Pencil-like Hollow Carbon Nanotubes Embedded CoP-V4P3 Heterostructures as a Bifunctional Catalyst for Electrocatalytic Overall Water Splitting
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis
2.3. Characterizations
2.4. Electrochemical Testing
3. Results and Discussion
3.1. Characterization of the CoVO-10-CNT-450P
3.2. The HER Catalytic Activity of CoVO-10-CNT-450P
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- An, W.Y.; Lee, H.; Choi, S.R.; Choi, S.; Cho, H.S.; Choi, M.; Park, J.Y. Hierarchically Porous Ni Foam-Supported Co and Sn Doped Ni3S2 Nanosheets for Oxygen Evolution Reaction Electrocatalysts. J. Mater. Chem. A 2023, 11, 5734–5745. [Google Scholar] [CrossRef]
- Bai, L.L.; Zhou, Y.H.; Wang, X.L.; Yuan, S.G.; Wu, X.L. Facile Synthesis of Hypercrosslinked Resin via Photochlorination of P-xylene and Succedent Alkylation Polymerization. Chin. Chem. Lett. 2011, 22, 1115–1118. [Google Scholar] [CrossRef]
- Chen, J.; Bai, C.; Ma, H.; Liu, D.; Bao, Y.-S. Nano Palladium Catalyzed C(sp3) H Bonds Arylation by a Transient Directing Strategy. Chin. Chem. Lett. 2021, 32, 465–469. [Google Scholar] [CrossRef]
- Chen, P.; Ye, J.; Wang, H.; Ouyang, L.; Zhu, M. Recent Progress of Transition Metal Carbides/Nitrides for Electrocatalytic Water Splitting. J. Alloys Compd. 2021, 883, 160833. [Google Scholar] [CrossRef]
- Dong, G.; Yan, L.; Bi, Y. Advanced Oxygen Evolution Reaction Catalysts for Solar-Driven Photoelectrochemical Water Splitting. J. Mater. Chem. A 2023, 11, 3888–3903. [Google Scholar] [CrossRef]
- Dutta, S.; Indra, A.; Feng, Y.; Han, H.; Song, T. Promoting Electrocatalytic Overall Water Splitting with Nanohybrid of Transition Metal Nitride-Oxynitride. Appl. Catal. B-Environ. 2019, 241, 521–527. [Google Scholar] [CrossRef]
- El-Hasan, T.; Harfouche, M.; Aldrabee, A.; Abdelhadi, N.; Abu-Jaber, N.; Aquilanti, G. Synchrotron XANES and EXAFS Evidences for Cr+6 and V+5 Reduction within the Oil Shale Ashes through Mixing with Natural Additives and Hydration Process. Heliyon 2021, 7, e06769. [Google Scholar] [CrossRef]
- Fahimi, Z.; Moradlou, O. High-Performance Solid-State Asymmetric Supercapacitor Based on Co3V2O8/Carbon Nanotube Nanocomposite and Gel Polymer Electrolyte. J. Energy. Storage 2022, 50, 104697. [Google Scholar] [CrossRef]
- Fei, H.; Dong, J.; Wan, C.; Zhao, Z.; Xu, X.; Lin, Z.; Wang, Y.; Liu, H.; Zang, K.; Luo, J.; et al. Microwave-Assisted Rapid Synthesis of Graphene-Supported Single Atomic Metals. Adv. Mater. 2018, 30, 1802146. [Google Scholar] [CrossRef]
- Guo, M.; Meng, H.; Jin, J.; Mi, J. Amine-Assisted Synthesis of the Ni3Fe Alloy Encapsulated in Nitrogen-Doped Carbon for High-Performance Water Splitting. J. Mater. Chem. A 2023, 11, 6452–6464. [Google Scholar] [CrossRef]
- Hou, C.C.; Zou, L.; Wang, Y.; Xu, Q. MOF-Mediated Fabrication of a Porous 3D Superstructure of Carbon Nanosheets Decorated with Ultrafine Cobalt Phosphide Nanoparticles for Efficient Electrocatalysis and Zinc-Air Batteries. Angew. Chem. Int. Ed. 2020, 59, 21360–21366. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Xiang, W.; Wang, C.; Zhou, T.; Mao, J.; Wu, X.; Zhang, F.; Li, D.; Lu, X. Ultrafast O2 Activation by Copper Oxide for 2,4-Dichlorophenol Degradation: The Size-Dependent Surface Reactivity. Chin. Chem. Lett. 2020, 31, 2769–2773. [Google Scholar] [CrossRef]
- Huang, N.H.; Zhang, Q.; Fan, C.; Wang, J.Q. A Mechanistic Study of Flame Retardance of Novel Copolyester Phosphorus Containing Linked Pendant Groups by TG/XPS/Direct Py-MS. Chin. Chem. Lett. 2008, 19, 350–354. [Google Scholar] [CrossRef]
- Chhetri, K.; Muthurasu, A.; Dahal, B.; Kim, T.; Mukhiya, T.; Chae, S.H.; Ko, T.H.; Choi, Y.C.; Kim, H.Y. Engineering the Abundant Heterointerfaces of Integrated Bimetallic Sulfide-Coupled 2D MOF-Derived Mesoporous CoS2 Nanoarray Hybrids for Electrocatalytic Water Splitting. Mater. Today Nano 2022, 17, 100146. [Google Scholar] [CrossRef]
- Muthurasu, A.; Sampath, P.; Ko, T.H.; Lohani, P.C.; Pathak, I.; Acharya, D.; Chhetri, K.; Kim, D.H.; Kim, H.Y. Partial Selenium Surface Modulation of Metal Organic Framework Assisted Cobalt Sulfide Hollow Spheres for High Performance Bifunctional Oxygen Electrocatalysis and Rechargeable Zinc-Air Batteries. Appl. Catal. B-Environ. 2023, 330, 122523. [Google Scholar] [CrossRef]
- Li, X.; Zhao, H.; Li, Y.; Yang, Y.; Zhang, M.; Liu, S.; Ma, P.; Wang, J.; Niu, J. Synthesis, Structure and Properties of Three Novel Transition-Metal-Containing Tantalum-Phosphate Clusters. Chin. Chem. Lett. 2022, 33, 4675–4678. [Google Scholar] [CrossRef]
- Li, Z.; Hu, M.; Wang, P.; Liu, J.; Yao, J.; Li, C. Heterojunction Catalyst in Electrocatalytic Water Splitting. Coordin. Chem. Rev. 2021, 439, 213953. [Google Scholar] [CrossRef]
- Liu, H.; He, Q.; Jiang, H.; Lin, Y.; Zhang, Y.; Habib, M.; Chen, S.; Song, L. Electronic Structure Reconfiguration Toward Pyrite NiS2 via Engineered Heteroatom Defect Boosting Overall Water Splitting. ACS Nano 2017, 11, 11574–11583. [Google Scholar] [CrossRef]
- Liu, Q.; Zeng, C.; Xie, Z.; Ai, L.; Liu, Y.; Zhou, Q.; Jiang, J.; Sun, H.; Wang, S. Cobalt@Nitrogen-Doped Bamboo-Structured Carbon Nanotube to Boost Photocatalytic Hydrogen Evolution on Carbon Nitride. Appl. Catal. B-Environ. 2019, 254, 443–451. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, X.; Zhou, C.; Du, S.; Zhen, D.; Chen, B.; Li, J.; Wu, Q.; Iru, Y.; Chen, D. A Modulated Electronic State Strategy Designed to Integrate Active HER and OER Components as Hybrid Heterostructures for Efficient Overall Water Splitting. Appl. Catal. B-Environ. 2020, 260, 118197. [Google Scholar] [CrossRef]
- Liu, Z.; Lv, H.; Xie, Y.; Wang, J.; Fan, J.; Sun, B.; Jiang, L.; Zhang, Y.; Wang, R.; Shi, K. A 2D/2D/2D Ti3C2Tx@TiO2@MoS2 Heterostructure as an Ultrafast and High-Sensitivity NO2 Gas Sensor at Room-Temperature. J. Mater. Chem. A 2022, 10, 11980–11989. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, W.; Deng, Y.; Zhong, C.; Hu, W.; Han, X. Phase and Composition Controlled Synthesis of Cobalt Sulfide Hollow Nanospheres for Electrocatalytic Water Splitting. Nanoscale 2018, 10, 4816–4824. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.; Peng, P.; Pei, Y.; Shen, T.; Xie, Q.; Fu, M.; Chen, Y.; Ye, D. Immobilizing Ultrafine Bimetallic PtAg Alloy onto Uniform MnO2 Microsphere as a Highly Active Catalyst for CO Oxidation. Chin. Chem. Lett. 2021, 32, 2057–2060. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Luyen Doan, T.L.; Prabhakaran, S.; Tran, D.T.; Kim, D.H.; Lee, J.H.; Kim, N.H. Hierarchical Co and Nb Dual-Doped MoS2 Nanosheets Shelled Micro-TiO2 Hollow Spheres as Effective Multifunctional Electrocatalysts for HER, OER, and ORR. Nano Energy 2021, 82, 105750. [Google Scholar] [CrossRef]
- Peng, X.; Yan, Y.; Jin, X.; Huang, C.; Jin, W.; Gao, B.; Chu, P.K. Recent Advance and Prospectives of Electrocatalysts Based on transition metal selenides for efficient water splitting. Nano Energy 2020, 78, 105234. [Google Scholar] [CrossRef]
- Read, C.G.; Callejas, J.F.; Holder, C.F.; Schaak, R.E. General Strategy for the Synthesis of Transition Metal Phosphide Films for Electrocatalytic Hydrogen and Oxygen Evolution. ACS Appl. Mater. Interfaces 2016, 8, 12798–12803. [Google Scholar] [CrossRef]
- Roh, H.; Jung, H.; Choi, H.; Han, J.W.; Park, T.; Kim, S.; Yong, K. Various Metal (Fe, Mo, V, Co)-Doped Ni2P Nanowire Arrays as Overall Water Splitting Electrocatalysts and their Applications in Unassisted Solar Hydrogen Production with STH 14%. Appl. Catal. B-Environ. 2021, 297, 120434. [Google Scholar] [CrossRef]
- Su, L.; Li, H.; Xiao, Y.; Han, G.; Zhu, M. Synthesis of Ternary Nickel Cobalt Phosphide Nanowires Through Phosphorization for Use in Platinum-Free Dye-Sensitized Solar Cells. J. Alloys Compd. 2019, 771, 117–123. [Google Scholar] [CrossRef]
- Talib, S.H.; Lu, Z.; Yu, X.; Ahmad, K.; Bashir, B.; Yang, Z.; Li, J. Theoretical Inspection of M1/PMA Single-Atom Electrocatalyst: Ultra-High Performance for Water Splitting (HER/OER) and Oxygen Reduction Reactions (OER). ACS Catal. 2021, 11, 8929–8941. [Google Scholar] [CrossRef]
- Tyndall, D.; Craig, M.J.; Gannon, L.; McGuinness, C.; McEvoy, N.; Roy, A.; Garcia-Melchor, M.; Browne, M.P.; Nicolosi, V. Demonstrating the Source of Inherent Instability in NiFe LDH-Based OER Electrocatalysts. J. Mater. Chem. A 2023, 11, 4067–4077. [Google Scholar] [CrossRef]
- Vijayakumar, E.; Ramakrishnan, S.; Sathiskumar, C.; Yoo, D.J.; Balamurugan, J.; Noh, H.S.; Kwon, D.; Kim, Y.H.; Lee, H. MOF-derived CoP-nitrogen-doped carbon@NiFeP nanoflakes as an efficient and durable electrocatalyst with multiple catalytically Active Sites for OER, HER, ORR and Rechargeable Zinc-Air Batteries. Chem. Eng. J. 2022, 428, 131115. [Google Scholar] [CrossRef]
- Wang, J.; Ren, Y.; Wang, P. (Fe, F) Co-Doped Nickel Oxyhydroxide for Highly Efficient Oxygen Evolution Reaction. J. Mater. Chem. A 2023, 11, 4619–4626. [Google Scholar] [CrossRef]
- Wang, T.; Wang, P.; Zang, W.; Li, X.; Chen, D.; Kou, Z.; Mu, S.; Wang, J. Nanoframes of Co3O4-Mo2N Heterointerfaces Enable High-Performance Bifunctionality toward Both Electrocatalytic HER and OER. Adv. Funct. Mater. 2022, 32, 2107382. [Google Scholar] [CrossRef]
- Kandel, M.R.; Pan, U.N.; Dhakal, P.P.; Ghising, R.B.; Nguyen, T.T.; Zhao, J.; Kim, N.H.; Lee, J.H. Unique Heterointerface Engineering of Ni2P-MnP Nanosheets Coupled Co2P Nanoflowers as Hierarchical Dual-Functional Electrocatalyst for Highly Proficient Overall Water-Splitting. Appl. Catal. B-Environ. 2023, 331, 122680. [Google Scholar] [CrossRef]
- Wu, Q.Z.; He, J.F.; Ou, J.M. Preparation and Characterization of Polystyrene-Based Monolith with Ordered Macroporous Structure. Chin. Chem. Lett. 2012, 23, 474–477. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, C.; Qu, Y.; Zhou, H.; Zhou, F.; Wang, J.; Wu, Y.; Li, Y. Trifunctional Self-Supporting Cobalt-Embedded Carbon Nanotube Films for ORR, OER, and HER Triggered by Solid Diffusion from Bulk Metal. Adv. Mater. 2019, 31, 1808043. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Huang, W.; Fang, W.; Kuang, M.; Jia, N.; Ren, H.; Liu, D.; Lv, C.; Liu, C.; Xu, J.; et al. Promoting Electrocatalytic Hydrogen Evolution Reaction and Oxygen Evolution Reaction by Fields: Effects of Electric Field, Magnetic Field, Strain, and Light. Small Methods 2020, 4, 2000494. [Google Scholar] [CrossRef]
- Yin, P.; Yao, T.; Wu, Y.; Zheng, L.; Lin, Y.; Liu, W.; Ju, H.; Zhu, J.; Hong, X.; Deng, Z.; et al. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts. Angew. Chem. Int. Ed. 2016, 55, 10800–10805. [Google Scholar] [CrossRef]
- You, M.; Du, X.; Hou, X.; Wang, Z.; Zhou, Y.; Ji, H.; Zhang, L.; Zhang, Z.; Yi, S.; Chen, D. In-Situ Growth of Ruthenium-Based Nanostructure on Carbon Cloth for Superior Electrocatalytic Activity Towards HER and OER. Appl. Catal. B-Environ. 2022, 317, 121729. [Google Scholar] [CrossRef]
- Yu, P.; Wang, L.; Sun, F.; Xie, Y.; Liu, X.; Ma, J.; Wang, X.; Tian, C.; Li, J.; Fu, H. Co Nanoislands Rooted on Co-N-C Nanosheets as Efficient Oxygen Electrocatalyst for Zn-Air Batteries. Adv. Mater. 2019, 31, 1901666. [Google Scholar] [CrossRef]
- Yuan, C.; Wang, X.; Yang, X.; Alghamdi, A.A.; Alharthi, F.A.; Cheng, X.; Deng, Y. Sulfonic Acid-Functionalized Core-Shell Fe3O4@Carbon Microspheres as Magnetically Recyclable Solid Acid Catalysts. Chin. Chem. Lett. 2021, 32, 2079–2085. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, R.; Gao, C.; Bian, L.; Pu, Y.; Zhu, X.; Li, X.a.; Huang, W. Electrocatalytic Water Splitting: Cation-Modulated HER and OER Activities of Hierarchical VOOH Hollow Architectures for High-Efficiency and Stable Overall Water Splitting. Small 2019, 15, 1970255. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Yang, Y.; Wang, L.; Mu, Z.; Zhu, H.; Zhu, X.; Xing, H.; Xia, H.; Huang, B.; et al. A General Method for Transition Metal Single Atoms Anchored on Honeycomb-Like Nitrogen-Doped Carbon Nanosheets. Adv. Mater. 2020, 32, 1906905. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Wang, Z.; Xie, J.; Xu, L.; Lei, F.; Guan, M.; Huang, Y.; Zhao, Y.; Xia, J.; Li, H. The CoMo-LDH Ultrathin Nanosheet as a Highly Active and Bifunctional Electrocatalyst for Overall Water Splitting. Inorg. Chem. Front. 2018, 5, 2964–2970. [Google Scholar] [CrossRef]
- Chen, Z.; Ha, Y.; Liu, Y.; Wang, H.; Yang, H.; Xu, H.; Li, Y.; Wu, R. In Situ Formation of Cobalt Nitrides/Graphitic Carbon Composites as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Appl. Mater. Interf. 2018, 10, 7134–7144. [Google Scholar] [CrossRef]
- Jiang, N.; You, B.; Sheng, M.; Sun, Y. Electrodeposited Cobalt-Phosphorous-Derived Films as Competent Bifunctional Catalysts for Overall Water Splitting. Angew. Chem. Int. Ed. 2015, 54, 6251–6254. [Google Scholar] [CrossRef]
- Liu, P.F.; Yang, S.; Zhang, B.; Yang, H.G. Defect-Rich Ultrathin Cobalt-Iron Layered Double Hydroxide for Electrochemical Overall Water Splitting. ACS Appl. Mater. Interf. 2016, 8, 34474–34481. [Google Scholar] [CrossRef]
- Meng, L.; Xuan, H.; Wang, J.; Liang, X.; Li, Y.; Yang, J.; Han, P. Flower-Like Co3O4@NiFe-LDH Nanosheets Enable High-Performance Bifunctionality Towards Both Electrocatalytic HER and OER in Alkaline Solution. J. Alloys Compd. 2022, 919, 165877. [Google Scholar] [CrossRef]
- Meng, T.; Hao, Y.-N.; Zheng, L.; Cao, M. Organophosphoric Acid-Derived CoP Quantum Dots@S,N-Codoped Graphite Carbon as a Trifunctional Electrocatalyst for Overall Water Splitting and Zn-Air Batteries. Nanoscale 2018, 10, 14613–14626. [Google Scholar] [CrossRef]
- Song, J.; Zhu, C.; Xu, B.Z.; Fu, S.; Engelhard, M.H.; Ye, R.; Du, D.; Beckman, S.P.; Lin, Y. Bimetallic Cobalt-Based Phosphide Zeolitic Imidazolate Framework: CoPx Phase-Dependent Electrical Conductivity and Hydrogen Atom Adsorption Energy for Efficient Overall Water Splitting. Adv. Energy Mater. 2017, 7, 1601555. [Google Scholar] [CrossRef]
- Wan, S.; Jin, W.; Guo, X.; Mao, J.; Zheng, L.; Zhao, J.; Zhang, J.; Liu, H.; Tang, C. Self-Templating Construction of Porous CoSe2 Nanosheet Arrays as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Sustain. Chem. Eng. 2018, 6, 15374–15382. [Google Scholar] [CrossRef]
- Wu, T.; Pi, M.; Zhang, D.; Chen, S. 3D Structured Porous CoP3 Nanoneedle Arrays as an Efficient Bifunctional Electrocatalyst for the Evolution Reaction of Hydrogen and Oxygen. J. Mater. Chem. A 2016, 4, 14539–14544. [Google Scholar] [CrossRef]
- Wu, X.; Han, X.; Ma, X.; Zhang, W.; Deng, Y.; Zhong, C.; Hu, W. Morphology-Controllable Synthesis of Zn-Co-Mixed Sulfide Nanostructures on Carbon Fiber Paper Toward Efficient Rechargeable Zinc-Air Batteries and Water Electrolysis. ACS Appl. Mater. Inter. 2017, 9, 12574–12583. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, Y.; Li, G.-D.; Zou, X.; Lian, X.; Wang, D.; Sun, L.; Asefa, T.; Zou, X. Efficient Electrocatalysis of Overall Water Splitting by Ultrasmall NixCo3-xS4 Coupled Ni3S2 Nanosheet Arrays. Nano Energy 2017, 35, 161–170. [Google Scholar] [CrossRef]
- Zhou, C.; Han, X.; Zhu, F.; Zhang, X.; Lu, Y.; Lang, J.; Cao, X.; Gu, H. Facile Synthesis of the Encapsulation of Co-Based Multimetallic Alloys/Oxide Nanoparticles Nirtogen-Doped Carbon Nanotubes as Electrocatalysts for the HER/OER. Int. J. Hydrogen Energy 2022, 47, 27775–27786. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, W.; Li, Y.; Yue, Z.; Ren, M.; Zhang, Y.; Saleh, N.M.; Wang, J. Energy-Efficient 1.67 V Single and 0.90 V Dual-Electrolyte Based Overall Water-Electrolysis Devices Enabled by a ZIF-L Derived Acid-Base Bifunctional Cobalt Phosphide Nanoarray. J. Mater. Chem. A 2018, 6, 24277–24284. [Google Scholar] [CrossRef]
- Chanda, D.; Kannan, K.; Gautam, J.; Meshesha, M.M.; Jang, S.G.; Dinh, V.A.; Yang, B.L. Effect of the Interfacial Electronic Coupling of Nickel-Iron Sulfide Nanosheets with Layer Ti3C2 MXenes as Efficient Bifunctional Electrocatalysts for Anion-Exchange Membrane Water Electrolysis. Appl. Catal. B Environ. 2023, 321, 122039. [Google Scholar] [CrossRef]
- Liu, T.; Sun, X.; Asiri, A.M.; He, Y. One-Step Electrodeposition of Ni–Co–S Nanosheets Film as a Bifunctional Electrocatalyst for Efficient Water Splitting. Int. J. Hydrogen Energy 2016, 41, 7264–7269. [Google Scholar] [CrossRef]
- Chen, G.; Wang, T.; Zhang, J.; Liu, P.; Sun, H.; Zhuang, X.; Chen, M.; Feng, X. Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites. Adv. Mater. 2018, 30, 1706279. [Google Scholar] [CrossRef]
- Xiao, C.; Li, Y.; Lu, X.; Zhao, C. Bifunctional Porous NiFe/NiCo2O4/Ni Foam Electrodes with Triple Hierarchy and Double Synergies for Efficient Whole Cell Water Splitting. Adv. Funct. Mater. 2016, 26, 3515–3523. [Google Scholar] [CrossRef]
- Han, A.; Zhang, H.; Yuan, R.; Ji, H.; Du, P. Crystalline Copper Phosphide Nanosheets as an Efficient Janus Catalyst for Overall Water Splitting. ACS Appl. Mater. Interfaces 2017, 9, 2240–2248. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cao, Y.; Sun, C.; Zou, G.; Huang, J.; Kuai, X.; Zhao, J.; Gao, L. Strongly Coupled Molybdenum Carbide on Carbon Sheets as a Bifunctional Electrocatalyst for Overall Water Splitting. ChemSusChem 2017, 10, 3540–3546. [Google Scholar] [CrossRef]
- Liu, W.; Du, K.; Liu, L.; Zhang, J.; Zhu, Z.; Shao, Y.; Li, M. One-Step Electroreductively Deposited Iron-Cobalt Composite Films as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Nano Energy 2017, 38, 576–584. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.; Liang, Z.; Lang, K.; Fan, J.; Ji, L.; Yang, K.; Lu, S.; Ma, Z.; Wang, L.; Wang, C. Pencil-like Hollow Carbon Nanotubes Embedded CoP-V4P3 Heterostructures as a Bifunctional Catalyst for Electrocatalytic Overall Water Splitting. Nanomaterials 2023, 13, 1667. https://doi.org/10.3390/nano13101667
Chang H, Liang Z, Lang K, Fan J, Ji L, Yang K, Lu S, Ma Z, Wang L, Wang C. Pencil-like Hollow Carbon Nanotubes Embedded CoP-V4P3 Heterostructures as a Bifunctional Catalyst for Electrocatalytic Overall Water Splitting. Nanomaterials. 2023; 13(10):1667. https://doi.org/10.3390/nano13101667
Chicago/Turabian StyleChang, Haiyang, Zhijian Liang, Kun Lang, Jiahui Fan, Lei Ji, Kejian Yang, Shaolin Lu, Zetong Ma, Lei Wang, and Cheng Wang. 2023. "Pencil-like Hollow Carbon Nanotubes Embedded CoP-V4P3 Heterostructures as a Bifunctional Catalyst for Electrocatalytic Overall Water Splitting" Nanomaterials 13, no. 10: 1667. https://doi.org/10.3390/nano13101667
APA StyleChang, H., Liang, Z., Lang, K., Fan, J., Ji, L., Yang, K., Lu, S., Ma, Z., Wang, L., & Wang, C. (2023). Pencil-like Hollow Carbon Nanotubes Embedded CoP-V4P3 Heterostructures as a Bifunctional Catalyst for Electrocatalytic Overall Water Splitting. Nanomaterials, 13(10), 1667. https://doi.org/10.3390/nano13101667