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Abstract: Understanding the influence of surface roughness on the adsorption of ions from an ionic
liquids (ILs) mixture is essential for designing supercapacitors. The classical density functional theory
(DFT) is applied to investigate the adsorption behavior of ILs mixtures in rough nanopores. The
model parameters for each ion are determined by fitting experimental data of pure IL density. The
results show that the smaller anions are densely accumulated near the rough surface and are the
dominant species at a high positive potential. The exclusion of larger anions is enhanced by roughness
at almost all potentials. At negative potential, the surface roughness promotes the adsorption of
cations, and the partition coefficient increases with roughness. The partition coefficient of smaller
anions is virtually independent of roughness. At positive potential, the surface roughness only
promotes the adsorption of smaller anions and raises the partition coefficient. The partition coefficient
of smaller anions is far greater than one. The selectivity of smaller anions for rough surfaces is very
high and increases with roughness. The surface charge of a more uneven surface is significantly
higher (about 30%) at a high potential.

Keywords: ionic liquid; rough electrode; supercapacitors; classical density functional theory

1. Introduction

Ionic liquids are liquid salts consisting of organic cations and organic or inorganic
anions. They can be in a liquid state below 100 ◦C. Because of the unique properties of ILs,
they have been extensively used in many fields including catalysis, cellulose processing,
batteries, supercapacitors, electrodeposition, and lubricant [1–3]. The knowledge of solid-
IL interface is essential for the applications of ILs. The structure and adsorption of ILs
at electrified interfaces significantly influence the performance of ILs in electrochemical
processes [4,5].

ILs have been considered suitable electrolytes for supercapacitors that can store elec-
trical energy through the reversible adsorption of ions. The ILs exhibit the electrical double
layer (EDL) structure near the charged interface. Numerous studies have focused on the
interfacial behavior of ILs near smooth surfaces. However, the solid surface of a porous
electrode is usually not perfectly smooth but is somewhat rough. The surface roughness
influences the ionic structure and affects the performance of ILs on electrified interfaces.
Understanding the partition of ILs in rough nanopores is essential for their use as elec-
trolytes in real applications. Recently some theoretical and simulation work has shown that
electrode roughness can improve capacitive performance [6–10]. The surface roughness
of porous electrodes has been experimentally shown to enhance the specific capacitance.
The molecular dynamics simulations have indicated that the differential capacitance versus
surface potential curves at rough surfaces are more complex.

Mixtures of ILs have gained considerable attention in tuning the properties of ILs.
Many IL mixtures have been used in gas absorption, chromatography, liquid-liquid ex-
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traction, supercapacitors, and batteries [11–18]. For example, mixing ILs has been demon-
strated experimentally to improve the gas absorption performance [13]. IL mixtures have
been successfully utilized for dissolution and in situ catalytic degradations of cellulose in
a batch reactor [19]. In electrochemistry, some mixing ILs can lead to lower viscosity and
conductivity [15]. Recently, for applications of ILs in supercapacitors, the mixture of 1-ethyl-
3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N]) and 1-ethyl-3-
methylimidazolium tetrafluoroborate ([C2mim][BF4]) have been shown to provide sym-
metric charge storage and a maximum capacitance, and expand the operational potential
window [20,21]. The mixture of tetramethylammonium tetrafluoroborate ([TMA][BF4])
and [C2mim][BF4] can provide simultaneous enhanced power and energy densities [22].
However, the fundamental understanding of mixed ILs in rough nanopores of electrode
materials remains limited.

The classical density functional theory (DFT) is a successful and efficient method for
studying interfacial properties of ILs at electrified surfaces by taking into account excluded
volume effects and electrostatic correlations. The DFT using the fundamental measure
theory and mean spherical approximation can reasonably model the EDL structure and
capacitance of ILs [21,23,24]. For example, Jiang et al. predicted the capacitance oscillation
for [C2mim][Tf2N] in nanopores [25]. Lian et al. studied the effects of curvature and pore
size on the differential and integral capacitances [26]. Liu et al. studied the influence
of polar solvents on the performance of IL supercapacitor [27]. Qing et al. studied the
charging of asymmetric ILs supercapacitor using a time-dependent DFT [28]. The effects
of shape asymmetry and formation of ion pair on ILs EDL have also been studied [29–34].
A key point in DFT is to find the accurate approximations of the Helmholtz free energy
functional for the inhomogeneous system. A popular class of Helmholtz energy functionals
is based on the statistical associating fluid theory (SAFT) equation of state (EoS). The DFT
model based on a SAFT EoS can be used to study the bulk and inhomogeneous systems in
a consistent way.

In this work, we employ the PC-SAFT-based DFT to study the adsorption and se-
lectivity of mixed ILs in charged rough nanopores, which has rarely been considered in
previous studies. We mainly focus on the impact of surface roughness. The Helmholtz
energy functional of the DFT model accounts for the hard-sphere, the dispersive, and the
electrostatic correlation interactions. A brief overview of the DFT model and a description
of the confined system are presented in Section 2. In Section 3, the molecular parameters for
each ion are fitted to the experimental density data of pure ILs. The DFT model is applied
to explore the impact of roughness on ionic structure, adsorption, and selectivity of the ILs
mixtures. Finally, conclusions are given in Section 4.

2. Model and Method

In this work, we consider mixtures of [C2mim][Tf2N] and [C2mim][BF4] confined in
the rough slit-shaped pore of the porous electrode. To model the confined system with
PC-SAFT-based DFT, the coarse-grained method is used to represent the ILs. Each IL-ion is
modeled as a charged spherical particle of diameter σ. The detailed atomistic configuration
of ions is not considered. The coarse-grained interaction potential between ions is assumed
to be the sum of the soft repulsion of Chen and Kreglewski [35], Lennard-Jones dispersion
and electrostatic interaction. The bulk properties of ILs can be calculated using the PC-SAFT-
MSA EoS. The two pure IL-ion parameters in the model are the particle-size parameter σ
and the dispersion-energy parameter ε. The Helmholtz free energy of PC-SAFT-MSA EoS
is provided in previous publications [32,36].

Figure 1a schematically shows the mixture of ILs confined in the rough nanopore. We
consider rough walls with arrays of identical square shape roughness elements of width
we and height he. The rough walls are infinite in the y–z plane. The distance between the
roughness elements is de.
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Figure 1. (a) A schematic of the structure of IL-ions and a rough nanopore. (b) A schematic of the
computational domain.

The nanopore is considered to be an open system in contact with a bulk reservoir. The
equilibrium properties of inhomogeneous ILs can be obtained from classical DFT. Therefore,
it is convenient to use the grand potential Ω. Ω is a functional of fluid density, and it is
written as

Ω = F + ∑
i

∫
dr′ρi

(
r′
)(

Vi,ext
(
r′
)
− µi

)
(1)

In Equation (1), F is the Helmholtz energy, ρi is the density profile of species i, and µi
is the bulk chemical potential. Vi,ext is the external potential composed of hard-wall and
electrostatic contributions. The ionic profiles are uniform along the z-axis. Thus, we just
calculate the two-dimensional ionic profile ρ(x, y). In the y-direction, the external potential
is periodic, and the ionic profiles have the period Ly = we + de. We just need to calculate
the ionic profiles in the finite range 0 ≤ y ≤ Ly (see Figure 1b). Figure 1b shows a schematic
for the computational domain. The line segments represent the solid wall, such as the line
segment CD. The dotted line denotes the average profile of a rough surface. In order to
get a better comparison between different surfaces, the pore volume accessible to the ions
is a fixed value. The width of the smooth nanopore is equal to Lav

x . The width of a rough
nanopore Lx is adjusted according to Lav

x (we + de) = Lx(we + de)− 2wehe.
The Helmholtz energy functional F is a functional of density ρi. F can be decomposed

into an ideal term Fid and an excess term Fex

F = Fid + Fex (2)

In Equation (2), Fex can be decomposed into four terms based on molecular interactions
Fex = Fhs + Fdisp + Fc + Fel . Fc denotes the direct Coulomb contribution and is included
in the mean electrostatic potential φ(r). Fhs, Fdisp, and Fel denote hard-sphere repulsion,
dispersive attraction, and electrostatic correlation contributions to the functional F. These
contributions simplify to the corresponding contributions to Helmholtz energy of PC-
SAFT-MSA EoS for a homogeneous fluid. Here we briefly introduce the functionals of
PC-SAFT-MSA DFT. The modified fundamental measure theory (MFMT) is used to calculate
the hard-sphere contribution Fhs [37]

βFhs =
∫

drΦhs[nα(r)]

Φhs is the energy density from MFMT, it is a function of six weighted densities nα(r)
proposed by Rosenfeld [38]. The MFMT can accurately describe inhomogeneous hard-
sphere fluids.

Fdisp is the extension of the dispersive term of PC-SAFT based on the weighted density
approximation [34].

βFdisp =
∫

drΦdisp[ρi(r)]

where Φdisp is similar to the dispersive term of the PC-SAFT, it is a function of averaged
densities ρi(r). More details of Fdisp are described in previous work [34].
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Fel accounts for the electrostatic correlation contribution and is calculated by expanding
the functional around the bulk fluid [39].

βFel = βFel [ρi,b]−∑
i

∫
dr∆C1,el

i (r)(ρi(r)− ρi,b)−
1
2 ∑

ij

x
drdr′∆C2,el

ij
(
r, r′
)
(ρi(r)− ρi,b)

(
ρj(r)− ρi,b

)
Here, ρi,b is the bulk density of species i. ∆C1,el

i represents the electrostatic contribution
to the chemical potential. The expressions of ∆C2,el

ij from the mean spherical approximation
are used [40].

In equilibrium, the grand potential is minimal. Thus minimization of Ω with respect
to ρi yields

δΩ
δρi(r)

= 0 (3)

Using Equation (1) and the expressions of F Equation (3) can be explicitly written as

ρi(r) = exp

βµi −
δβ
(

Fhs + Fdisp + Fel
)

δρi(r)
− βZieφ(r)− βV′i,ext(r)

 (4)

where β = 1/kBT, kB is the Boltzmann constant, T is the temperature, Zi is the valence of
component i, and e is the unit charge. Zi equals +1 for a cation and −1 for an anion. V′i,ext is
the hard-wall part of Vi,ext, and the electrostatic part of Vi,ext is included in φ(r).

For the calculation of the mixture, the Lorentz–Berthelot combining rules are used to
obtain the size and energy parameter {

σij =
σi+σj

2
εij =

√
εiε j

The binary interaction parameter between two components i and j was not applied.
We have used the fast Fourier transform to calculate the convolution integrals of

functional derivatives in Equation (4). The local electrostatic potential φ(r) is related to the
Poisson equation

∇2φ(r) =
−e
ε0εr

∑
i

Ziρi(r) (5)

ε0 is the permittivity of the vacuum. εr is the relative dielectric permittivity and is set
at 12, this value is close to the experimental data [41]. It is assumed that surface polarization
can be ignored.

The Poisson equation with appropriate boundary conditions is discretized using the
finite difference method [42]. Equations (4) and (5) are solved self consistently using an
iteration method for a specified surface potential φs. The hybrid algorithm combining
Picard iteration and Anderson acceleration is applied to speed up the calculation. The
numerical details for DFT calculations can be found in the previous publication [34,43].

From the ionic profiles, we can calculate the total surface charge Qs (C/Å) of a solid
surface based on the charge neutrality condition

Qs = −
1
2

∫
dxdy ∑

i
eZiρi(x, y) (6)

The average density ρi of species i in the nanopore is calculated as

ρi =
1

LxLy − 2wphp

∫
dxdyρi(x, y) (7)
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The partition coefficient is calculated as

Γi =
ρi

ρi,b
(8)

The selectivity of the smaller anion [BF4]− over the larger anion [Tf2N]− is defined as
S = ΓBF4/ΓTf2N.

3. Results and Discussion
3.1. Bulk Density of Pure Ionic Liquids and Their Mixtures

In order to determine the model parameters for each ion, we first apply the PC-SAFT-
MSA EoS to model the bulk density of pure ILs. The ionic parameters σ and ε are fitted to the
experimental data of density of [C2mim][Tf2N] and [C2mim][BF4] [44–46]. The parameters
are σC2mim = 5.25 Å and (ε/kB)C2mim = 697.77 K, σTf2N = 6.44 Å and (ε/kB)Tf2N =
855.12 K, σBF4 = 4.54 Å and (ε/kB)BF4 = 597.15 K. The absolute average relative deviation

(AARD) is considered. The deviation is defined by AARD = 100
N

N
∑

i=1

∣∣∣ρcal − ρexp
∣∣∣/ρexp, ρcal

and ρexp are the calculated density and experimental density, respectively. The AARD of
0.5% is obtained for pure ILs density. Figure 2a shows an example of model results at
atmospheric pressure. The symbols denote experimentally measured density, and the lines
indicate the model result. The model result is in good agreement with the experimental data.
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Figure 2. (a) Bulk density of pure ILs [C2mim][Tf2N] and [C2mim][BF4] at T = 293.1K and atmo-
spheric pressure. Symbols: experimental data [48,49]; lines: model results. (b) Density of mixture
[C2mim][Tf2N]/[C2mim][BF4] as a function of mole fraction of [C2mim][BF4] (XBF4), T = 293.1K.
Symbols: experimental data [47]; line: model prediction.

Then, the ionic parameters are used to predict the density of mixtures of [C2mim][Tf2N]/
[C2mim][BF4] without any binary parameter. Figure 2b shows an example of model results
at a temperature of 293.1K and atmospheric pressure. The symbols are experimental data [47],
and the line represents model prediction. The model prediction agrees with experimental
data, and the AARD is about 2%. We have also calculated the relative deviation between the
predicted density and experimental data for each composition, the result is shown in Figure
S1 in the supplementary material. The maximum relative deviation is about 4%.

3.2. Ionic Liquids Mixtures in Rough Nanopores

In this section, the DFT model is used to study mixtures of ILs confined in the rough
pore. The temperature and the pressure are fixed at 323 K and 1 bar. Two ILs mixtures
were considered in this work with molar fraction of [C2mim][BF4] in the bulk phase XBF4
equals 0.2 and 0.5, respectively. The calculated number density of the mixture in the bulk
phase is 4.97 nm−3 for XBF4 = 0.2 and 5.73 nm−3 for XBF4 = 0.5. For rough pores, the
roughness width we is set at 1.4 nm, and the distance between roughness element de = we.
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The average size of the pore Lav
x is set at 3 nm. The grid resolution of the two-dimensional

DFT computation is 0.01 nm.
We have studied the adsorption of mixed ILs in nanopores with roughness height he

ranging from 0 to 0.56 nm. The surface potential φs varies from −1 V to 1 V. The Wenzel
roughness factor is an important parameter to characterize a rough surface. The Wenzel
roughness factor is the ratio of the true area to the apparent area of the solid surface [50]. Thus
the roughness factor for the considered surface can be calculated as re = 1 + 2he/(we + de).
For a smooth surface, re equals one. For a rough surface, re is greater than one and increases
with he.

We first investigate the two-dimensional ion structure in rough nanopores. The rough
walls induce oscillations in the density profiles in both normal (perpendicular to the
substrate wall) and lateral (parallel to the substrate wall) directions. For example, Figures 3
and 4 show two-dimensional density profiles for ions in a rough pore with the roughness
factor re = 1.4, several normal density curves taken at the specified location, as well as the
density profiles for ions in the smooth pore. More examples of normal and lateral density
curves are shown in Figure S2. The molar fraction of [BF4]− in the bulk ILs mixture is XBF4
= 0.2, and the surface potential φs is 1 V. The smaller anions are densely packed near the
rough surface with a significant lateral structure, and the density profile shows sharp peaks.
The larger anions and cations are excluded from the surface.
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Figure 3. Two-dimensional density profiles of [C2mim]+ (a), [Tf2N]− (b), and [BF4]− (c) in a nanopore
at surface potential φs = 1 V, XBF4 = 0.2, and re = 1.4 that corresponds to he = 0.56 nm.
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Figure 4. (a) One-dimensional density curves of ions taken at the specified y position. Other condi-
tions are the same as in Figure 3. (b) Density profiles for ions in a smooth pore at surface potential
φs = 1 V, and XBF4 = 0.2.

In the x direction, the ions have a multilayer EDL structure. The smaller anions can
get closer to the surface and occupy a smaller space, and they are more widely distributed
in the pore. The contact density of smaller anions around the rough wall is higher than that
around the smooth wall. The larger anions are mainly located near the middle of the pore,
and almost none of them exist at the surface. Thus, at high surface potential, the smaller
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anions are more strongly adsorbed to the surface. In the y direction, at the bottom (line
segment AB as shown in Figure 1b) and top (line segment CD) of the rough surface, there is
considerable structure. As one can see in Figure 3c, there are three strong layers of smaller
anions [BF4]− at the bottom of the surface, the layer thickness is of the same order as the
anion’s diameter. There are almost no cations and larger anions in this region. To gain a
further understanding of the structure, we investigate the local excess adsorption, which is
calculated as

Ni(x) =
∫

dy(ρi(x, y)− ρi,b)

We have calculated the local excess adsorptions of three ions for two bulk concen-
trations, Figure 5a shows the result for bulk concentration XBF4 = 0.2, and the result for
XBF4 = 0.5 is shown in Figure S3, all other parameters are the same as in Figure 3. There are
four layers of excess ions near a surface. If we calculate the integral of ionic density in the
layer we get the number of adsorbed ions. Figure 5b shows the number of ions adsorbed
in each layer. The excess adsorption of smaller anions is higher and exhibits two peaks
near the solid wall, and the small anions are the dominant species in the near-wall region.
The first peak indicates the adsorption of small anions at the bottom of rough surface (line
segments AB and EF), and the second peak indicates the adsorption around the top of
rough surface (line segment CD). The smaller anions accumulate in the first and second
layers and have high density, even at a low bulk concentration. The excess adsorption of
smaller anions away from the wall is close to zero, and the local average density will be
almost the same as the bulk value. When the bulk composition of smaller anions increases
to 0.5, the value of excess adsorption peak for smaller ions around the wall shows little
change. The number of larger anions in the first and second layers is close to zero and
the total number of larger anions is much lower than smaller anions. Therefore, the larger
anions tend to be excluded from the pore, and they are only enriched in the central region
of the pore.
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Figure 5. (a) Local excess adsorption of ions in nanopore with rough surfaces. (b) Number of ions
adsorbed in the four layers near the surface (i = 1 is the first layer, i = 2 is the second layer, i = 3 is the
third layer, i = 4 is the fourth layer). Other conditions are the same as in Figure 3.

Then, we investigate the effect of surface roughness on the adsorption and selectivity
of ions. Figure 6 shows the calculated partition coefficient of ions as a function of φs, and the
corresponding average density of each ion adsorbed inside the pore is shown in Figure S4,
the bulk composition XBF4 is 0.2, and roughness factor re = 1, 1.3 and 1.4. The partition
coefficient is directly proportional to the average density as shown in Equation (8). At low
absolute potential, the increasing surface roughness results in a decrease in the average
density of cations and larger anions, so cations and larger anions tend to be excluded from
the rough pores. ρ of larger anions [Tf2N]− is significantly greater than that of smaller
anions [BF4]− because there are more anions [Tf2N]− in the connected bulk phase. For
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the bulk composition XBF4 = 0.5, ρ of larger anions is only slightly greater than that of
smaller anions.
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At negative potential, the cations become enriched in the nanopore, and their average
density monotonically increases with absolute potential. When the surfaces are sufficiently
negatively charged, ρ of all anions decreases with increasing voltage. As the surface roughness
increases, ρ of cations increases, and ρ of larger anions [Tf2N]− decreases. Nevertheless, the
average density of smaller anions [BF4]− is almost independent of surface roughness. Overall,
the adsorption of cations and the exclusion of larger anions are significantly enhanced by
roughness.

At positive potential, the anions become enriched in the nanopore. As the surface
roughness becomes higher, ρ of smaller anions monotonically increases, whereas the ρ of
larger anions first increases, passes through a maximum, and then decreases. As the surface
roughness increases, ρ of cations and larger anions [Tf2N]− decreases, while ρ of smaller
anions [BF4]− significantly increases. Thus, the surface roughness induces exclusion toward
larger anions in almost the entire range of potentials. The adsorption of smaller anions is
promoted by roughness at positive potentials and is more energetically favorable than that
of larger anions.
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At low potential, ρ of all ions is lower than the bulk density, so all ions tend to be
excluded from the nanopore. ρ of larger anions [Tf2N]− is lower than the bulk density in
the entire range of potentials. Thus, the partition coefficient of larger anions is less than one
and decreases with increasing surface roughness.

At high positive potential, the high value of ρ of smaller anions indicates that smaller
anions neutralize the surface charge favorably. ρ of smaller anions [BF4]− is much higher
than the bulk density. Thus, the partition coefficient of smaller anions is far greater than
one and increases with increasing surface roughness. Tables 1 and 2 show the partition
coefficient and selectivity of smaller anions [BF4]− for two bulk compositions, the potential
φs is 1 V. For the bulk composition XBF4 = 0.5, the partition coefficient of smaller anions at
high positive potential is significantly lower (around 3).

Table 1. Partition coefficient and selectivity of [BF4]−, φs = 1 V and XBF4 = 0.2.

re

1 1.3 1.4

ΓBF4 6.6 7.3 8
S 10.7 12.7 15.7

Table 2. Partition coefficient and selectivity of [BF4]−, φs = 1 V and XBF4 = 0.5.

re

1 1.3 1.4

ΓBF4 2.7 2.9 3.1
S 4.4 4.9 5.8

At high negative potential, the partition coefficient of cations is greater than one, and
is slightly lower for XBF4 = 0.5. The partition coefficient of smaller anions is virtually
independent of roughness and slightly decreases with increasing absolute potential.

Figure 7 shows the selectivity of [BF4]− over [Tf2N]− as a function of surface potential
for two bulk compositions. At low absolute potential, the selectivity S < 1, larger anions are
preferred inside the pore. The surface roughness does not influence the selectivity.
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When the surface is strongly negative-charged, the selectivity S > 1, and the smaller
anions [BF4]− are selected. A similar trend has been reported by Neal et al. for ILs mixture
in smooth nanopores [51].

At moderate and high positive potential, adsorption of the smaller anions [BF4]− is
energetically more favorable, so the selectivity S > 1. The rough surfaces can enhance the



Nanomaterials 2023, 13, 51 10 of 13

adsorption of smaller anions, a significant selectivity for rough surfaces is observed, and
the selectivity increases with increasing surface potential. The selectivity for rough surfaces
with re = 1.4 is almost 1.6 times the value for smooth surfaces. The selectivity is lower for a
higher bulk composition of [BF4]−.

Overall, at high potential, the electrosorption of small anions inside the pore is more
energetically favorable. An increase in surface roughness leads to an increase in selectivity.

In the end, the surface charge Qs is investigated. For example, Figure 8 shows the
surface charge versus φs for XBF4 = 0.2. Qs monotonically increases with φs. When the
absolute value of φs is high, the absolute value of Qs of a rough pore is considerably higher
than that of a smooth pore. The absolute surface charge is higher for higher roughness.
Because the volumes of different walls are alike, the rough pore tends to give a higher
volume-specific integral capacitance.
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Overall, the increase in surface roughness also induces a rise in the absolute surface
charge. As the roughness increases, the reason for increasing absolute surface charge at
negative potential is that the adsorption of cations and exclusion of larger anions are en-
hanced. The reason for increasing surface charge at positive potential is that the adsorption
of smaller anions and exclusion of cations are enhanced.

4. Conclusions

In this work, we have investigated the adsorption and selectivity of mixed ILs in
rough nanopores through a PC-SAFT-MSA-based DFT. The molecular parameters of ILs
are fitted to the experimental data of pure liquid density. The molecular parameters are used
to predict the bulk density of mixed ILs. The predicted density agrees with experimental data.
For the confined system, the results show that at a high positive potential, the smaller anions
are densely accumulated near the rough surface and are the dominant species. The larger
anions tend to be excluded from the pore. The surface roughness enhances the exclusion
of larger anions in the entire range of potentials, and the partition coefficient decreases
with increasing roughness. At negative potential, the adsorption of cations is promoted
by surface roughness, and the partition coefficient increases with increasing roughness.
However, the surface roughness does not affect the adsorption of smaller anions; thus, the
partition coefficient of smaller anions is independent of roughness. At positive potential,
the surface roughness significantly enhances the adsorption of smaller anions. The partition
coefficient of smaller anions is far greater than one and increases with surface roughness.
The selectivity of smaller anions for a rough pore is higher than for a smooth pore and
increases with roughness. At high surface potential, the absolute value of the surface charge
of a rough pore is significantly larger than that of a smooth pore. Therefore, the rough
electrode can hold more charge.
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This work gives insight into the selective adsorption of mixed ILs in rough nanopores
and helps to understand the charge storage on real mixed ILs/electrode interface. The
results indicate that both composition and atomic scale roughness of surface are important
factors that have to be considered for the optimization of ILs capacitors. In the present study,
some other factors that may impact the partition and selectivity of mixed ILs are neglected,
for example, the atomic configuration of ions, surface polarization, and the association
between the cation and the anion. The IL is fully dissociated in the model. Therefore, the
model needs to be further improved for some protic ILs that contain neutral species.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13010051/s1, Figure S1: Relative deviation for density of

mixture [C2mim][Tf2N]/[C2mim][BF4]. Relative deviation is calculated as
(

ρcal − ρexp
)

/ρexp; Figure
S2: One-dimensional density curves of ions taken at the specified x and y positions. Other conditions
are the same as in Figure 3; Figure S3: Local excess adsorption of ions in nanopore with rough
surfaces, XBF4 = 0.5, other conditions are the same as in Figure 3; Figure S4: Average density of ions
as a function of φs, the bulk molar fraction XBF4 is 0.2.
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