Impact of Surface Roughness on Partition and Selectivity of Ionic Liquids Mixture in Porous Electrode
Abstract
:1. Introduction
2. Model and Method
3. Results and Discussion
3.1. Bulk Density of Pure Ionic Liquids and Their Mixtures
3.2. Ionic Liquids Mixtures in Rough Nanopores
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Wang, Q.; Zhang, S.; Lu, X.; Zhang, X. Electrodeposition in Ionic Liquids. ChemPhysChem 2016, 17, 335–351. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Liu, X.; Dong, H.; Zhang, X.; Zhang, S. Multiscale Studies on Ionic Liquids. Chem. Rev. 2017, 117, 6636–6695. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, Y.; Sun, Y.; Sun, S.; Shen, G.; Zhao, P.; Cui, J.; Qiao, H.; Wang, Y.; Zhou, H. Manufacturing pure cellulose films by recycling ionic liquids as plasticizers. Green Chem. 2020, 22, 3835–3841. [Google Scholar] [CrossRef]
- Fedorov, M.V.; Kornyshev, A.A. Ionic Liquids at Electrified Interfaces. Chem. Rev. 2014, 114, 2978–3036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, Z.; Chao, H.; Wang, Z.-G. Effects of Confinement and Ion Adsorption in Ionic Liquid Supercapacitors with Nanoporous Electrodes. ACS Nano 2021, 15, 11724–11733. [Google Scholar] [CrossRef]
- Vatamanu, J.; Cao, L.; Borodin, O.; Bedrov, D.; Smith, G.D. On the Influence of Surface Topography on the Electric Double Layer Structure and Differential Capacitance of Graphite/Ionic Liquid Interfaces. J. Phys. Chem. Lett. 2011, 2, 2267–2272. [Google Scholar] [CrossRef]
- Xing, L.; Vatamanu, J.; Smith, G.D.; Bedrov, D. Nanopatterning of Electrode Surfaces as a Potential Route to Improve the Energy Density of Electric Double-Layer Capacitors: Insight from Molecular Simulations. J. Phys. Chem. Lett. 2012, 3, 1124–1129. [Google Scholar] [CrossRef]
- Vatamanu, J.; Borodin, O.; Bedrov, D.; Smith, G.D. Molecular Dynamics Simulation Study of the Interfacial Structure and Differential Capacitance of Alkylimidazolium Bis(trifluoromethanesulfonyl)imide [Cnmim][TFSI] Ionic Liquids at Graphite Electrodes. J. Phys. Chem. C 2012, 116, 7940–7951. [Google Scholar] [CrossRef]
- Vatamanu, J.; Vatamanu, M.; Bedrov, D. Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes. ACS Nano 2015, 9, 5999–6017. [Google Scholar] [CrossRef]
- Wei, J.; Li, Y.; Dai, D.; Zhang, F.; Zou, H.; Yang, X.; Ji, Y.; Li, B.; Wei, X. Surface Roughness: A Crucial Factor to Robust Electric Double Layer Capacitors. ACS Appl. Mater. Inter. 2020, 12, 5786–5792. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Wang, L.; Gao, G. Using Ionic Liquid Mixtures to Improve the SO2 Absorption Performance in Flue Gas. Energy Fuels 2017, 31, 1771–1777. [Google Scholar] [CrossRef]
- Pinto, A.M.; Rodríguez, H.; Colón, Y.J.; Arce, A., Jr.; Arce, A.; Soto, A. Absorption of Carbon Dioxide in Two Binary Mixtures of Ionic Liquids. Ind. Eng. Chem. Res. 2013, 52, 5975–5984. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, L.; Gao, L.; Pi, K.; Zhang, J.; Zheng, C. Improvement of the CO2 Absorption Performance Using Ionic Liquid [NH2emim][BF4] and [emim][BF4]/[bmim][BF4] Mixtures. Energy Fuels 2013, 27, 461–466. [Google Scholar] [CrossRef]
- Baltazar, Q.Q.; Leininger, S.K.; Anderson, J.L. Binary ionic liquid mixtures as gas chromatography stationary phases for improving the separation selectivity of alcohols and aromatic compounds. J. Chromatogr. A 2008, 1182, 119–127. [Google Scholar] [CrossRef]
- Taige, M.; Hilbert, D.; Schubert, T.J.S. Mixtures of Ionic Liquids as Possible Electrolytes for Lithium Ion Batteries. Z. Phys. Chem. 2012, 226, 129–139. [Google Scholar] [CrossRef]
- García, S.; Larriba, M.; García, J.; Torrecilla, J.S.; Rodríguez, F. Liquid–liquid extraction of toluene from n-heptane using binary mixtures of N-butylpyridinium tetrafluoroborate and N-butylpyridinium bis(trifluoromethylsulfonyl)imide ionic liquids. Chem. Eng. J. 2012, 180, 210–215. [Google Scholar] [CrossRef]
- Costa, R.; Voroshylova, I.V.; Cordeiro, M.N.D.S.; Pereira, C.M.; Silva, A.F. Enhancement of differential double layer capacitance and charge accumulation by tuning the composition of ionic liquids mixtures. Electrochim. Acta 2018, 261, 214–220. [Google Scholar] [CrossRef]
- Osti, N.C.; Gallegos, A.; Dyatkin, B.; Wu, J.; Gogotsi, Y.; Mamontov, E. Mixed Ionic Liquid Improves Electrolyte Dynamics in Supercapacitors. J. Phys. Chem. C 2018, 122, 10476–10481. [Google Scholar] [CrossRef]
- Long, J.; Guo, B.; Li, X.; Jiang, Y.; Wang, F.; Tsang, S.C.; Wang, L.; Yu, K.M.K. One step catalytic conversion of cellulose to sustainable chemicals utilizing cooperative ionic liquid pairs. Green Chem. 2011, 13, 2334–2338. [Google Scholar] [CrossRef]
- Van Aken, K.L.; Beidaghi, M.; Gogotsi, Y. Formulation of Ionic-Liquid Electrolyte to Expand the Voltage Window of Supercapacitors. Angew. Chem. Int. Ed. 2015, 54, 4806–4809. [Google Scholar] [CrossRef]
- Lian, C.; Liu, K.; Van Aken, K.L.; Gogotsi, Y.; Wesolowski, D.J.; Liu, H.L.; Jiang, D.E.; Wu, J.Z. Enhancing the Capacitive Performance of Electric Double-Layer Capacitors with Ionic Liquid Mixtures. ACS Energy Lett. 2016, 1, 21–26. [Google Scholar] [CrossRef]
- Wang, X.; Mehandzhiyski, A.Y.; Arstad, B.; Van Aken, K.L.; Mathis, T.S.; Gallegos, A.; Tian, Z.; Ren, D.; Sheridan, E.; Grimes, B.A.; et al. Selective Charging Behavior in an Ionic Mixture Electrolyte-Supercapacitor System for Higher Energy and Power. J. Am. Chem. Soc. 2017, 139, 18681–18687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, C.; Liu, H.; Wu, J. Ionic Liquid Mixture Expands the Potential Window and Capacitance of a Supercapacitor in Tandem. J. Phys. Chem. C 2018, 122, 18304–18310. [Google Scholar] [CrossRef]
- Ma, K.; Janssen, M.; Lian, C.; van Roij, R. Dynamic density functional theory for the charging of electric double layer capacitors. J. Chem. Phys. 2022, 156, 084101. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.-e.; Jin, Z.; Wu, J. Oscillation of Capacitance inside Nanopores. Nano Lett. 2011, 11, 5373–5377. [Google Scholar] [CrossRef]
- Lian, C.; Jiang, D.-e.; Liu, H.; Wu, J. A Generic Model for Electric Double Layers in Porous Electrodes. J. Phys. Chem. C 2016, 120, 8704–8710. [Google Scholar] [CrossRef]
- Liu, K.; Wu, J. Boosting the Performance of Ionic-Liquid-Based Supercapacitors with Polar Additives. J. Phys. Chem. C 2016, 120, 24041–24047. [Google Scholar] [CrossRef]
- Qing, L.; Jiang, J. Double-Edged Sword of Ion-Size Asymmetry in Energy Storage of Supercapacitors. J. Phys. Chem. Lett. 2022, 13, 1438–1445. [Google Scholar] [CrossRef]
- Ma, K.; Forsman, J.; Woodward, C.E. Influence of ion pairing in ionic liquids on electrical double layer structures and surface force using classical density functional approach. J. Chem. Phys. 2015, 142, 174704. [Google Scholar] [CrossRef]
- Liu, K.; Wu, J. Wettability of ultra-small pores of carbon electrodes by size-asymmetric ionic fluids. J. Chem. Phys. 2020, 152, 054708. [Google Scholar] [CrossRef]
- Gallegos, A.; Lian, C.; Dyatkin, B.; Wu, J. Side-chain effects on the capacitive behaviour of ionic liquids in microporous electrodes. Mol. Phys. 2019, 117, 3603–3613. [Google Scholar] [CrossRef]
- Shen, G.; Sun, Y.; Wang, Y.; Lu, X.; Ji, X. Interfacial structure and differential capacitance of ionic liquid/graphite interface: A perturbed-chain SAFT density functional theory study. J. Mol. Liq. 2020, 310, 113199. [Google Scholar] [CrossRef]
- Yang, J.; Lian, C.; Liu, H. Chain length matters: Structural transition and capacitance of room temperature ionic liquids in nanoporous electrodes. Chem. Eng. Sci. 2020, 227, 115927. [Google Scholar] [CrossRef]
- Shen, G.; Zhang, D.; Hu, Y.; Zhang, X.; Zhou, F.; Qian, Y.; Lu, X.; Ji, X. Effect of surface roughness on partition of ionic liquids in nanopores by a perturbed-chain SAFT density functional theory. J. Chem. Phys. 2022, 157, 014701. [Google Scholar] [CrossRef]
- Chen, S.S.; Kreglewski, A. Applications of the Augmented van der Waals Theory of Fluids.: I. Pure Fluids. Ber. Bunsenges. Phys. Chem. 1977, 81, 1048–1052. [Google Scholar] [CrossRef]
- Gross, J.; Sadowski, G. Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules. Ind. Eng. Chem. Res. 2001, 40, 1244–1260. [Google Scholar] [CrossRef]
- Yu, Y.X.; Wu, J.Z. Structures of hard-sphere fluids from a modified fundamental-measure theory. J. Chem. Phys. 2002, 117, 10156–10164. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, Y. Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett. 1989, 63, 980. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, T.; Jiang, D.-e.; Jin, Z.; Henderson, D. A classical density functional theory for interfacial layering of ionic liquids. Soft Matter 2011, 7, 11222. [Google Scholar] [CrossRef]
- Hiroike, K. Supplement to Blum’s theory for asymmetric electrolytes. Mol. Phys. 1977, 33, 1195–1198. [Google Scholar] [CrossRef]
- Weingaertner, H. Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies. ChemInform 2008, 39. [Google Scholar] [CrossRef]
- LeVeque, R.J. Finite Difference Methods for Ordinary and Partial Differential Equations; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2007. [Google Scholar]
- Shen, G.; Sun, Y.; Zhang, X.; Gao, X.; Qian, Y.; Lu, X.; Ji, X. Partition and selectivity of electrolytes in cylindrical nanopores with heterogeneous surface charge. J. Mol. Liq. 2021, 340, 116839. [Google Scholar] [CrossRef]
- Gardas, R.L.; Freire, M.G.; Carvalho, P.J.; Marrucho, I.M.; Fonseca, I.M.A.; Ferreira, A.G.M.; Coutinho, J.A.P. PρT Measurements of Imidazolium-Based Ionic Liquids. J. Chem. Eng. Data 2007, 52, 1881–1888. [Google Scholar] [CrossRef]
- Sanmamed, Y.A.; González-Salgado, D.; Troncoso, J.; Romani, L.; Baylaucq, A.; Boned, C. Experimental methodology for precise determination of density of RTILs as a function of temperature and pressure using vibrating tube densimeters. J. Chem. Themodyn. 2010, 42, 553–563. [Google Scholar] [CrossRef]
- Taguchi, R.; Machida, H.; Sato, Y.; Smith, R.L. High-Pressure Densities of 1-Alkyl-3-methylimidazolium Hexafluorophosphates and 1-Alkyl-3-methylimidazolium Tetrafluoroborates at Temperatures from (313 to 473) K and at Pressures up to 200 MPa. J. Chem. Eng. Data 2009, 54, 22–27. [Google Scholar] [CrossRef]
- Finotello, A.; Bara, J.E.; Narayan, S.; Camper, D.; Noble, R.D. Ideal Gas Solubilities and Solubility Selectivities in a Binary Mixture of Room-Temperature Ionic Liquids. J. Phys. Chem. B 2008, 112, 2335–2339. [Google Scholar] [CrossRef]
- Yadav, A.; Guha, A.; Pandey, A.; Pal, M.; Trivedi, S.; Pandey, S. Densities and dynamic viscosities of ionic liquids having 1-butyl-3-methylimidazolium cation with different anions and bis(trifluoromethylsulfonyl)imide anion with different cations in the temperature range (283.15 to 363.15)K. J. Chem. Themodyn. 2018, 116, 67–75. [Google Scholar] [CrossRef]
- Neves, C.M.S.S.; Kurnia, K.A.; Coutinho, J.A.P.; Marrucho, I.M.; Lopes, J.N.C.; Freire, M.G.; Rebelo, L.P.N. Systematic Study of the Thermophysical Properties of Imidazolium-Based Ionic Liquids with Cyano-Functionalized Anions. J. Phys. Chem. B 2013, 117, 10271–10283. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Neal, J.N.; Wesolowski, D.J.; Henderson, D.; Wu, J. Ion distribution and selectivity of ionic liquids in microporous electrodes. J. Chem. Phys. 2017, 146, 174701. [Google Scholar] [CrossRef]
re | |||
---|---|---|---|
1 | 1.3 | 1.4 | |
ΓBF4 | 6.6 | 7.3 | 8 |
S | 10.7 | 12.7 | 15.7 |
re | |||
---|---|---|---|
1 | 1.3 | 1.4 | |
ΓBF4 | 2.7 | 2.9 | 3.1 |
S | 4.4 | 4.9 | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, G.; Yang, H.; Hu, Y.; Zhang, X.; Zhou, F.; Li, H.; Hong, K. Impact of Surface Roughness on Partition and Selectivity of Ionic Liquids Mixture in Porous Electrode. Nanomaterials 2023, 13, 51. https://doi.org/10.3390/nano13010051
Shen G, Yang H, Hu Y, Zhang X, Zhou F, Li H, Hong K. Impact of Surface Roughness on Partition and Selectivity of Ionic Liquids Mixture in Porous Electrode. Nanomaterials. 2023; 13(1):51. https://doi.org/10.3390/nano13010051
Chicago/Turabian StyleShen, Gulou, Haoguang Yang, Yongke Hu, Xiaojie Zhang, Feng Zhou, Huaju Li, and Kun Hong. 2023. "Impact of Surface Roughness on Partition and Selectivity of Ionic Liquids Mixture in Porous Electrode" Nanomaterials 13, no. 1: 51. https://doi.org/10.3390/nano13010051
APA StyleShen, G., Yang, H., Hu, Y., Zhang, X., Zhou, F., Li, H., & Hong, K. (2023). Impact of Surface Roughness on Partition and Selectivity of Ionic Liquids Mixture in Porous Electrode. Nanomaterials, 13(1), 51. https://doi.org/10.3390/nano13010051