PDMS/TiO2 and PDMS/SiO2 Nanocomposites: Mechanical Properties’ Evaluation for Improved Insulating Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. TiO2 and SiO2 Nanoparticles’ Sol-Gel Synthesis
2.2. Synthesis of PDMS/NPTiO2 and PDMS/NPSiO2 Nanocomposites
2.3. Nanocomposite Polymeric Characterization Test
3. Results
3.1. NPs Characterization
3.2. Composites Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arshad; Momen, G.; Farzaneh, M.; Nekahi, A. Properties and Applications of Superhydrophobic Coatings in High Voltage Outdoor Insulation: A Review. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3630–3646. [Google Scholar] [CrossRef]
- Barroso, G.; Li, Q.; Bordia, R.K.; Motz, G. Polymeric and Ceramic Silicon-Based Coatings—A Review. J. Mater. Chem. A 2019, 7, 1936–1963. [Google Scholar] [CrossRef]
- Crosby, A.J.; Lee, J.-Y. Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties. Polym. Rev. 2007, 47, 217–229. [Google Scholar] [CrossRef]
- Gupta, N.S.; Lee, K.-S.; Labouriau, A. Tuning Thermal and Mechanical Properties of Polydimethylsiloxane with Carbon Fibers. Polymers 2021, 13, 1141. [Google Scholar] [CrossRef]
- Seyfi, J.; Goodarzi, V.; Wurm, F.R.; Shojaei, S.; Jafari-Nodoushan, M.; Najmoddin, N.; Khonakdar, H.A.; Baghersad, M.H.; Uzun, L. Developing Antibacterial Superhydrophobic Coatings Based on Polydimethylsiloxane/Silver Phosphate Nanocomposites: Assessment of Surface Morphology, Roughness and Chemistry. Prog. Org. Coat. 2020, 149, 105944. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, Z.; Hu, Y.; Hu, L.; Zi, Y.; Wang, M.; Feng, X.; Huang, W. Bismuth Quantum Dot (Bi QD)/Polydimethylsiloxane (PDMS) Nanocomposites with Self-Cleaning and Antibacterial Activity for Dental Applications. Nanomaterials 2022, 12, 3911. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Wang, L.; Li, Y.; Qin, J.; Xie, P.; Qu, Y.; Sun, K.; Fan, R. Flexible Multi-Walled Carbon Nanotubes/Polydimethylsiloxane Membranous Composites toward High-Permittivity Performance. Adv. Compos. Hybrid Mater. 2020, 3, 1–7. [Google Scholar] [CrossRef]
- Xiong, G.; Zhang, Z.; Qi, Y. Preparation of G-C3N4/TNTs/CNTs Photocatalytic Composite Powder and Its Enhancement of Antifouling Performance of Polydimethylsiloxane Coatings. Nanomaterials 2022, 12, 2442. [Google Scholar] [CrossRef]
- Bensalah, F.; Pézard, J.; Haddour, N.; Erouel, M.; Buret, F.; Khirouni, K. Carbon Nano-Fiber/PDMS Composite Used as Corrosion-Resistant Coating for Copper Anodes in Microbial Fuel Cells. Nanomaterials 2021, 11, 3144. [Google Scholar] [CrossRef]
- Min-Dianey, K.A.A.; Le, T.K.; Qadir, A.; M’Bouana, N.L.P.; Malik, M.; Kim, S.W.; Choi, J.R.; Pham, P.V. The Ripple Effect of Graphite Nanofilm on Stretchable Polydimethylsiloxane for Optical Sensing. Nanomaterials 2021, 11, 2934. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M. Nanoparticle Reinforced Polymers. Polymers 2019, 11, 625. [Google Scholar] [CrossRef] [PubMed]
- Lamberti, A. Microfluidic Photocatalytic Device Exploiting PDMS/TiO2 Nanocomposite. Appl. Surf. Sci. 2015, 335, 50–54. [Google Scholar] [CrossRef]
- Salazar-Hernández, C.; Alquiza, M.J.P.; Salgado, P.; Cervantes, J. TEOS-Colloidal Silica-PDMS-OH Hybrid Formulation Used for Stone Consolidation. Appl. Organomet. Chem. 2010, 24, 481–488. [Google Scholar] [CrossRef]
- Eduok, U.; Faye, O.; Szpunar, J. Recent Developments and Applications of Protective Silicone Coatings: A Review of PDMS Functional Materials. Prog. Org. Coat. 2017, 111, 124–163. [Google Scholar] [CrossRef]
- Rosales, A.; Maury-Ramírez, A.; Gutiérrez, R.M.-D.; Guzmán, C.; Esquivel, K. SiO2@TiO2 Coating: Synthesis, Physical Characterization and Photocatalytic Evaluation. Coatings 2018, 8, 120. [Google Scholar] [CrossRef]
- Feng, J.; Liu, Y.; Zhang, L.; Zhu, J.; Chen, J.; Xu, H.; Yang, H.; Yan, W. Effects of Calcination Temperature on Organic Functional Groups of TiO2 and the Adsorption Performance of the TiO2 for Methylene Blue. Sep. Sci. Technol. 2020, 55, 672–683. [Google Scholar] [CrossRef]
- Topuz, B.; Şimşek, D.; Çiftçioğlu, M. Preparation of Monodisperse Silica Spheres and Determination of Their Densification Behaviour. Ceram. Int. 2015, 41, 43–52. [Google Scholar] [CrossRef]
- Hernández, C.S.; Hernández, M.S.; Cerritos, R.C.; Elorza, E.; Mendoza-Miranda, J.M.; Navarro, R. DBTL as Neutral Catalyst on TEOS/PDMS Anticorrosive Coating. J. Sol-Gel Sci. Technol. 2017, 81, 405–412. [Google Scholar] [CrossRef]
- Cui, X.; Zhu, G.; Pan, Y.; Shao, Q.; Zhao, C.; Dong, M.; Zhang, Y.; Guo, Z. Polydimethylsiloxane-Titania Nanocomposite Coating: Fabrication and Corrosion Resistance. Polymer 2018, 138, 203–210. [Google Scholar] [CrossRef]
- Cocchi, G.; De Angelis, M.G.; Doghieri, F. Solubility and Diffusivity of Liquids for Food and Pharmaceutical Applications in Crosslinked Polydimethylsiloxane (PDMS) Films: II. Experimental Data on Mixtures. J. Membr. Sci. 2015, 492, 612–619. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.-C.; Hutchens, S.; Lawrence, J.; Emrick, T.; Crosby, A.J. Directly Measuring the Complete Stress-Strain Response of Ultrathin Polymer Films. Macromolecules 2015, 48, 6534–6540. [Google Scholar] [CrossRef]
- Vera-Graziano, R.; Hernandez-Sanchez, F.; Cauich-Rodriguez, J.V. Study of Crosslinking Density in Polydimethylsiloxane Networks by DSC. J. Appl. Polym. Sci. 1995, 55, 1317–1327. [Google Scholar] [CrossRef]
- González, A.; Jiménez López, J. Materiales Elastoméricos Con Memoria de Forma. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2017. [Google Scholar]
- ASTM D3359; Standard Test Methods for Rating Adhesion by Tape Test. ASTM: West Conshohocken, PA, USA, 2017.
- ASTM E384; Standard Test Method for Microindentation Hardness of Materials. ASTM: West Conshohocken, PA, USA, 2002.
- ISO 527-1; Determination of Tensile Properties. International Organization for Standardization: Geneva, Switzerland, 2019.
- Gorji, B.; Allahgholi Ghasri, M.R.; Fazaeli, R.; Niksirat, N. Synthesis and Characterizations of Silica Nanoparticles by a New Sol-Gel Method. J. Appl. Chem. Res. 2021, 6, 22–26. [Google Scholar]
- Suryanarayana, C.; Norton, M.G. X-ray Diffraction; Springer: Boston, MA, USA, 1998; ISBN 978-1-4899-0150-7. [Google Scholar]
- Frank, O.; Zukalova, M.; Laskova, B.; Kürti, J.; Koltai, J.; Kavan, L. Raman Spectra of Titanium Dioxide (Anatase, Rutile) with Identified Oxygen Isotopes (16, 17, 18). Phys. Chem. Chem. Phys. 2012, 14, 14567–14572. [Google Scholar] [CrossRef]
- Spallino, L.; Vaccaro, L.; Sciortino, L.; Agnello, S.; Buscarino, G.; Cannas, M.; Gelardi, F.M. Visible-Ultraviolet Vibronic Emission of Silica Nanoparticles. Phys. Chem. Chem. Phys. 2014, 16, 22028–22034. [Google Scholar] [CrossRef] [PubMed]
- Mark, J.E.; Erman, B. Elastomers and Rubberlike Elasticity. In The Oxford Handbook of Soft Condensed Matter; Terentjev, E.M., Weitz, D.A., Eds.; Oxford University Press: Oxford, UK, 2017; ISBN 9780199667925. [Google Scholar]
- Liu, J.; Wu, S.; Zou, M.; Zheng, X.; Cai, Z. Surface Modification of Silica and Its Compounding with Polydimethylsiloxane Matrix: Interaction of Modified Silica Filler with PDMS. Iran. Polym. J. 2012, 21, 583–589. [Google Scholar] [CrossRef]
- Wang, Z.; Volinsky, A.A.; Gallant, N.D. Crosslinking Effect on Polydimethylsiloxane Elastic Modulus Measured by Custom-Built Compression Instrument. J. Appl. Polym. Sci. 2014, 131, 41050. [Google Scholar] [CrossRef]
- Kim, T.K.; Kim, J.K.; Jeong, O.C. Measurement of Nonlinear Mechanical Properties of PDMS Elastomer. Microelectron. Eng. 2011, 88, 1982–1985. [Google Scholar] [CrossRef]
- Nandanwar, R.; Singh, P.; Haque, F.Z. Synthesis and Characterization of SiO2 Nanoparticles by Sol-Gel Process and Its Degradation of Methylene Blue. Am. Chem. Sci. J. 2015, 5, 1–10. [Google Scholar] [CrossRef]
- Suttiponparnit, K.; Jiang, J.; Sahu, M.; Suvachittanont, S.; Charinpanitkul, T.; Biswas, P. Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties. Nanoscale Res. Lett. 2011, 6, 27. [Google Scholar] [CrossRef]
Vibrational Bond | Wavelength (cm−1) * | |
---|---|---|
a | -SI(CH3)n | 2905–2960 |
1280–1255 | ||
b | -Si(CH3)2-O-Si(CH3)2- | 2905–2960 |
1390–1410 | ||
1100–1000 | ||
c | Si-(CH3)3 | 1410 |
850–730 | ||
730–650 | ||
d | Si-(CH3)3 | 850–840 |
765 | ||
715–680 | ||
e | Si-OH | 3640–3695 |
810–960 | ||
f | Si-CH3 | 1410 |
750–870 | ||
730–650 |
Composites | Observations |
---|---|
PDMS | |
2% TiO2 | |
2% SiO2 | |
4% TiO2 | |
4% SiO2 | |
8% TiO2 | |
8% SiO2 | |
10% TiO2 | |
10% SiO2 |
Reinforcement | Wt% | Vickers Hardness (kg/mm2) |
---|---|---|
PDMS | ---- | 4.45 ± 0.104 |
TiO2 | 2% | 5.70 ± 0.201 |
4% | 6.14 ± 0.054 | |
8% | 6.58 ± 0.338 | |
10% | 6.93 ± 0.245 | |
SiO2 | 2% | 6.63 ± 0.215 |
4% | 7.04 ± 0.239 | |
8% | 8.34 ± 0.172 | |
10% | 11.45 ± 0.450 |
Group | Elastic Module (MPa) | Fracture Stress (MPa) | Maximum Elongation (%) |
---|---|---|---|
PDMS | 1.430 ± 0.135 | 0.900 ± 0.087 | 79.240 ± 6.920 |
4% TiO2 | 1.797 ± 0.064 | 0.890 ± 0.010 | 66.667 ± 1.477 |
8% TiO2 | 1.883 ± 0.067 | 1.083 ± 0.094 | 73.117 ± 5.531 |
10% TiO2 | 2.120 ± 0.036 | 1.323 ± 0.138 | 79.467 ± 5.902 |
4% SiO2 | 1.850 ± 0.087 | 0.930 ± 0.165 | 66.230 ± 9.205 |
8% SiO2 | 2.323 ± 0.023 | 1.623 ± 0.145 | 83.537 ± 5.302 |
10% SiO2 | 2.453 ± 0.104 | 1.383 ± 0.157 | 67.407 ± 5.860 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordoba, A.; Rivera-Muñoz, E.M.; Velázquez-Castillo, R.; Esquivel, K. PDMS/TiO2 and PDMS/SiO2 Nanocomposites: Mechanical Properties’ Evaluation for Improved Insulating Coatings. Nanomaterials 2023, 13, 1699. https://doi.org/10.3390/nano13101699
Cordoba A, Rivera-Muñoz EM, Velázquez-Castillo R, Esquivel K. PDMS/TiO2 and PDMS/SiO2 Nanocomposites: Mechanical Properties’ Evaluation for Improved Insulating Coatings. Nanomaterials. 2023; 13(10):1699. https://doi.org/10.3390/nano13101699
Chicago/Turabian StyleCordoba, Aldo, Eric Mauricio Rivera-Muñoz, Rodrigo Velázquez-Castillo, and Karen Esquivel. 2023. "PDMS/TiO2 and PDMS/SiO2 Nanocomposites: Mechanical Properties’ Evaluation for Improved Insulating Coatings" Nanomaterials 13, no. 10: 1699. https://doi.org/10.3390/nano13101699
APA StyleCordoba, A., Rivera-Muñoz, E. M., Velázquez-Castillo, R., & Esquivel, K. (2023). PDMS/TiO2 and PDMS/SiO2 Nanocomposites: Mechanical Properties’ Evaluation for Improved Insulating Coatings. Nanomaterials, 13(10), 1699. https://doi.org/10.3390/nano13101699