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Abstract: During recent years, microrobots have drawn extensive attention owing to their good
controllability and great potential in biomedicine. Powered by external physical fields or chemical
reactions, these untethered microdevices are promising candidates for in vivo complex tasks, such as
targeted delivery, imaging and sensing, tissue engineering, hyperthermia, and assisted fertilization,
among others. However, in clinical use, the biodegradability of microrobots is significant for avoiding
toxic residue in the human body. The selection of biodegradable materials and the corresponding
in vivo environment needed for degradation are increasingly receiving attention in this regard. This
review aims at analyzing different types of biodegradable microrobots by critically discussing their
advantages and limitations. The chemical degradation mechanisms behind biodegradable micro-
robots and their typical applications are also thoroughly investigated. Furthermore, we examine their
feasibility and deal with the in vivo suitability of different biodegradable microrobots in terms of
their degradation mechanisms; pathological environments; and corresponding biomedical applica-
tions, especially targeted delivery. Ultimately, we highlight the prevailing obstacles and perspective
solutions, ranging from their manufacturing methods, control of movement, and degradation rate to
insufficient and limited in vivo tests, that could be of benefit to forthcoming clinical applications.

Keywords: biodegradable; micro/nanorobots; micro/nanomotors; biomedicine; targeted delivery

1. Introduction

In the past decade, microrobots have been widely investigated in different areas [1,2].
Different from traditional robots, these tiny robots have simple structures, e.g., helical
and sphere shapes, and, due to their small size, they are powered by external physical
fields [1]. Different kinds of materials and power types have been applied, such as mag-
netic fields [3–5], optical fields [6], and electrical fields [7]. Although large amounts of
microrobots are developed for biomedical applications [8–11], the issue of biodegradation
remains to be investigated [12–19]. After microrobots complete their in vivo tasks, e.g., tar-
geted drug delivery, thrombolysis, and hyperthermia, they are left in the body, which could
be cytotoxic and may induce unexpected harmful results [20,21]. In this case, microrobots
made of biodegradable materials have become the trend in healthcare and biomedical
applications [22–24], which has boosted a large amount of research in the past few years.
The milestones in this research field are shown in Figure 1. In 2014, Janus mesoporous silica
microrobots that could be propelled by oxygen bubbles generated by decomposing hydro-
gen were developed (Figure 1a) [25]. In 2015, biodegradable protein-based microrobots that
could effectively kill cancer cells through the targeted delivery of doxorubicin were pre-
sented (Figure 1b) [26]. In 2016, transient self-destroyed micromotors that could disappear
completely in a biological environment were fabricated (Figure 1c) [27]. The different corro-
sion rates of the core–shell components of Janus microrobots result in their degradation.
In 2017, biodegradable magnetic microswimmers that had specific cytotoxicity to cancer
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cells were reported (Figure 1d) [28]. In 2018, noncytotoxic biodegradable soft helical swim-
mers that could be degraded completely by collagenase were developed (Figure 1e) [29].
In 2019, biodegradable hydrogel-based microswimmers that could be degraded within
118 h and that delivered therapeutic cargo to the target area were fabricated (Figure 1f) [30].
In 2020, cell-based biodegradable microrobots that could be powered by urea fuel and that
targeted cancer cells were developed (Figure 1g) [31]. In 2021, biodegradable photoacti-
vated nanomotors decorated with aggregation-induced emission (AIE) motifs that could
be used for enhanced phototherapy were fabricated (Figure 1h) [32]. In 2022, real-time
trackable polylactic-co-glycolic acid (PLGA)- and gelatin-based microrobots that could
degrade slowly after targeted vessel embolization were presented (Figure 1i) [33]. In 2023,
biodegradable self-assembly magnetically driven cystine microrobots that could perform a
targeted delivery of Zn2+ to kill prostate tumor cells were reported (Figure 1j) [34].
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Figure 1. (a) Preparation of Janus mesoporous silica nanoparticle microrobots (reprinted with per-
mission from Ref. [25]). (b) Fabrication and near-infrared (NIR)-triggered release process of micro-
robots (reprinted with permission from Ref. [26]). (c) Fabrication of Janus microrobots (reprinted 
with permission from Ref. [27]). (d) Illustration of the immersion coating technique applied to Spir-
ulina platensis using an Fe3O4 nanoparticle suspension (reprinted with permission from Ref. [28]). 
(e) Enzymatic degradation process of GelMA (reprinted with permission from Ref. [29]). (f) Illus-
tration of enzymatic breakdown of microswimmers (reprinted with permission from Ref. [30]). (g) 
Diagram of the preparation process of Janus platelet microrobots (reprinted with permission from 
Ref. [31]). (h) Development of phototherapeutic microrobots utilizing AIE–based synergistic design 
(reprinted with permission from Ref. [32]). (i) Illustration of the steps of liver cancer therapy. The 
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(reprinted with permission from Ref. [26]). (c) Fabrication of Janus microrobots (reprinted with
permission from Ref. [27]). (d) Illustration of the immersion coating technique applied to Spir-
ulina platensis using an Fe3O4 nanoparticle suspension (reprinted with permission from Ref. [28]).
(e) Enzymatic degradation process of GelMA (reprinted with permission from Ref. [29]). (f) Il-
lustration of enzymatic breakdown of microswimmers (reprinted with permission from Ref. [30]).
(g) Diagram of the preparation process of Janus platelet microrobots (reprinted with permission from
Ref. [31]). (h) Development of phototherapeutic microrobots utilizing AIE–based synergistic design
(reprinted with permission from Ref. [32]). (i) Illustration of the steps of liver cancer therapy. The
white dotted arrow in (iii) indicates the motion path of the microrobots and the yellow dotted arrows
in (iii) indicate the magnetic guidance (reprinted with permission from Ref. [33]). (j) Schematic illus-
tration of the delivering process of microrobots and the release of Zn2+ (reprinted with permission
from Ref. [34]).

The biodegradability of microrobots still requires extensive investigation. Different
types of biodegradable materials have been analyzed and discussed [35], lacking a further
summary of the degradation mechanism. Biodegradability is closely related to drug release
and targeted delivery and also requires a timely review. In this review, the progress
in the field of microrobots consisting of biodegradable materials is summarized, and,
meanwhile, the degradation mechanism of microrobots and their corresponding biomedical
applications are introduced [36–40].

2. Biodegradable Materials

The materials used to construct microrobots play a critical role in their functionality
and overall performance [41–45]. One of the key challenges in microrobot design is selecting
materials that can be small enough to fit within the desired size constraints, possess the
necessary mechanical and magnetic properties to carry out their intended tasks, and can be
degraded naturally in the human body.

2.1. Metal-Based Microrobots

Reactive metals, such as Mg, Zn, and Ga, have good biodegradability and biocompat-
ibility and can react with common components, such as water, in the human body. The
product of these chemical reactions can act as a force of propulsion by breaking the static
equilibrium near the microrobots. As is shown in Figure 2a, Ga/Zn microrobots that were
propelled by hydrogen bubbles to treat bacterial infections were fabricated [46]. Hydrogen
bubbles were generated through the zinc–acid reaction when the microrobots entered the
gastric acid, where pH = 1.5. Mg-based microrobots for rheumatoid arthritis therapy were
developed [47]. Mg microparticles were first coated with alginate–HA hydrogel layers
and were then coated with biodegradable PLGA layers for stability (Figure 2b). Other
Mg-based microrobots coated with gold layers and drug-encapsulated pH-sensitive poly-
mer layers were fabricated (Figure 2c) [48]. These microrobots can actively neutralize the
acidic environment and break into biocompatible components that are safe for the body.
Microrobots that consist of poly(aspartic acid) (PASP) microtubes, Fe layers, and a core of
Zn can display self-propelling movement by converting the chemical energy produced by
the Zn–acid reaction as shown in Figure 2d [49].

2.2. Polymer-Based Microrobots

The properties of different kinds of polymers, such as biopolymers produced by mi-
croorganisms, hydrogel, alginate, and other artificial polymers, have long been
investigated [50–53]. Different fabrication methods of microrobots can be applied, in-
cluding two-photon polymerization (2PP) 3D printing [54–58] and bioprinting [59]. Helical
microswimmers printed through the 2PP of gelatin methacryloyl (GelMA) are empowered
to be magnetic by incubating Fe3O4 nanoparticles (Figure 3a) [29]. Microrobots with an
alginate hydrogel microstructure fabricated through the microelectrode-based method



Nanomaterials 2023, 13, 1590 4 of 19

were presented (Figure 3b). As is shown in Figure 3c, magnetic red-blood-cell-mimetic
microrobots (RBCMs) that had frameworks of the natural protein zein loaded with doxoru-
bicin (DOX) and Fe3O4 nanoparticles and that were fused with an isolated red blood cell
membrane were constructed [60,61]. DOX-loaded grafted PLGA microrobots with enzyme
coverage were fabricated (Figure 3d) [62]. Chitosan-based helical microswimmers that
were fabricated through two-photon-based 3D printing and that were loaded with a certain
amount of magnetic nanoparticles were proposed (Figure 3e) [63]. Block-copolymer-based
phototactic microrobots that were decorated with AIE motifs for enhanced phototherapy
were reported (Figure 3f) [32].
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Figure 2. (a) Illustration of the fabrication and antibacterial mechanism of Janus Ga/Zn microrobots
(reprinted with permission from Ref. [46]). (b) Characterization and fabrication process of Mg–
HA microrobots (reprinted with permission from Ref. [47]). (c) Illustrations of magnesium-based
microrobots powered by acid and their method for neutralizing acid (reprinted with permission from
Ref. [48]). (d) Illustrative diagram of a DOX/PASP/Fe–Zn microrobot and its application for effective
localization in the stomach (reprinted with permission from Ref. [49]).
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Figure 3. (a) Chemicals employed in this study (reprinted with permission from Ref. [29]).
(b) Schematic illustration of ionic shape-morphing microrobotic end effectors (ISME) in the di-
gestive system (reprinted with permission from Ref. [61]). (c) Schematic illustration of the fabrication
process of an RBCM (reprinted with permission from Ref. [60]). (d) Diagrammatic representation of
the preparation of motored PLGA particles (reprinted with permission from Ref. [62]). (e) Fabrication
of photo-cross-linkable methacrylamide chitosan from natural chitosan (reprinted with permission
from Ref. [63]). (f) Hybrid AIE/Au microrobots using biodegradable copolymers with AIE−genic
compound comprising both tetraphenylethylene and dicyanovinyl moieties (reprinted with permis-
sion from Ref. [32]). (g) Schematic illustration of fabricating microrobots based on Spirulina platensis
via dip coating in a suspension of Fe3O4 and BaTiO3 nanoparticles (reprinted with permission from
Ref. [64]). (h) Schematic illustration of sperm microrobots swimming against flowing blood and
delivering heparin cargo (reprinted with permission from Ref. [65]).

2.3. Biohybrid Microrobots

Biohybrid microrobots consist of biological cells and synthetic materials [66]. This
kind of microrobot can be actuated both through biological means and artificial means [11].
Spirulina is frequently taken into consideration when constructing these cell-based micro-
robots owing to its property of tailored biodegradation [67]. For example, microrobots that
utilize Spirulina platensis (S. platensis) as their framework and incorporate Fe3O4 nanoparti-
cles and BaTiO3 nanoparticles as functional components can be propelled by a magnetic
rotational field (Figure 3g) [64]. Another multicellular magnetically driven microrobot
engineered from Spirulina can achieve the loading of molecular cargos through the de-
hydration and rehydration of Spirulina cells [68]. Because of the high propulsion force
provided by their flagellum, sperm cells are also recognized as promising candidates for
biohybrid microrobots. Nonmotile sperm cells and magnetic nanoparticles were com-
bined through electrostatic self-assembly to formulate biocompatible sperm-templated soft
magnetic microrobots [69]. Furthermore, once magnetized, individual sperm microrobots
can form train-like carriers to perform targeted delivery, which has the potential to treat
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blood clots (Figure 3h) [65]. Other cell-based biodegradable microrobots, such as human-
adipose-derived mesenchymal-stem-cell-based microrobots [70] and neutrophil-based
microrobots [71], inherit the biological characteristics of cells to enhance their targeting
efficacy and to reduce the inflammation response.

3. Degradation Mechanism

Biodegradable microrobots are designed to degrade over time in the body, allow-
ing them to be used for targeted drug delivery and other medical applications without
leaving behind any harmful residues. The degradation mechanism of biodegradable
microrobots depends on several factors, including the materials, the size and shape of
the microrobots, and the environment in which they are deployed. Degradation mech-
anisms include enzymatic degradation, oxidation or hydrolysis under acidic or alkaline
conditions, and photodegradation. This article mainly focuses on pH degradation and
enzymatic degradation.

3.1. pH Degradation

There are two kinds of mechanisms for pH degradation. One is degradation in an
acidic environment, and the other one is degradation under an alkaline condition. Most
metal-based microrobots are degraded through a metal–acid reaction. The basic principle
is M (s) + H+ (aq)→M+ (aq) + H2 (g) (M is the reactive metal). As shown in Figure 4a, the
Janus Ga/Zn microrobots were immersed in gastroenteric acid (pH = 1.5), and the speed of
the degradation process was examined [46]. The Zn core was degraded completely after
movement, and the remaining Ga shell was degraded within 15 min. The release rate of
the Zn and Ga cations was equal to their degradation rate. A DOX/PASP/Fe–Zn micro-
robot can be completely consumed in the acidic stomach environment and digestive tract
(Figure 4d) [49]. Moreover, the metabolites are biocompatible trace elements that are harm-
less to the human body. It has been pointed out that the potential difference between Zn
and Fe is lower than that of the traditional Au-Zn. Therefore, these microrobots have a
longer navigation lifetime. A chemotaxis-driven 2D nanosheet that collapsed and disinte-
grated at a higher efficiency under lysosomal acidity (pH = 5) than in a neutral solution
(pH = 7) was discovered [72]. However, the specific disintegration process, such as the
toxicity of the metabolites and the speed of degradation, was not discussed. Through
controlled experiments, some biodegradable microrobots proved that they had better degra-
dation performances in alkaline environments than PBS environments [73]. Furthermore,
in vivo tests were carried out to examine the degradability of microrobots in the subcuta-
neous tissues of nude mice, and it was found that they can also be successfully degraded
(Figure 4b). Spirulina platensis (SP)@Fe3O4@BaTiO3 microrobots can break down into small
pieces after 192 h of incubation in Dulbecco’s phosphate-buffered saline (DPBS) solution
(Figure 4c) [64]. As shown in Figure 4e, double-layer drug-loaded microrobots (TDMs) can
dissolve gradually in an alkaline environment (pH = 7.4), and the degradation product has
little cytotoxicity [74].

3.2. Protease

Degradable microrobots with proteases are also common. There are different kinds of
proteases, and many polymer-based microrobots can be degraded by proteases secreted by
cells. For example, Wang et al. proved that the GelMA microstructure can be efficiently
degraded by the enzyme collagenase type II, which is secreted by cells (Figure 5a) [29].
The same group further studied the advantage of a helical shape over a cuboid shape
and the attached cell viability of microrobots, confirming their biocompatibility. It was
demonstrated that cell-loaded microrobots can be effectively degraded with 0.1 mg mL−1

of collagenase type II with a negligible impact on cell viability (Figure 5b) [75]. GelMA
integrated with multiferroic nanoparticle microswimmers were also fabricated, which
could be gradually degraded by the proteases secreted by surrounding cells [76]. They took
seven days to disappear completely (Figure 5d). Moreover, microrobots consisting only of
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proteins and polypeptides that could be decomposed by proteases were also fabricated [77].
Through incubation in acidic water first and then putting them into the aqueous solution of
a protease mixture, the microrobots disappeared completely (Figure 5c). The degradation
effect of different concentrations of matrix metalloproteinase was studied, respectively,
since this protease was reportedly present at various concentrations in a healthy individual
(Figure 5e) [30]. Catalase-driven protein microrobots that could be digested by proteases
were developed [78]. It was shown that the four Cat microtubes (MTs) became shorter
and more slender in a cocktail of several proteases within two hours (Figure 5f). The
complete degradation of milligrippers by the metalloproteinase-2 enzyme took 192 h in
the experimental environment [79]. However, a longer duration was expected in the
physiological environment because of the lower concentration of enzymes.
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acid (reprinted with permission from Ref. [46]). (b) Degradation process of microrobots in NaOH
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microrobots before and after the metal–acid reaction (reprinted with permission from Ref. [49]).
(e) Schematic of the fabrication process, motion control, and sustained release of drugs by TDMs
(reprinted with permission from Ref. [74]).
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Figure 5. (a) Degradation of a GelMA helical microstructure in a collagenase solution (0.1 mg mL−1)
(reprinted with permission from Ref. [29]). (b) Enzymatic biodegradation and magnetic retrieval
of SPIONs from the GelMA microrobot in the absence of hNTSCs (reprinted with permission from
Ref. [75]). (c) Transformation of the morphology of Avi/bUre microtube in pronase solution at 37 ◦C.
(reprinted with permission from Ref. [77]). (d) Optical images displaying the degradation process of
magnetoelectric (ME) soft helical microswimmers after being cultured with cells for 0, 1, 3, and 7 days
(reprinted with permission from Ref. [76]). (e) Differential interference contrast (DIC) images of a
degrading microswimmer array with 4 µg/mL of enzyme (reprinted with permission from Ref. [30])
(f) Microscopic observations of self-propulsion of aGD/Cat MTs through the jetting of O2 bubbles in
phosphate buffer (PB) solution and hydrolysis reaction of MTs. The red arrows indicate the direction
of O2 bubbles (reprinted with permission from Ref. [78]).

3.3. Lipase

In addition to proteases, lipases are also widely used as a means of biodegradation.
Catalase and an FITC-decorated thiol-terminated polycaprolactone (PCL-SH) single crystal
can be almost fully degraded by phosphate-buffered saline (PBS) solution containing
lipase after 20 h of incubation (Figure 6a) [80]. PCL-SH microrobots that were subjected
to incubation with lipase for six days were developed (Figure 6b) [81]. It is worth noting
that the nanospheres loaded by microrobots can also be digested by lipase. The hybrid
stomatocytes can easily be degraded by either an acid or lipase (Figure 6c) [82]. PCL-
Fe3O4/PEI@DOX magnetic microrobots can be disassembled into small pieces of crystals
in the presence of lipase as shown in Figure 6d [83]. With 45 U/mL of porcine pancreas
lipase, the microrobots can be disintegrated completely.

The previous literature has shown microrobots made of biodegradable materials that
can be degraded by enzymes; however, the details of degradation are still under investiga-
tion [84,85]. Other methods of degradation, such as thermal degradation, photodegradation,
and degradation through a combination of pH and enzymes, are also being explored by
researchers [86–89]. Overall, by understanding these mechanisms, researchers can design
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microrobots that degrade at a controlled rate, allowing them to be used for a wide range of
biomedical applications.
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(CAT−PCL−FITC) over time and its autonomous movement in H2O2 solution (reprinted with
permission from Ref. [80]). (b) The degradation process of PCL−SH nanospheres and PCL−SH/Pt
microrobots. The red circles indicate the microrobots and the yellow circles indicate the nanospheres
(reprinted with permission from Ref. [81]). (c) The formation of pores in stomatocytes before and after
degradation (reprinted with permission from Ref. [82]). (d) Scheme of the enzyme degradation of
PCL−Fe3O4/PEI@DOX magnetic microrobots after 24 h of treatment with lipase (up) and microscopy
images before and after 24 h of enzymatic treatment using lipase concentrations of 23 U/mL and
45 U/mL (down) (reprinted with permission from Ref. [83]).
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4. Biomedical Application

Microrobots have potential in biomedicine, including potential in microsurgery [1] and
enhanced imaging [24,90]. Targeted delivery has emerged as a fast-developing modality of
microsurgery in the past decade [91]. Microrobots can be designed to carry payloads to
specific locations within the body, such as to tumors, where they can release the payloads.
This approach could potentially reduce the amount of medication needed and could
minimize side effects since the payloads would only be delivered to the affected area.

4.1. Drug Delivery

The whole process of drug delivery can be described as three parts: drug loading,
targeted delivery, and drug release. In vitro and in vivo experiments have been done
to mitigate the process. For in vitro experiments, investigations have been conducted
on the fabrication and actuation methods [92–96]. However, since the requirements of
drug delivery, such as the lasting time of drug release, differ in different physiological
environments, in vivo tests are necessary. For drug delivery, drug release has a strong
connection with the degradation process. This is because payloads are often loaded inside
microrobots, and the drug is released when the structural degradation of the microrobots
occurs. Fe@ZIF-8 can keep the therapeutic cargo at a physiological pH and can release it
only in pathological acidic microenvironments (Figure 7a) [97]. The PLGA microrobots
showed reduced burst release and long-term drug delivery behavior, which were good for a
periodontal application (Figure 7b) [62]. PASP microrobots can slowly release concentrated
DOX payloads onto the stomach wall (Figure 7c) [49]. Since the microrobots can be
magnetically located, placing a strong magnet near a particular position on the stomach
can achieve targeted drug delivery. An ultrasonic treatment was applied to perform
the triggered release of the encapsulated DOX drug in the microrobots (Figure 7d) [98].
Swelling-controlled drug delivery was developed. This method uses the rapid swelling of
the microswimmer as a switch for accelerated drug release (Figure 7e) [30]. For the Janus
Ga/Zn microrobots, most Zn became Zn2+ within 5 min of immersion in gastroenteric acid,
and nearly all the Ga became cations in 20 min (Figure 7f) [46]. The released Ga3+ served
as a drug to kill bacteria. Wu et al. developed microcapsules that contained drug-loaded
microrobots [99]. Near-infrared light irradiation can trigger the release of the microrobots.
At the same time, the anticancer drug encapsulated in the microrobots can be released.

4.2. Cell Delivery

In an effective and efficient cell delivery process, two key factors are considered, i.e.,
cell viability and cell adhesion. Targeted cell delivery tends to utilize stem cells that have
the ability to proliferate and differentiate. Helical microswimmers can release loaded
therapeutic cells and magnetoelectric nanoparticles by degrading themselves when the
cells have been delivered to the targeted area (Figure 8a) [76]. Cell attachment without
ultraviolet exposure was achieved to avoid cell damage (Figure 8b) [75]. Cell attachment
and detachment can also be achieved through temperature variation [100]. During the
degradation of cell-loaded microrobots, human nasal turbinate stem cells (hNTSCs) and
superparamagnetic iron oxide nanoparticles (SPIONs) are released. To stimulate the differ-
entiation of the neuronal cells, at the same time, an alternating magnetic field is applied to
the system. The effect of cell therapy is mainly defined by cell release [73]. Cell release has a
direct connection with the degradation of cell-loaded microrobots. Because of the different
properties of different cell proteins, cells can both adhere to the microrobots and migrate
away from them (Figure 8c). Cells can also be used as drug-loaded biocarriers owing to
their ability to target cancer. Macrophages and mesenchymal stem cells were selected
for their abilities to target cancer and tissue regeneration (Figure 8d) [101]. The magnetic
chitosan microrobots were a suitable environment for cell growth, and, after incubation for
five days, the cells adhered harmoniously to the magnetic chitosan microrobots.
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Figure 7. (a) Depiction of the degradation process of metal–organic-framework-based microrobots
(MOFBOTs) (reprinted with permission from Ref. [97]). (b) Preparation of motored PLGA par-
ticles (reprinted with permission from Ref. [62]). (c) Schematic illustration of drug delivery of
DOX/PASP/Fe−Zn microrobots in the stomach (reprinted with permission from Ref. [49]). (d) Time-
lapse image showing the target location of a microrobot in HeLa cells in 3% H2O2 at 22 ◦C (reprinted
with permission from Ref. [98]). (e) The potential therapeutic use of 3D-printed biodegradable
microrobotic swimmers (reprinted with permission from Ref. [30]). (f) Graphical representation of
the antibacterial activity of Ga/Zn micromotors against H. pylori bacteria (reprinted with permission
from Ref. [46]).
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Figure 8. (a) Illustration of microswimmer’s degradation process and induced neuronal differen-
tiation of SH-SY5Y cells (reprinted with permission from Ref. [76]). (b) Live/dead cell imaging
of the hNTSCs on the microrobot (left), images after incubating cells with microswimmers (mid-
dle), and evaluation of cell viability (right) (reprinted with permission from Ref. [75]). (c) Confocal
scans of histological sections of skin tissues implanted with degradable 75 vol% polyethylene glycol
diacrylate (PEGDA):25 vol% pentaerythritol triacrylate (PETA) microrobot and hard-to-degrade
100 vol% PETA microrobot. The red arrows indicate the location of the microrbot (reprinted with
permission from Ref. [73]). (d) Preparation and in vivo locomotion of the radiocontrast-agent-loaded
magnetic chitosan microscaffold (Mag-C) for real-time X-ray imaging (left) and schematics of Mag-C
containing macrophages and human adipose-derived mesenchymal stem cells (hADMSCs) used
for cancer therapy and cartilage regeneration (right) (reprinted with permission from Ref. [101]).
(e) Conjugation of NIR−797 dyes to ABFs for functionalization (reprinted with permission from
Ref. [102]). (f) Schematic illustration of fluorescent-dye-coated magnetic nanoparticles and the gener-
ation and navigation of swarm inside cell. The black arrows indicate the direction of the magnetic
field (reprinted with permission from Ref. [103]).
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4.3. Bioimaging

In addition to targeted delivery, microrobots can also be used for imaging enhance-
ment [104–106], which could contribute to early-stage diagnostics and could lead to better
treatment outcomes. Fluorescence imaging (FI) is a commonly used biomedical imaging
tool. Owing to the intrinsic property of autofluorescence and biocompatibility, a Spirulina
plant is an ideal material for bioimaging. Microrobots based on Spirulina Plantensis were
fabricated through dip coating in an Fe3O4 nanoparticle suspension [28]. These swarms
of microrobots can achieve innate fluorescence and can be tracked instantly. By creating a
swarm of artificial bacteria flagella (ABFs) labeled with an isothiocyanate dye (NIR-797)
(Figure 8e), the Nelson team was able to track the movement of ABFs in the peritoneal cav-
ity of a live mouse [102]. An innovative technique for the precise control of a low amount
of fluorescent-dye-coated magnetic nanoparticles that formed a swarm that effectively
amplified the concentration of the dye within a specific region of a cell was presented
(Figure 8f) [103]. This technique enabled the swarm produced inside the cell to exhibit
a signal-to-noise ratio that was 10-fold greater than the traditional global dye treatment
method, offering a powerful tool for intracellular treatment. Photoacoustic imaging (PAI)
has gained popularity in the past decade because of the distinct discrimination between
the structures and ample choices of contrast agents [24]. PAI was reported to include
the use of the 3D real-time detection and tracking of cell-sized nickel-based magnetic
microrobots in the mouse brain vasculature [107]. A novel light-triggered assembly of
gold nanoparticles was reported to enhance the contrast and the image quality for the PAI
of tumors in vivo [108]. A polydopamine-coated magnetized Spirulina-based microswim-
mer was fabricated to enhance the photoacoustic (PA) signal, making the PA real-time
image trackable [67].

5. Conclusions and Outlook

In this review, different kinds of biodegradable microrobots, their degradation mecha-
nisms, and their typical applications are summarized.

Because of the biosafety of these microrobots, they have great potential in several
biomedical applications, for example, targeted delivery toward different kinds of tumor
microenvironments, delivering drugs to the eye, knee cartilage regeneration [70], enhanced
chemodynamic therapy [109], spinal cord stimulation [110], sensing [111], treating acute
ischemic stroke [112], and hyperthermia therapy [113,114]. Biodegradable microrobots are
one of the most critical development trends in this area. Further in-depth studies on the
biodegradability of microrobots are needed.

There are different unsolved challenges in the clinical application of microrobots [115–118].
The first challenge involves manufacturing [119,120]. Conventional fabrication methods
are usually time-consuming, expensive, and difficult to mass produce, and they are not
practical in clinical practice. The second challenge involves control. Biodegradable mi-
crorobots need to be controlled precisely to perform their intended functions. To operate
microrobots, a common method is collaborating with an imaging system to navigate the
microrobot. Automated control systems need to be developed nowadays. Precisely tuning
the degradation rate is also a challenge. Whether microrobots can be effectively degraded
in the human body and whether the metabolites will not cause additional impacts on
the human body still need further experimental verification. Most of the microrobots
in existing experiments are completely degraded after a certain period of time under a
certain concentration of enzyme solution or PBS solution. However, the composition of the
human environment is more complex; these concentrations do not necessarily correspond
to the actual situation in the human body, and the exact time for complete degradation
is unpredictable. The degradation rate of biodegradable microrobots shall be carefully
controlled to ensure that they are effective during their intended lifespan. Meanwhile, some
metal-based microrobots are degraded into cations, such as Zn2+, Ga3+, and Mg2+. Their
intake beyond a certain range may cause harm to the human body. Moreover, in order to
realize the successful degradation of microrobots, specific requirements have to be satisfied.
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For instance, acid-degraded microrobots are mainly limited to treating stomach diseases.
Fourth, a single microrobot can only carry a limited amount of drugs or cells. Furthermore,
it is challenging to design microrobots that can address the non-Newtonian rheological
behaviors of biological fluids [121–125].

To tackle these challenges, developing novel fabrication methods, such as two-photon
direct writing, has been applied in recent years and could be a breakthrough in the field.
Diverse in vivo experiments to examine the appropriate lasting time of drug release and
microrobot degradation are needed, and a longer experimental period is needed to test the
toxicity of the metabolites to animals or humans. To develop automated control systems,
there is considerable enthusiasm for integrating machine learning techniques into the
control of biodegradable microrobots, allowing them to execute sophisticated tasks without
explicit programming [126–131]. It is promising to develop more degradation mechanisms
that have a wider scope of applications, and developing biodegradable microswarms is
a good choice to address this problem [132,133]. The potential benefits of biodegradable
microrobots in healthcare make these challenges worth addressing.
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