs [109,115].

The C 1s peak of the Eu-filled SWCNTs was upshifted by 0.1 eV due to the incorporated
europium walls as well as the further modification of the electronic structure [120]. The
UPS data of the Eu-filled SWCNTs demonstrated a uniform upshift of peaks. These peaks
are the consequence of the equal Fermi level upshift. These changes in the spectra are a
clear signature of metallic atomic wires [120].

XPS quantifies the Fermi level shift and reveals the direction of the charge trans-
fer for SWCNTs filled with manganese halogenides [136,143], iron halogenides [138],
CoBr2 [158], nickel halogenides [135], zinc halogenides [137], silver halogenides [123],
lead halogenides [145], cadmium halogenides [141], ZnCl2, CdCl2, TbCl3 [142], copper
halogenides [124], RbI [168], RbAg4I5 [175], TmCl3 [179], PrCl3 [150], and HgCl2 [140] that
were reported. The authors observed the shift of components. These modifications were
attributed to the alteration of the electronic properties.
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the Ag 3d XPS spectrum. Reproduced from M. V. Kharlamova et al. Donor doping of single-walled
carbon nanotubes by filling of channels with silver, Journal of Experimental and Theoretical Physics,
V. 115, № 3, p. 485-491, 2012, Springer Nature [110].

The authors of Refs. [123,135–138,141–143,158] used the same interpretation of the
components of the spectra as in the above-described case. They revealed the shift of the
second component to lower binding energies, i.e., p-doping. The authors of Refs. [124,150]
fitted the C 1s spectra with components of metallic and semiconducting SWCNTs. They
showed larger p-doping for the metallic carbon nanotubes.

The determination of the Fermi level shift was conducted using the secondary electrons’
(SE) cutoff for the copper halogenide-filled SWCNTs [124]. This was reported to be −0.2,
−0.6, and −0.65 eV for CuI, CuBr, and CuCl, accordingly. In [137], the SE cutoff spectra of
SWCNTs and ZnBr2-filled SWCNTs allowed the Fermi level shift of −0.3 eV to be evaluated.

Additional valence band (VB) spectra measurements on copper halogenide- [124]
and zinc bromide-filled [137] nanotubes were in line with the direct measurements of
the work function in the SE cutoff spectra. Regarding the π -peaks in the VB spectra of
SWCNTs, the copper halogenide-filled nanotubes originate from the photoemission from
the π-band of SWCNTs, and the σ-peaks originate from the photoemission from the σ-band
of SWCNTs [124]. The -peaks of filled SWCNTs are shifted to higher kinetic energies by
0.2–0.7 eV. This testifies to p-doping. The comparable effect was derived for ZnBr2 [137]
and ErCl3 [121].

5. Quantification of Charge Transfer in SWCNTs Filled with Inorganic Compounds

For the applications of filled nanotubes, one should quantify the charge transfer.
In [132], the calculation was performed using the photoemission data. Alkali metals are
very reactive, and the charge transfer is assumed to be practically one electron per K+ ion;
thus, Fermi level shifts can be linked to charge transfer densities [195]. Using the calibration
plot (Figure 8), the number of transferred electrons for AgCl-filled SWCNTs was calculated
to be 0.0024 e− per carbon. The charge transfer density along the SWCNT amounted to
0.0406 e−/Å [132].

The crucial properties of fillers that influence the doping type and doping level of
SWCNTs are the work function of inorganic compounds and elementary substances. There
are three doping effect-defining parameters: metallicity type, diameter of SWCNTs, and
filling ratio. The introduction of metals leads to a high-yield filling of the nanotubes. It was
shown that metals result in n-doping, and the Fermi level shift amounted to ~+0.3 eV.

The encapsulation of inorganic compounds inside SWCNTs leads to a homogenous
filling of SWCNTs with large filling ratios. The investigation of the filled SWCNTs, using
OAS, Raman spectroscopy, XPS, UPS, and NEXAFS, proved that halogenides of 3d-metals
(MX2, where M = manganese, iron, cobalt, nickel, copper, zinc, X = chlorine, bromine,
iodine), 4d-metals (MX2, where M = silver, cadmium, X = chlorine, bromine, iodine), 5d-
metals (MX2, where M = mercury, X = chlorine), 4f -metals (MX3, where M = praseodymium,
terbium, erbium, thulium, X = chlorine, bromine, iodine), 5p-metals (MX2, where M = tin,
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X = fluorine), 6p-metals (MX2, where M = lead, X = chlorine, bromine, iodine), ternary
halides (RbAg4I5), and gallium chalcogenides (GaX, X = selenium, tellurium) cause p-
doping with a Fermi level shift of ~0.1–0.4 eV. For halogenides of 3d-, 4d- and 4f -metals, the
Fermi level shift is the highest for chlorides and the smallest for iodides. Moreover, the hy-
bridization of the π-orbitals of SWCNTs with introduced salts was revealed. The nanotubes
of different diameters with arc-discharge and chemical vapor deposition synthesis methods
have different doping levels. The introduced RbI leads to the Fermi level shift of ~+0.2 eV.
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6. Conclusions

This review has demonstrated how filling leads to a precise control over their electronic
properties and how it has widened the scope of possible applications, raising great interest
in science and technology as a result. The ability to tailor the electronic properties according
to the specific requirements of individual applications renders these fascinating materials
viable in the advancement of cutting-edge and fundamental applied research.

Transparency, conductivity, and mechanical robustness are key challenges in the
application of nanoelectronics. While the diameter is only 1 to 2 nm, the contact length and
channel length can be reduced further. Filled SWCNTs can have better contacts, requiring
shorter contact lengths and changes in mechanical stiffness. Thermoelectric applications
based on filled SWCNTs have to aim at a higher conversion efficiency and a decreased
thermal conductivity. Electrochemical energy storage in a filled SWCNT facilitates effective
charge transfer throughout the bulk of composite material. In applications in catalysis,
it is desirable to improve the lifetime of the catalytic particles. It is crucial to maximize
the filling ratio and purity of the filled SWCNTs. For gas sensing, one aims to achieve
sensitivity and selectivity. It is also required to determine the appropriate filling for
spintronic applications. For magnetic recording, the filling might offer a way to shift the
paramagnetic limit. Bioimaging applications of filled SWCNT will greatly benefit from
higher spatial resolution as well as from the imaging of deeper layers of tissue. Reduced
cytotoxicity and better biodegradability constitute the desired improved biocompability of
filled SWCNTs. The targeting systems have to be specifically developed for the different
use cases. The therapeutic options may be further expanded in combined therapies, where
two or more therapeutics are co-delivered on a single platform. Filled SWCNTs are also a
potential electrode material for solar cells.
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