Long-Term Operational Stability of Ta/Pt Thin-Film Microheaters: Impact of the Ta Adhesion Layer
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Zhang, L.; Li, K.H.H.; Tan, O.K. Microhotplates for Metal Oxide Semiconductor Gas Sensor Applications—Towards the CMOS-MEMS Monolithic Approach. Micromachines 2018, 9, 557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharyya, P. Technological Journey towards Reliable Microheater Development for MEMS Gas Sensors: A Review. IEEE Trans. Device Mater. Reliab. 2014, 14, 589–599. [Google Scholar] [CrossRef]
- Karpov, E.E.; Karpov, E.F.; Suchkov, A.; Mironov, S.; Baranov, A.; Sleptsov, V.; Calliari, L. Energy Efficient Planar Catalytic Sensor for Methane Measurement. Sens. Actuators A Phys. 2013, 194, 176–180. [Google Scholar] [CrossRef]
- Roslyakov, I.V.; Kolesnik, I.V.; Evdokimov, P.V.; Skryabina, O.V.; Garshev, A.V.; Mironov, S.M.; Stolyarov, V.S.; Baranchikov, A.E.; Napolskii, K.S. Microhotplate Catalytic Sensors Based on Porous Anodic Alumina: Operando Study of Methane Response Hysteresis. Sens. Actuators B Chem. 2021, 330, 129307. [Google Scholar] [CrossRef]
- Vereshchagina, E.; Tiggelaar, R.M.; Sanders, R.G.P.; Wolters, R.A.M.; Gardeniers, J.G.E. Low Power Micro-Calorimetric Sensors for Analysis of Gaseous Samples. Sens. Actuators B Chem. 2015, 206, 772–787. [Google Scholar] [CrossRef]
- Ejeian, F.; Azadi, S.; Razmjou, A.; Orooji, Y.; Kottapalli, A.; Ebrahimi Warkiani, M.; Asadnia, M. Design and Applications of MEMS Flow Sensors: A Review. Sens. Actuators A Phys. 2019, 295, 483–502. [Google Scholar] [CrossRef]
- Djuzhev, N.A.; Ryabov, V.T.; Demin, G.D.; Makhiboroda, M.A.; Evsikov, I.D.; Pozdnyakov, M.M.; Bespalov, V.A. Measurement System for Wide-Range Flow Evaluation and Thermal Characterization of MEMS-Based Thermoresistive Flow-Rate Sensors. Sens. Actuators A Phys. 2021, 330, 112832. [Google Scholar] [CrossRef]
- Beckel, D.; Briand, D.; Bieberle-Hütter, A.; Courbat, J.; de Rooij, N.F.; Gauckler, L.J. Micro-Hotplates—A Platform for Micro-Solid Oxide Fuel Cells. J. Power Sources 2007, 166, 143–148. [Google Scholar] [CrossRef]
- Podor, R.; Trillaud, V.; Nkou Bouala, G.I.; Dacheux, N.; Ricolleau, C.; Clavier, N. A Multiscale in Situ High Temperature High Resolution Transmission Electron Microscopy Study of ThO 2 Sintering. Nanoscale 2021, 13, 7362–7374. [Google Scholar] [CrossRef]
- van Omme, J.T.; Wu, H.; Sun, H.; Beker, A.F.; Lemang, M.; Spruit, R.G.; Maddala, S.P.; Rakowski, A.; Friedrich, H.; Patterson, J.P.; et al. Liquid Phase Transmission Electron Microscopy with Flow and Temperature Control. J. Mater. Chem. C. Mater. 2020, 8, 10781–10790. [Google Scholar] [CrossRef]
- Spruit, R.G.; Tijn Van Omme, J.; Ghatkesar, M.K.; Hugo Pérez Garza, H. A Review on Development and Optimization of Microheaters for High-Temperature in Situ Studies. J. Microelectromech. Syst. 2017, 26, 1165–1182. [Google Scholar] [CrossRef]
- Lin, X.; Nagl, S. A Microfluidic Chip for Rapid Analysis of DNA Melting Curves for BRCA2 Mutation Screening. Lab Chip 2020, 20, 3824–3831. [Google Scholar] [CrossRef] [PubMed]
- Jang, I.R.; Jung, S.I.; Lee, G.; Park, I.; Kim, S.B.; Kim, H.J. Quartz Crystal Microbalance with Thermally-Controlled Surface Adhesion for an Efficient Fine Dust Collection and Sensing. J. Hazard. Mater. 2022, 424, 127560. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Huang, H.; Mohanty, A.; Shin, M.C.; Ji, X.; Carter, M.J.; Shrestha, S.; Lipson, M.; Yu, N. Robust, Efficient, Micrometre-Scale Phase Modulators at Visible Wavelengths. Nat. Photonics 2021, 15, 908–913. [Google Scholar] [CrossRef]
- Zheng, Z.H.; Li, Y.L.; Niu, J.Y.; Wei, M.; Zhang, D.L.; Zhong, Y.M.; Nisar, M.; Abbas, A.; Chen, S.; Li, F.; et al. Significantly (00l)-Textured Ag2Se Thin Films with Excellent Thermoelectric Performance for Flexible Power Applications. J. Mater. Chem. A Mater. 2022, 10, 21603–21610. [Google Scholar] [CrossRef]
- Zheng, Z.H.; Zhang, D.L.; Jabar, B.; Chen, T.B.; Nisar, M.; Chen, Y.F.; Li, F.; Chen, S.; Liang, G.X.; Zhang, X.H.; et al. Realizing High Thermoelectric Performance in Highly (0l0)-Textured Flexible Cu2Se Thin Film for Wearable Energy Harvesting. Mater. Today Phys. 2022, 24, 100659. [Google Scholar] [CrossRef]
- Mele, L.; Santagata, F.; Iervolino, E.; Mihailovic, M.; Rossi, T.; Tran, A.T.; Schellevis, H.; Creemer, J.F.; Sarro, P.M. A Molybdenum MEMS Microhotplate for High-Temperature Operation. Sens. Actuators A Phys. 2012, 188, 173–180. [Google Scholar] [CrossRef]
- Zhang, K.L.; Chou, S.K.; Ang, S.S. Fabrication, Modeling and Testing of a Thin Film Au/Ti Microheater. Int. J. Therm. Sci. 2007, 46, 580–588. [Google Scholar] [CrossRef]
- Ricci, P.P.; Gregory, O.J. Free-Standing, Thin-Film Sensors for the Trace Detection of Explosives. Sci. Rep. 2021, 11, 6623. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Z.; Ding, H.; Wei, Y.; Yang, X.; Li, Z.; Yang, B.R.; Liu, C.; Qiu, L.; Wang, X. Multifunctional and High-Sensitive Sensor Capable of Detecting Humidity, Temperature, and Flow Stimuli Using an Integrated Microheater. ACS Appl. Mater. Interfaces 2019, 11, 43383–43392. [Google Scholar] [CrossRef]
- Creemer, J.F.; Briand, D.; Zandbergen, H.W.; van der Vlist, W.; de Boer, C.R.; de Rooij, N.F.; Sarro, P.M. Microhotplates with TiN Heaters. Sens. Actuators A Phys. 2008, 148, 416–421. [Google Scholar] [CrossRef]
- Jithin, M.A.; Kolla, L.G.; Vikram, G.N.V.R.; Udayashankar, N.K.; Mohan, S. Pulsed DC Magnetron Sputtered Titanium Nitride Thin Films for Localized Heating Applications in MEMS Devices. Sens. Actuators A Phys. 2018, 272, 199–205. [Google Scholar] [CrossRef]
- Long, H.; Harley-Trochimczyk, A.; He, T.; Pham, T.; Tang, Z.; Shi, T.; Zettl, A.; Mickelson, W.; Carraro, C.; Maboudian, R. In Situ Localized Growth of Porous Tin Oxide Films on Low Power Microheater Platform for Low Temperature CO Detection. ACS Sens. 2016, 1, 339–343. [Google Scholar] [CrossRef]
- Jung, G.; Hong, Y.; Hong, S.; Jang, D.; Jeong, Y.; Shin, W.; Park, J.; Kim, D.; Jeong, C.B.; Kim, D.U.; et al. A Low-Power Embedded Poly-Si Micro-Heater for Gas Sensor Platform Based on a FET Transducer and Its Application for NO2 Sensing. Sens. Actuators B Chem. 2021, 334, 129642. [Google Scholar] [CrossRef]
- Lide, D.R. Hardness of Minerals and Ceramics. In CRC Handbook of Chemistry and Physics; CRC Press LLC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Ma, D.; Mao, S.; Teng, J.; Wang, X.; Li, X.; Ning, J.; Li, Z.; Zhang, Q.; Tian, Z.; Wang, M.; et al. In-Situ Revealing the Degradation Mechanisms of Pt Film over 1000 °C. J. Mater. Sci. Technol. 2021, 95, 10–19. [Google Scholar] [CrossRef]
- Puigcorbé, J.; Vogel, D.; Michel, B.; Vilà, A.; Gracia, I.; Cané, C.; Morante, J.R. High Temperature Degradation of Pt/Ti Electrodes in Micro-Hotplate Gas Sensors. J. Micromechanics Microeng 2003, 13, S119. [Google Scholar] [CrossRef]
- Lee, A.; Clemens, B.M.; Nix, W.D. Stress Induced Delamination Methods for the Study of Adhesion of Pt Thin Films to Si. Acta Mater. 2004, 52, 2081–2093. [Google Scholar] [CrossRef]
- Schössler, T.; Schön, F.; Lemier, C.; Urban, G. Effect of High Temperature Annealing on Resistivity and Temperature Coefficient of Resistance of Sputtered Platinum Thin Films of SiO2/Pt/SiOx Interfaces. Thin Solid Films 2020, 698, 137877. [Google Scholar] [CrossRef]
- Idczak, K.; Owczarek, S.; Markowski, L. Platinum Silicide Formation on Selected Semiconductors Surfaces via Thermal Annealing and Intercalation. Appl. Surf. Sci. 2022, 572, 151345. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, J.H.; Kim, J.H.; Mirzaei, A.; Woo Kim, H.; Kim, S.S. Realization of H2S Sensing by Pd-Functionalized Networked CuO Nanowires in Self-Heating Mode. Sens. Actuators B Chem. 2019, 299, 126965. [Google Scholar] [CrossRef]
- Steinhauer, S.; Chapelle, A.; Menini, P.; Sowwan, M. Local CuO Nanowire Growth on Microhotplates: In Situ Electrical Measurements and Gas Sensing Application. ACS Sens. 2016, 1, 503–507. [Google Scholar] [CrossRef]
- Meyer, R.; Hamann, S.; Ehmann, M.; Thienhaus, S.; Jaeger, S.; Thiede, T.; Devi, A.; Fischer, R.A.; Ludwig, A. Microgradient-Heaters As Tools for High-Throughput Experimentation. ACS Comb. Sci. 2012, 14, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liu, Z.; Zhang, S.; Zhan, T.; Wang, J.; Yi, X.; Li, J.; Sarro, P.M.; Zhang, G. A High Responsivity and Controllable Recovery Ultraviolet Detector Based on a WO 3 Gate AlGaN/GaN Heterostructure with an Integrated Micro-Heater. J. Mater. Chem. C 2020, 8, 5409–5416. [Google Scholar] [CrossRef]
- Esch, H.; Huyberechts, G.; Mertens, R.; Maes, G.; Manca, J.; de Ceuninck, W.; de Schepper, L. The Stability of Pt Heater and Temperature Sensing Elements for Silicon Integrated Tin Oxide Gas Sensors. Sens. Actuators B Chem. 2000, 65, 190–192. [Google Scholar] [CrossRef]
- Phan, D.T.; Youn, J.S.; Jeon, K.J. High-Sensitivity and Fast-Response Hydrogen Sensor for Safety Application Using Pt Nanoparticle-Decorated 3D Graphene. Renew Energy 2019, 144, 167–171. [Google Scholar] [CrossRef]
- del Orbe, D.v.; Yang, H.; Cho, I.; Park, J.; Choi, J.; Han, S.W.; Park, I. Low-Power Thermocatalytic Hydrogen Sensor Based on Electrodeposited Cauliflower-like Nanostructured Pt Black. Sens. Actuators B Chem. 2021, 329, 129129. [Google Scholar] [CrossRef]
- Wang, X.S.; Wang, Y.J.; Yin, J.; Liu, Z.G. Enhanced Ferroelectric Properties of Pb (Zr0. 52Ti0. 48) O3 films on Pt/TiO2/SiO2/Si (001) using ZnO Buffer Layer. Scr. Mater. 2002, 46, 783–787. [Google Scholar] [CrossRef]
- DiBattista, M.; Schwank, J.W. Determination of Diffusion in Polycrystalline Platinum Thin Films. J. Appl. Phys. 1999, 86, 4902. [Google Scholar] [CrossRef] [Green Version]
- Resnik, D.; Kovač, J.; Vrtačnik, D.; Godec, M.; Pečar, B.; Možek, M. Microstructural and Electrical Properties of Heat Treated Resistive Ti/Pt Thin Layers. Thin Solid Films 2017, 639, 64–72. [Google Scholar] [CrossRef]
- Grosser, M.; Schmid, U. The Impact of Annealing Temperature and Time on the Electrical Performance of Ti/Pt Thin Films. Appl. Surf. Sci. 2010, 256, 4564–4569. [Google Scholar] [CrossRef]
- Schmid, U. The Impact of Thermal Annealing and Adhesion Film Thickness on the Resistivity and the Agglomeration Behavior of Titanium/Platinum Thin Films. J. Appl. Phys. 2008, 103, 054902. [Google Scholar] [CrossRef]
- Varniere, F.; Kim, B.E.; Agius, B.; Bisaro, R.; Olivier, J.; Chevrier, G.; Achard, H.; Mace, H.; Peccoud, L. Effects of Annealings on Pt/TiN/Ti Interfacial Reactions. MRS Online Proc. Libr. 1994, 361, 235–240. [Google Scholar] [CrossRef]
- Ehrlich, A.; Weiß, U.; Hoyer, W.; Geßner, T. Microstructural Changes of Pt/Ti Bilayer during Annealing in Different Atmospheres—An XRD Study. Thin Solid Films 1997, 300, 122–130. [Google Scholar] [CrossRef]
- Jones, J.L.; LeBeau, J.M.; Nikkel, J.; Oni, A.A.; Dycus, J.H.; Cozzan, C.; Lin, F.Y.; Chernatynskiy, A.; Nino, J.C.; Sinnott, S.B.; et al. Combined Experimental and Computational Methods Reveal the Evolution of Buried Interfaces during Synthesis of Ferroelectric Thin Films. Adv. Mater. Interfaces 2015, 2, 1500181. [Google Scholar] [CrossRef]
- Garraud, A.; Combette, P.; Giani, A. Thermal Stability of Pt/Cr and Pt/Cr2O3 Thin-Film Layers on a SiNx/Si Substrate for Thermal Sensor Applications. Thin Solid Films 2013, 540, 256–260. [Google Scholar] [CrossRef]
- Frankel, D.J.; Moulzolf, S.C.; da Cunha, M.P.; Lad, R.J. Influence of Composition and Multilayer Architecture on Electrical Conductivity of High Temperature Pt-Alloy Films. Surf. Coat. Technol. 2015, 284, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Schmid, P.; Zarfl, C.; Triendl, F.; Maier, F.J.; Schwarz, S.; Schneider, M.; Schmid, U. Impact of Adhesion Promoters and Sputter Parameters on the Electro-Mechanical Properties of Pt Thin Films at High Temperatures. Sens. Actuators A Phys. 2019, 285, 149–157. [Google Scholar] [CrossRef]
- Çiftyürek, E.; Sabolsky, K.; Sabolsky, E.M. Platinum Thin Film Electrodes for High-Temperature Chemical Sensor Applications. Sens. Actuators B Chem. 2013, 181, 702–714. [Google Scholar] [CrossRef]
- Moulzolf, S.C.; Frankel, D.J.; Pereira Da Cunha, M.; Lad, R.J. High Temperature Stability of Electrically Conductive Pt-Rh/ZrO 2 and Pt-Rh/HfO 2 Nanocomposite Thin Film Electrodes. Microsyst. Technol. 2014, 20, 523–531. [Google Scholar] [CrossRef]
- Çiftyürek, E.; McMillen, C.D.; Sabolsky, K.; Sabolsky, E.M. Platinum–Zirconium Composite Thin Film Electrodes for High-Temperature Micro-Chemical Sensor Applications. Sens. Actuators B Chem. 2015, 207, 206–215. [Google Scholar] [CrossRef]
- Alonso, P.R.; Arias, D.E.; Gribaudo, L.M. The Zr-Rich Zone in the Zr-Pt System. Scr. Mater. 2001, 44, 429–434. [Google Scholar] [CrossRef]
- Wöllenstein, J.; Plaza, J.A.; Cané, C.; Min, Y.; Böttner, H.; Tuller, H.L. A Novel Single Chip Thin Film Metal Oxide Array. Sens. Actuators B Chem. 2003, 93, 350–355. [Google Scholar] [CrossRef]
- Grassi, M.; Malcovati, P.; Francioso, L.; Siciliano, P.; Baschirotto, A. Integrated Interface Circuit with Multiplexed Input and Digital Output for a 5 × 5 SnO2 Thick Film Gas-Sensor Matrix. Sens. Actuators B Chem. 2008, 132, 568–575. [Google Scholar] [CrossRef]
- Bose, A.; Shukla, A.S.; Dutta, S.; Bhuktare, S.; Singh, H.; Tulapurkar, A.A. Control of Magnetization Dynamics by Spin-Nernst Torque. APS 2018, 98, 184412. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Guo, M.; Zhou, H.A.; Zhao, L.; Xu, T.; Tomasello, R.; Bai, H.; Dong, Y.; Je, S.G.; Chao, W.; et al. Thermal Generation, Manipulation and Thermoelectric Detection of Skyrmions. Nat. Electron. 2020, 3, 672–679. [Google Scholar] [CrossRef]
- Firebaugh, S.L.; Jensen, K.F.; Schmidt, M.A. Investigation of High-Temperature Degradation of Platinum Thin Films with an in Situ Resistance Measurement Apparatus. J. Microelectromech. Syst. 1998, 7, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Gardeniers, J.G.E.; Tjerkstra, R.W.; Berg, A. van den Fabrication and Application of Silicon-Based Microchannels. Microreact. Technol. Ind. Prospect. 2000, 1, 36–44. [Google Scholar] [CrossRef]
- Courbat, J.; Briand, D.; de Rooij, N.F. Reliability Improvement of Suspended Platinum-Based Micro-Heating Elements. Sens. Actuators A Phys. 2008, 142, 284–291. [Google Scholar] [CrossRef] [Green Version]
- Tiggelaar, R.M.; Sanders, R.G.P.; Groenland, A.W.; Gardeniers, J.G.E. Stability of Thin Platinum Films Implemented in High-Temperature Microdevices. Sens. Actuators A Phys. 2009, 152, 39–47. [Google Scholar] [CrossRef]
- Vasiliev, A.A.; Pisliakov, A.V.; Sokolov, A.V.; Samotaev, N.N.; Soloviev, S.A.; Oblov, K.; Guarnieri, V.; Lorenzelli, L.; Brunelli, J.; Maglione, A.; et al. Non-Silicon MEMS Platforms for Gas Sensors. Sens. Actuators B Chem. 2016, 224, 700–713. [Google Scholar] [CrossRef]
- Kalinin, I.A.; Roslyakov, I.V.; Tsymbarenko, D.M.; Bograchev, D.A.; Krivetskiy, V.V.; Napolskii, K.S. Microhotplates Based on Pt and Pt-Rh Films: The Impact of Composition, Structure, and Thermal Treatment on Functional Properties. Sens. Actuators A Phys. 2021, 317, 112457. [Google Scholar] [CrossRef]
- Roslyakov, I.V.; Sotnichuk, S.V.; Kushnir, S.E.; Trusov, L.A.; Bozhev, I.V.; Napolskii, K.S. Pore Ordering in Anodic Aluminum Oxide: Interplay between the Pattern of Pore Nuclei and the Crystallographic Orientation of Aluminum. Nanomaterials 2022, 12, 1417. [Google Scholar] [CrossRef] [PubMed]
- Hermetic Packages for Integrated Circuits (Glass-to-Metal Seals Packages). Available online: http://www.z-mars.ru/en/?category=101 (accessed on 19 November 2022).
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Dey, A. Semiconductor Metal Oxide Gas Sensors: A Review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Ababneh, A.; Al-Omari, A.N.; Dagamseh, A.M.K.; Tantawi, M.; Pauly, C.; Mücklich, F.; Feili, D.; Seidel, H. Electrical and Morphological Characterization of Platinum Thin-Films with Various Adhesion Layers for High Temperature Applications. Microsyst. Technol. 2017, 23, 703–709. [Google Scholar] [CrossRef]
- Abbas, W.; Lin, W.; Kai, J.J.; Ho, D.; Pramanick, A. Critical Effect of Film-Electrode Interface on Enhanced Energy Storage Performance of BaTiO3-BiScO3 Ferroelectric Thin Films. ACS Appl. Electron. Mater. 2021, 3, 4726–4733. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: An Open-Source Software for SPM Data Analysis. Open Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Maeder, T.; Sagalowicz, L.; Muralt, P. Stabilized Platinum Electrodes for Ferroelectric Film Deposition Using Ti, Ta and Zr Adhesion Layers. Jpn. J. Appl. Phys. 1998, 37, 2007–2012. [Google Scholar] [CrossRef]
- Briand, D.; Heimgartner, S.; Leboeuf, M.; Dadras, M.; de Rooij, N.F. Processing Influence on the Reliability of Platinum Thin Films for MEMS Applications. MRS Online Proc. Libr. 2002, 729, 25. [Google Scholar] [CrossRef]
Characteristic | As-Deposited | 600 °C | 730 °C | 810 °C | ||||
---|---|---|---|---|---|---|---|---|
Pt | Ta/Pt | Pt | Ta/Pt | Pt | Ta/Pt | Pt | Ta/Pt | |
Resistance, Ω | 131 ± 1 | 86 ± 4 | 73 ± 3 | 66 ± 1 | 68 ± 5 | 69 ± 4 | - | 97 ± 10 |
TCR (×103), ppm/°C | 1.5 ± 0.1 | 2.0 ± 0.1 | 2.8 ± 0.1 | 3.1 ± 0.1 | 3.1 ± 0.3 | 3.1 ± 0.2 | - | 3.3 ± 0.3 |
Power consumption at 500 °C, mW | - | - | 101 ± 3 | 120 ± 17 | 99 ± 5 | 113 ± 10 | - | 101 ± 8 |
Supply voltage (500 °C), V | - | - | 4.3 ± 0.1 | 4.4 ± 0.3 | 4.0 ± 0.1 | 4.4 ± 0.3 | - | 5.1 ± 0.2 |
Resistance drift, %/day | - | - | - | 0.19 ± 0.14 | - | 0.09 ± 0.03 | - | 0.17 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalinin, I.A.; Roslyakov, I.V.; Khmelenin, D.N.; Napolskii, K.S. Long-Term Operational Stability of Ta/Pt Thin-Film Microheaters: Impact of the Ta Adhesion Layer. Nanomaterials 2023, 13, 94. https://doi.org/10.3390/nano13010094
Kalinin IA, Roslyakov IV, Khmelenin DN, Napolskii KS. Long-Term Operational Stability of Ta/Pt Thin-Film Microheaters: Impact of the Ta Adhesion Layer. Nanomaterials. 2023; 13(1):94. https://doi.org/10.3390/nano13010094
Chicago/Turabian StyleKalinin, Ivan A., Ilya V. Roslyakov, Dmitry N. Khmelenin, and Kirill S. Napolskii. 2023. "Long-Term Operational Stability of Ta/Pt Thin-Film Microheaters: Impact of the Ta Adhesion Layer" Nanomaterials 13, no. 1: 94. https://doi.org/10.3390/nano13010094
APA StyleKalinin, I. A., Roslyakov, I. V., Khmelenin, D. N., & Napolskii, K. S. (2023). Long-Term Operational Stability of Ta/Pt Thin-Film Microheaters: Impact of the Ta Adhesion Layer. Nanomaterials, 13(1), 94. https://doi.org/10.3390/nano13010094