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Abstract: Determining how to improve the non-uniformity of arrayed waveguide grating (AWG) is of
great significance for dense wavelength division multiplexing (DWDM) systems. In this work, a silicon
nanowire-assisted AWG structure is proposed, which can achieve high uniformity with a low insertion
loss. The article compares the effect of nanowire number and shape on uniformity and insertion loss,
finding that double nanowires provide the best performance. Double nanowires with a width of 230 nm
and length of 3.5 µm can consist of a slot configuration between arrayed waveguides, both connecting
to the star coupler and spacing 165 nm from the waveguides. Compared with conventional 8- and
16-channel AWGs with channel spacing of 200 GHz, the non-uniformity of the presented structure
can be improved from 1.09 and 1.6 dB to 0.24 and 0.63 dB, respectively. The overall footprint of the
device would remain identical, which is 276 × 299 or 258 × 303 µm2 for the 8- or 16-channel AWG. The
present high uniformity design is simple and easy to fabricate without any additional insertion loss,
which is expected to be widely applied in the highly integrated DWDM systems.

Keywords: arrayed waveguide grating; nanowire; uniformity; silicon photonics

1. Introduction

High-speed and broadband communication systems play important roles for daily
life [1,2]. Dense wavelength division multiplexing (DWDM) technology has attracted
much attention due to its ability to increase communication capacity easily [3,4]. Among
different DWDM technologies, arrayed waveguide grating (AWG) is one of the most
commonly used technical routes, due to its small crosstalk, low loss, and compact in-
tegration [5–7]. AWGs have been demonstrated in some low-refractive-index-contrast
materials [8,9], such as InP [10], silica [11], and polymer [12]. However, all these materials
have large footprints and bending losses [13,14]. Owing to the high refractive-index-
contrast, silicon-based AWGs can be made very compact [15–18], which also allows for
low-cost, high-volume manufacture due to their complementary metal–oxide semicon-
ductor (CMOS) compatible processing [19,20].

However, the non-uniformity for traditional silicon-based AWGs still needs to be
improved. The insertion loss of the edge channel would be about 3 dB higher than those of
the center ones when free spectral range (FSR) is fully utilized [13,21,22]. Additional light
power needs to be added to maintain the same bit error rate, ultimately affecting the power
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budget of the entire communication system [22–25]. After long-distance transmission, the
signal-to-noise ratio of the traditional AWG would decrease seriously [26]. To solve this
issue, many methods have been proposed such as mode field converters [27–29], optical
combiner structures [30], and slab waveguide configurations [31]. Mode field converters
usually require careful design and fine processing. Optical combiner structures increase
the overall size as well as additional insertion loss. Slab waveguide configurations require
additional transition area between ridge and slab structure which would result in excess
losses. Moreover, some special designs at the interface of the arrayed waveguides and the
free-propagation region were proposed. For example, a cyclic 16-channel AWGR shows a
non-uniformity of approximately 1.1 dB and an additional insertion loss of 2.3 dB [32]. A
12-channel AWG using multimode interference couplers can achieves a non-uniformity of
0.8 dB but greatly increases the device size [33]. Assisted waveguides have been proposed
recently, which could maintain the device size and insertion loss [34]. However, it could
not solve the channel non-uniformity well, and the design still needs further optimization.

In this work, a silicon nanowire-assisted AWG is proposed, which can achieve high
uniformity with a low insertion loss. The article compares the effect of nanowire number
and shape on uniformity and insertion loss, finding that double nanowires provide the
best performance. Double nanowires are used here to consist of a slot configuration
between the arrayed waveguides and connect to the star coupler, which makes it different
from the traditional design. Compared with conventional 8- and 16-channel AWGs with
channel spacing of 200 GHz, the non-uniformity of the presented structure can be improved
from 1.09 and 1.6 dB to 0.24 and 0.63 dB, respectively. Little change happens for the
device’s overall size by the introduction of the nanowires into the gaps between the arrayed
waveguides. The overall footprint of the device would remain identical to the conventional
design, which is 276 × 299 or 258 × 303 µm2 for the 8 or 16-channel AWG. Moreover,
the present simple design has no additional insertion loss. Additionally, a commercially
available CMOS-compatible manufacturing equipment can be used for device fabrication.
Thus, high-volume and low-cost production can be expected.

2. Device Structure and Design

Figure 1a shows the schematic diagram of the proposed nanowire-assisted AWG. The
beam diverges at the input star coupler, then propagates through the arrayed waveguide,
and finally converges on the image plane of the output star coupler. Figure 1b,c show the
detailed diagrams of the arrayed waveguides and star coupler, with the length difference
between two adjacent arrayed waveguides of 2(∆L1 + ∆L2). Here, L1 and L2 are 39 and
120 µm, as well as the bending radius is 20 µm. As shown in Figure 1c, double nanowires
with a width W1 of 230 nm and length L3 of 3.5 µm can consist of a slot configuration
between arrayed waveguides, both connecting to the star coupler and spacing G1 of 165 nm
from the arrayed waveguides. The spacing G2 between the double nanowires is 110 nm.
The designed structure is based on a silicon-on-insulator (SOI) platform, with a 3-µm-thick
buffering layer and a 220-nm-thick silicon core layer, as shown in Figure 1d. The silicon
waveguide with a width W of 500 nm is employed, ensuring a single fundamental TE
mode operation.

For the AWG design, there is a constant length difference between adjacent waveg-
uides, which should equal an integer multiple of the central wavelength. The beam in each
arrayed waveguide with the same wavelength arrives at the output star coupler with the
same phase, and the light field distribution of the input star coupler will be reproduced
in the output star coupler. As a result, the diverging beams in the input star coupler will
converge into beams with the same amplitude and phase distribution on the image plane
of the output star coupler. Due to the effect of waveguide dispersion, the focus point of
the converged beam will move along the image plane of the output star coupler as the
wavelength varies. Thus, the spatial separation of different wavelengths can be achieved
by placing the output waveguides at an appropriate position on the image plane of the
output star coupler [35].
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TE mode.

For this AWG, the grating equation can be expressed as

nsdasinα0 + na∆L + nsdasinα1 = mλ, (1)

where ns and na are effective refractive indices of the star coupler and arrayed waveguides,
da is the space between adjacent arrayed waveguides on the tangent line, α0 and α1 are
the input and output angles, ∆L = 2(∆L1 + ∆L2) is the length difference between adjacent
arrayed waveguides, m is an integer diffraction order, and λ is the wavelength of the beam
within the waveguides [36].

For the conventional AWG, the light field distribution at the arrayed waveguides
approximates a Gaussian distribution, resulting in a Gaussian envelope-distributed beam
focused on the image plane of the output star coupler. Thus, this would lead to a non-
uniform light intensity distribution between the central and edge channels, which could be
described by a non-uniformity Lu defined as

Lu = −10lg(Ie/Ic), (2)

where Ie and Ic are the light intensities in the edge and center channels, respectively [21].
By introducing nanowires at the array waveguide, the field distribution at the end of the
waveguide can be disturbed. Furthermore, the perturbation of the field distribution on
the image plane can be calculated using Kirchhoff–Huygens formula. The parameters of
nanowires are adjusted constantly so that the flat light field distribution on the image plane
can be obtained. Therefore, the power difference of the output channel placed on the image
plane is reduced, and the non-uniformity can be suppressed. Here, 8- and 16-channel
AWGs with improved non-uniformity are presented. Based on the impact of nanowires on
non-uniformity, 8- and 16-channel AWGs with improved non-uniformity are designed and
the main parameters are presented in Table 1.
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Table 1. Parameters of the nanowire-assisted AWG.

Design Parameter

Number of channels 8 16
Center wavelength (nm) 1556 1556

Channel spacing (nm) 1.6 1.6
Free spectral range (nm) 23.39 25.99

Single mode waveguide width (nm) 500 500
Diffraction order 40 36

Length increment (µm) 25.34 22.80
Pitch of adjacent arrayed waveguides (µm) 1.4 1.4

Length of star coupler (µm) 30 50
Number of arrayed waveguides 26 24

Number of nanowires 2 2
Spacing between nanowires and arrayed waveguides (nm) 165 165

Width of nanowires (nm) 230 230
Length of nanowires (µm) 3.5 3.5

3. Device Performance and Discussion

In order to simulate the performance of the nanowire-assisted high uniform AWG,
2.5D-FDTD (Lumerical FDTD Solutions of 8.9.1584) method was used [37]. Perfectly
matched layers (PML) were used to simulate boundary conditions. The mesh size of the
simulation area was set to ∆x = ∆y = 50 nm and ∆z = 20 nm. The refractive indices were
1.444 and 3.476 for SiO2 and Si, respectively. When the wavelength was 1556 nm, the
dispersion was about 1.4227 × 103 ps/nm/km. The light source was set to TE mode with
a center wavelength of 1556 nm. Additionally, the simulation areas of the 8 or 16-channel
AWG were 310 × 290 or 450 × 350 µm2. Light intensity field distribution along the image
plane of AWG with different values of G1, W1 and L3 were compared with the other
two parameters unchanged as in Figure 2d–f. As shown in Figure 2d, it turns out that
the ripple of light intensity distribution became the flattest at a G1 of 165 nm (blue line),
while Figure 2e clearly shows that the flattest light intensity could be obtained at a W1 of
230 nm (red line). Additionally, Figure 2f indicates how the light intensity distribution
was affected by nanowire length L3 and the flattest light intensity could be obtained at a
L3 of 3.5 µm (green line).

It should be emphasized that double nanowires configuration is optimum for the
non-uniformity improvement. Tapered nanowire may not help to improve the insertion
loss and non-uniformity but greatly increase the complexity of the design [21]. Figure 3
shows the simulated non-uniformity and insertion loss for all output channels with
the variation of nanowire number N1. The optimal parameters of nanowires vary with
the nanowire number N1. When N1 is 1, the optimal parameters of nanowires are
G1 = 110 nm, W1 = 440 nm and L3 = 5 µm. When N1 is 2, the optimal parameters of
nanowires are G1 = 165 nm, W1 = 230 nm and L3 = 3.5 µm. When N1 is 3, the optimal
parameters of nanowires are G1 = 140 nm, W1 = 160 nm and L3 = 3.4 µm. For both,
the non-uniformity decreases first and then increases with the nanowire number N1.
When N1 is 2, the channel’s non-uniformity can be minimized to 0.24 and 0.63 dB with
a minimum insertion loss for the 8- and 16-channel AWGs. The additional nanowires
can improve the coupling efficiency of arrayed waveguides and star couplers, reducing
insertion loss. Too few nanowires can not make the light intensity flat, while too many
ones will deteriorate the performance.

It is important to investigate the influence of diffraction order (m) on non-uniformity
and insertion loss. Figure 4 demonstrates the non-uniformity and insertion loss of all
output channels with change of diffraction order. The non-uniformity for an 8-channel
AWG initially decreases and then increases when the diffraction order increases gradually
from 35 to 45, as shown in Figure 4a. When m is 40, the non-uniformity can be minimized
to 0.24 dB. For a 16-channel AWG, the non-uniformity gradually reduces as the diffraction
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order increases from 28 to 36 as in Figure 4b. The free spectral range of 25.99 nm in this
AWG can be fully utilized at m = 36, and the minimum non-uniformity may be achieved
at 0.63 dB.
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Figure 5a shows the comparison of the light intensity distribution on the image plane
between the conventional and optimized designs. By introducing nanowires between the
arrayed waveguides, the variation of light intensity on the image plane of the output star
coupler can be reduced, which ensures that each output waveguide can be obtained the
same optical power and the non-uniformity can be dramatically reduced. As shown in
Figure 5b, the calculated electric field distribution shows that the beam diverges in the
input star coupler, then enters the arrayed waveguides homogeneously. In Figure 5c, the
beam from the end of arrayed waveguides can pass through the output star coupler and
converge on the image plane at a wavelength of 1556 nm.
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Figure 6 shows the spectral response of the 8- and 16-channel AWGs with the
conventional and the nanowire-assisted design, respectively. The double nanowires with
G1 = 165 nm, W1 = 230 nm and L3 = 3.5 µm can be chosen as the best parameters for
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subsequent simulations. For the 8-channel AWG as in Figure 6a,b, the non-uniformity
is reduced from 1.09 to 0.24 dB as the insertion loss of the center channel is reduced
from 6.78 to 6.26 dB. Meanwhile, the non-uniformity of the 16-channel AWG is reduced
from 1.6 to 0.63 dB and the insertion loss of the center channel is reduced from 10.58 to
10.1 dB as in Figure 6c,d. The coupler loss between the waveguide and the star coupler
and furthermore the excitation loss of the adjacent grating make up the majority of the
insertion loss of the AWG. For 8- and 16-channel AWG, the excitation loss of adjacent
gratings are 3.18 and 3.95 dB, respectively, and the coupling loss are 3.08 and 6.15 dB. The
AWG has little scattering and absorption loss. When the bending radius of the waveguide
is greater than 5 µm, the bending loss is negligible [38]. Hence, the nanowire-assisted
AWG can greatly improve the non-uniformity of the channel and reduce the insertion
loss, which is beneficial for the development of WDM systems.
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It is crucial to perform a sensitivity analysis of the device and demonstrate its robust.
For the sensitivity analysis, the above constraint for parameters optimization should also
be met. As shown in Figure 7, the sensitivities of 8- and 16-channel AWGs were simulated.
Variations in non-uniformity were simulated by applying offsets to the AWG parameters
W1, G2, and L3. For a 8-channel AWG, when ∆W1 is between −11 and 11 nm, ∆G1 is
varying from −15 to 10 nm, and ∆L3 is between −130 and 130 nm, the non-uniformity lies
in the range from 0.24 to 0.34 dB, as shown in Figure 7a. For a 16-channel AWG, when
∆W1 is between −6 and 9 nm, ∆G1 is varying from −20 to 14 nm, and ∆L3 is between
−60 and 80 nm, the non-uniformity lies in the range from 0.63 to 0.73 dB, as shown in
Figure 7b. Thus, for the 8-channel AWG, with the fabrication tolerance for W1, G2, and L3
of 22, 25, and 260 nm, respectively, the maximum variation of non-uniformity is 0.1 dB. For
the 16-channel AWG, with the fabrication tolerance for W1, G2, and L3 of 15, 34, and 140 nm,
respectively, the same non-uniformity change can be obtained. It should be mentioned
that some phase noise would be introduced during the lithography. When the phase noise
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increases from 0 to 1 rad, the simulated noise floor of the 8- and 16-channel AWG would
increase 4.16 and 6.14 dB, respectively. Thus, an optimized fabrication process is crucial for
the device production.
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Figure 7. Simulated non-uniformity for (a) 8 and (b) 16-channel nanowire-assisted AWG with the
variation of ∆W1, ∆G1 and ∆L3.

We also compare the presented design with other reported results as in Table 2. The
proposed AWG can perform better in improving the non-uniformity without introducing
any additional insertion loss. At the same time, the waveguide size enables its fabrication
by commercially available manufacturing facilities, which could facilitate its low-cost
applications. The proposal of this scheme is quite simple for improving AWG performance,
which is expected to be applied in other multi-parameter uniformity optimization.

Table 2. Comparison of different high uniformity AWGs reported recently.

Structures Non-Uniformity Channels Additional
Insertion Loss Cross-Talk Year

Conventional [8] 3 15 3.5 dB −19 dB 2017
Optical Combiner

Structures [30] 1.8 32 4.65 dB −38 dB 2009

AWG with MMI [33] 0.8 dB 12 2.07 dB −19.5 dB 2013
Parabolic MMI [39] 1.4 dB 10 2 dB −25.4 dB 2015

Dual-tapered assisted
waveguides [21] 1.9 dB 15 1.1 dB −15 dB 2018

Cyclic Arrayed
waveguides [22] 1.02 dB 16 2.45 dB 22 dB 2019

Mode field converters [31] 0.5 dB 16 1.524 dB −32 dB 2019
This work 0.24/0.63 dB 8/16 0 dB −27/−20.7 dB 2022

4. Conclusions

In summary, a silicon nanowire-assisted AWG is proposed, which can achieve a high
uniformity with a low insertion loss. In comparison with conventional 8- and 16-channel
AWGs for channel spacing of 200 GHz, the non-uniformity of the presented structure can
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be improved from 1.09 and 1.6 dB to 0.24 and 0.63 dB, respectively. The overall footprint
of the device could remain identical, which is 276 × 299 or 258 × 303 µm2 for the 8 or
16-channel AWG. Moreover, the proposed AWG has the advantages of moderate wire size,
which can be fabricated by a commercial CMOS foundry in high volumes at a low cost.
The present nanowire-assisted highly uniform silicon-based AWG is of great significance
for the development of integrated DWDM systems.
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