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Abstract: 1T-TaS2 has attracted much attention recently due to its abundant charge density wave
phases. In this work, high-quality two-dimensional 1T-TaS2 crystals were successfully synthesized by
a chemical vapor deposition method with controllable layer numbers, confirmed by the structural
characterization. Based on the as-grown samples, their thickness-dependency nearly commensurate
charge density wave/commensurate charge density wave phase transitions was revealed by the
combination of the temperature-dependent resistance measurements and Raman spectra. The phase
transition temperature increased with increasing thickness, but no apparent phase transition was
found on the 2~3 nm thick crystals from temperature-dependent Raman spectra. The transition
hysteresis loops due to temperature-dependent resistance changes of 1T-TaS2 can be used for memory
devices and oscillators, making 1T-TaS2 a promising material for various electronic applications.

Keywords: 1T-TaS2; CVD; resistance measurements; Raman spectra; NC/CCDW phase transition

1. Introduction

Two-dimensional (2D) layered materials have exhibited novel physical properties
different from bulk materials due to their atomically low thickness and high carrier mobil-
ity. Among them, low-dimensional strongly correlated electron systems, such as 1T-TaS2,
2H-TaSe2, 2H-NbSe2, and 1T-TiSe2, have unique electronic structures and rich extraordinary
physical properties, including superconductivity [1], charge density wave order [2,3], ferro-
magnetism [4], and catalytic activity [5]. As a charge density wave (CDW) material, 1T-TaS2
has attracted much attention during the past years owing to its abundant phases, such as
1T, 2H, and 3R, with various stacking [6–10]. It has extensive prospects for applications
as electronic, magnetic, and energy conversion devices, such as high-performance oscilla-
tors [6], fast memories [7], solar cells [8], humidity sensors [9,11–13], and high-efficiency
electrocatalysts [10,14,15]. Recently, the ferroic character of 2D 1T-TaS2 was established
by revealing the hysteretic electrical switching of the ferro-rotational order through the
observation of its domains and domain wall propagation [16].

Unlike the Peierls instability mechanism, electron–phonon interaction plays a crucial
role in driving CDW instabilities [17,18]. The instability of CDW featured by periodic
lattice distortion (PLD) was found to be dependent on the temperature, which affected
spatial modulation of carrier density at low temperatures and produced a metastable
phase [19–21]. Below 180 K, a commensurate CDW (CCDW) phase was revealed [22], in
which a

√
13 ×

√
13 superlattice was formed when 12 Ta atoms on the outside shrunk to

the central 13th Ta atom to form a “Star of David” (SOD) structure [23]. After the CCDW
phase transformation, the bandgap opening made 1T-TaS2 a Mott insulator [24]. At 180 K,
a nearly commensurate CDW (NCCDW) phase was formed with partial structures being
commensurate to the original lattice, resulting in the metallic CCDW phase by reducing
insulating domain walls. When further increasing to near 350 K, 1T-TaS2 distorted into an
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incommensurate CDW (ICCDW) phase, in which atoms were shifted from their original
lattice positions. In addition to thermal excitation, CDW phase transition can be induced
in other ways, including photoinduced phase transition [25] and electron-induced phase
transition [26,27]. Electrical measurement shows the sudden change in resistance and the
hysteresis window [28].

In recent years, chemical vapor deposition (CVD) has been used as a mature strategy
for controllable synthesis of high-quality 1T-TaS2. The preparation of 2D TaS2 crystals with
different substrates has been reported, such as Au [29–31], SiO2/Si [32], hexagonal boron
nitride [33], sapphire [34], etc. However, the interaction between substrate and sample due
to the charge transfer [35] inevitably affects CDW performance. Among these substrates,
mica has excellent epitaxial growth characteristics and lattice adaptation degree. Here, we
report the thickness-controllable growth of 1T-TaS2 on mica substrates by ambient pressure
CVD (APCVD) and studies on CDW phase transitions. The structure of 1T-TaS2 was con-
firmed by Raman, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and
high-resolution transmission electron microscope (HRTEM) measurements. After structural
characterization, temperature-dependent resistance and temperature-varying Raman mea-
surements were used to characterize the CDW phase transition under thermal excitation.

2. Materials and Methods
2.1. Characterizations of As-Grown 2D 1T-TaS2 Crystals

Morphologies and thicknesses of 2D 1T-TaS2 crystals were checked with an atomic
force microscope (AFM, Bruker Corp., Billerica, MA, USA, Dimension Icon). The micro-
Raman tests were performed with a confocal microscope-based Raman spectrometer
(ALPHA 300, WITec Corp., Ulm, Germany) under an excitation laser at 532 nm. The
temperature-dependent Raman spectra were collected in a custom-made vacuum thermo-
stat ranging from 80 K to 260 K. The binding energies of elements were obtained by XPS
measurements on as-grown samples (ESCALAB 250 Xi, Thermo Scientific Corp., Waltham,
MA, USA). Before the TEM (Talos F200 X, FEI Corp., Hillsborough, OR, USA) measure-
ments, the as-grown 1T-TaS2 crystals were transferred onto micro-grid-supported Cu grids
via a typical polymethyl methacrylate (PMMA)-assisted transfer method [36]. The as-
grown samples were spin-coated with PMMA (950 K, A4, Allresist Corp., Straussberg,
Berlin, Germany) at 6000 rpm for 60 s, followed by drying at 180 ◦C for 10 min. Then, the
samples supported by PMMA film were lifted up with tweezers under deionized water,
and then they were collected by micro-grid-supported Cu grids. Finally, the PMMA film
was removed via dissolution with acetone for about 10 min and dried by flowing Ar gas.
HRTEM images and selected area electron diffraction (SAED) patterns were collected by a
Talos F200X transmission electron microscope operated at 200 kV.

2.2. Device Fabrication of 1T-TaS2 Electrical Devices

For individual TaS2 flakes, the electrodes were patterned by electron beam lithography
(EBL). Five nanometers Ti and 50 nm Au were electron-beam evaporated for contacts. The
devices were put in a vacuum (Janis ST500 probe station, <10−5 Torr) and measured by an
Agilent B1500A semiconductor device analyzer. Low-temperature resistance measurements
were performed in a physical property measurement system (PPMS, Quantum Design, Inc.,
San Diego, CA, USA) under liquid He-purged conditions.

3. Results and Discussion

The top-view and side-view atomic models of 1T-TaS2 are shown in Figure 1a,b. Ta
atoms with the central octahedral arrangement are sandwiched between two S atom layers,
demonstrating an ABC-type stacking [37]. The electron–phonon coupling-induced SOD
structure at a low temperature is presented in Figure 1a, with red arrows indicating the
shrinking direction of Ta atoms. At a temperature below 180 K, the 1T-TaS2 crystal is filled
with SOD cluster, while at room temperature, the 1T-TaS2 crystal can transform from the
CCDW to the NCCDW phase, which is only partially filled by satellite domains [38].
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than 150 cm−1 were related to the tantalum atoms while phonon modes within 220−320 
cm−1 were more associated with sulfur atoms [38]. The inset presents an AFM image of an 
as-grown 1T-TaS2 crystal with a lateral size of about 10 µm on which the Raman spectrum 
was collected. The main Raman phonon modes of 1T-TaS2 include A1g modes of 71, 78, and 
117 cm−1 and Eg modes of 60 and 90 cm−1. Figure 1e,f shows Raman maps of 1T-TaS2 crys-
tals with unicolor trigonal and hexagonal shapes, indicating excellent crystallinity of the 
as-grown crystals. 

Figure 1. Synthesis of 1T-TaS2 crystal via APCVD method. Top−view (a) and side view (b) of
the atomic structures of a 1T-TaS2 crystal. (c) Schematics for the APCVD growth of 1T-TaS2 on a
mica substrate. (d) A Raman spectrum collected at room temperature. An AFM image in the inset
demonstrates the height of 0.7 nm for the monolayer, with a scale bar of 1 µm. (e,f) Raman maps of
1T-TaS2 with different shapes.

Two-dimensional 1T-TaS2 crystals were grown by the APCVD method, as schemati-
cally shown in Figure 1c. The mica was employed as a substrate placed in the deposition
area. Tantalum pentachloride and sulfur powders were employed as the sources placed
upstream outside the furnace, which were independently heated by two different heaters.
Then, under the H2/Ar (5%H2) mixed carrier gas, the furnace was heated to 1100 K for
growth. During the growth, the Ta flux was controlled while the S flux was kept continu-
ous. By controlling the supply time for Ta and heating time, high-quality 1T-TaS2 crystals
with various layer thicknesses were grown. The Raman spectrum of 1T-TaS2 monolayers
collected at room temperature is shown in Figure 1d, in which peak wavenumbers less than
150 cm−1 were related to the tantalum atoms while phonon modes within 220−320 cm−1

were more associated with sulfur atoms [38]. The inset presents an AFM image of an
as-grown 1T-TaS2 crystal with a lateral size of about 10 µm on which the Raman spectrum
was collected. The main Raman phonon modes of 1T-TaS2 include A1g modes of 71, 78,
and 117 cm−1 and Eg modes of 60 and 90 cm−1. Figure 1e,f shows Raman maps of 1T-TaS2
crystals with unicolor trigonal and hexagonal shapes, indicating excellent crystallinity of
the as-grown crystals.

The controllable synthesis of 1T-TaS2 was further studied through AFM measurements,
as shown in Figure 2a–d. The line profiles in the inset clearly show the thickness: from
the monolayer of 0.7 nm to the tetralayer of 2.9 nm. It should be noted that the sizes of all
grown 2D crystals were around 10 µm, which may be limited by the metallic precursor for
this APCVD growth. With decreasing thickness, the stability of 1T-TaS2 becomes worse.
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The instability was further confirmed by the XPS measurements in Figure 3a. Besides
the Ta-4f7/2 peak at 24.2 eV for TaS2, peaks of Ta-4f5/2 at 26.8 eV, and peaks of Ta-4f7/2
at 28.71 eV, a loss feature at about 38 eV for Ta2O5 also appears in the XPS spectrum,
indicating the oxidization of 1T-TaS2. The S-2p1/2 and S-2p3/2 are shown in Figure 3b,
giving the evidence for TaS2 [39]. For the monolayer, it is even difficult to perform Raman
measurements on it due to the low laser-induced damage threshold. Thus, most of the
measurements were performed on the thick 1T-TaS2 crystals.
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HRTEM measurements were performed to explore the internal structure and crys-
tallinity of the sample. The as-grown 1T-TaS2 was transferred to a micro-grid-supported
carbon film via a PMMA-assisted transfer method [36]. As shown in Figure 3c, the low-
magnification HRTEM image depicts the hexagonal shape of the sample with a uniform
surface. HRTEM measurements were performed on the area marked in Figure 3c, and the
corresponding atomic-resolution image is shown in Figure 3d. The SAED pattern shows
the (100) and (001) with the spacing of 0.291 and 0.597 nm in the inset of Figure 3d, agreeing
with the lattice spacing of 1T-TaS2 [40]. In addition, the single clear dots indicate the high
crystalline quality of the grown sample.
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HRTEM image of 1T-TaS2 and the inset shows the corresponding SAED pattern.

To study the CDW phase transitions, electrical devices were fabricated. In our exper-
iments, it is very difficult to grow large-sized thin 1T-TaS2 crystals. Usually, the size of
a 1T-TaS2 crystal with a thickness lower than 3 nm is below 10 µm. Meanwhile, the thin
1T-TaS2 is not so stable in the atmosphere. Hence, it is challenging to fabricate four contacts
on a thin sample with a size smaller than 10 µm. To better compare the test results from sam-
ples with different thicknesses, two-contact devices were fabricated for all samples, which
were proven to be valid for the resistance measurements on exfoliated samples [16]. During
the electrical measurements, the positive and negative electrodes were fixed at different
temperatures to prevent inconsistent modifications to hysteresis loops from Schottky effects.
When the CDW phase transition occurs, the 1T-TaS2 phase can change from an insulator to
a metal, which can be identified by temperature-dependent resistance measurements. The
schematics for the electrical devices are presented in Figure 4a, in which gold electrodes
were fabricated on the sample by lithography termina, and more details for the procedure
refer to the method. The hysteresis loops of the resistance in the heating and cooling cycles
of 1T-TaS2 with different thicknesses were measured, as shown in Figure 4b–d. In Figure 4b,
the resistance of the sample with a thickness of about 50 nm decreases sharply when the
temperature exceeds 160 K during heating. The resistance changing with the temperature
indicates the phase transition from the CCDW phase to the NCDW phase.

On the other hand, when the temperature decreases from 300 K to 225 K, the resistance
suddenly increases, indicating the occurrence of the NC–CC CDW phase transition. Similar
results have been obtained from other samples with different thicknesses. In the sample
with a thickness of about 20 nm in Figure 4c, the CC–NC phase transition happens at 153 K,
while the NC–CC phase transition occurs at 237 K. Moreover, in the sample with a 2–3 nm
thickness shown in Figure 4d, the resistance begins to decrease at 150 K during the heating
process for the CC–NC phase transition, while the NC–CC phase transition temperature
happens at 250 K.
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The above measurements were repeated more than 10 times, and the same conclusions
were obtained. It is found that during the heating process, with the increase in thickness,
the temperature for the CCDW-NCDW phase transition increased and ranged from 150 K
to 160 K. During the cooling process, the NC-CC phase transition temperature decreased
with increasing thickness, ranging from 250 K to 220 K. As the thickness decreases, the
window for the hysteresis loop becomes larger, which may be attributed to the larger
NC–CC phase transition barrier in thinner 1T-TaS2 flakes due to the enhanced pinning of
nucleated domain walls [10,41]. Such hysteresis loops were suggested to be caused by the
domain wall propagation, leading to the ferroic performance of 2D 1T-TaS2 crystals [16].
These ferro-rotational orders can be switched by controlling the applied voltages at a fixed
temperature or the temperature at a fixed applied voltage. Therefore, thermal-driven
resistance switching and the temperature of the thickness-dependent phase transition could
extend the electrical and magnetic application of 1T-TaS2.

The phase transitions were further confirmed by the temperature-dependent Raman
measurements. The samples grown on mica were quickly transferred to a vacuum ther-
mostat with a temperature range from 80 K to 260 K to collect the temperature-dependent
Raman spectra. Figure 5a shows the Raman spectra of the 50 nm thick sample, indicating
an obvious phase transition with emerging new peaks at 70 cm−1 and near 100 cm−1 as
it warmed up. At 160 K, the peak at 70 cm−1 was split into two peaks at 70 cm−1 and
73 cm−1, while the peak intensities were significantly increased near 100 cm−1. Those
changes are provoked by the folding of phonon modes in the Brillouin zone between the
CC/NC translation [42]. Figure 5b shows the Raman spectra of the 20 nm thick sample as
it warmed up. It is obvious that the peak intensities were strongly enhanced near 100 cm−1

at below 140 K, including the peaks at 81 cm−1, 103 cm−1, and 122 cm−1, but no split peak
was seen in the Raman spectra. Furthermore, the same measurements were performed on
2–3 nm thick samples, but no apparent phase transition was found, which may be inter-
preted as the instability of ultrathin TaS2 under the irradiation of lasers. Such vanishment
was also reported by previous work in TaS2 sheets thinner than 13 nm [43,44]. The above
temperature-dependent Raman measurements also confirm that the CC/NC transition
temperature in thick layer samples is 140–160 K. The consistency between the resistance
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measurements and Raman spectra further confirms that the two-contact measurements are
reasonable in our experiments.
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Figure 5. Raman measurements during thermal−driven phase transitions in 1T-TaS2. (a,b) Raman
characteristics of CC/NC phase transition on ~50 nm and ~20 nm samples. The Raman spectra were
collected at measured temperatures rising from 80 K to 260 K.

4. Conclusions

High-quality 2D 1T-TaS2 crystals were successfully synthesized by CVD with control-
lable layer numbers. The structural tests show the high quality of the grown samples. The
AFM measurements demonstrated the precise control of the thickness. Based on the as-
grown samples, their thickness-dependent CC/NCDW phase transitions were revealed by
the combination of the temperature-dependent resistance measurements and Raman spec-
tra. The phase transition temperature increases with increasing thickness. The transition
hysteresis loops due to temperature-dependent resistance changes of 1T-TaS2 can be used
for memory devices and oscillators, which is promising for various electrical applications.
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