Nonlinear Dynamic Response of Nanocomposite Microbeams Array for Multiple Mass Sensing
Abstract
:1. Introduction
2. Equations of Motion for the Nanocomposite Microcantilevers
3. Modal Analysis
4. Frequency Response Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Eigenproblem
References
- Younis, M.I. MEMS Linear and Nonlinear Statics and Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 20. [Google Scholar]
- Kim, P.; Bae, S.; Seok, J. Resonant behaviors of a nonlinear cantilever beam with tip mass subject to an axial force and electrostatic excitation. Int. J. Mech. Sci. 2012, 64, 232–257. [Google Scholar] [CrossRef]
- Karličić, D.; Kozić, P.; Adhikari, S.; Cajić, M.; Lazarević, M. Nonlocal mass-nanosensor model based on the damped vibration of single-layer graphene sheet influenced by in-plane magnetic field. Int. J. Mech. Sci. 2015, 96-97, 132–142. [Google Scholar] [CrossRef]
- Fernández-Sáez, J.; Morassi, A.; Rubio, L.; Zaera, R. Transverse free vibration of resonant nanoplate mass sensors: Identification of an attached point mass. Int. J. Mech. Sci. 2019, 150, 217–225. [Google Scholar] [CrossRef]
- Dilena, M.; Dell’Oste, M.F.; Fernández-Sáez, J.; Zaera, R. Mass detection in nanobeams from bending resonant frequency shifts. Mech. Syst. Signal Process. 2019, 116, 261–276. [Google Scholar] [CrossRef] [Green Version]
- Pratiher, B. Stability and bifurcation analysis of an electrostatically controlled highly deformable microcantilever-based resonator. Nonlinear Dyn. 2014, 78, 1781–1800. [Google Scholar] [CrossRef]
- Mahmoodi, S.N.; Jalili, N.; Ahmadian, M. Subharmonics analysis of nonlinear flexural vibrations of piezoelectrically actuated microcantilevers. Nonlinear Dyn. 2010, 59, 397–409. [Google Scholar] [CrossRef]
- Han, J.; Qi, H.; Jin, G.; Li, B.; Feng, J.; Zhang, Q. Mechanical behaviors of electrostatic microresonators with initial offset imperfection: Qualitative analysis via time-varying capacitors. Nonlinear Dyn. 2018, 91, 269–295. [Google Scholar] [CrossRef]
- Zaitsev, S.; Shtempluck, O.; Buks, E.; Gottlieb, O. Nonlinear damping in a micromechanical oscillator. Nonlinear Dyn. 2012, 67, 859–883. [Google Scholar] [CrossRef]
- Seleim, A.; Towfighian, S.; Delande, E.; Abdel-Rahman, E.; Heppler, G. Dynamics of a close-loop controlled MEMS resonator. Nonlinear Dyn. 2012, 69, 615–633. [Google Scholar] [CrossRef]
- Towfighian, S.; Heppler, G.R.; Abdel-Rahaman, E.M. Low-voltage closed loop MEMS actuators. Nonlinear Dyn. 2012, 69, 565–575. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Chen, D.; Jin, L.; Li, Y.; Zhang, Y.; Xu, L.; Guo, Y.; Lin, F.; Wu, F. Gas Detection Microsystem with MEMS Gas Sensor and Integrated Circuit. IEEE Sens. J. 2018, 18, 6765–6773. [Google Scholar] [CrossRef]
- Urasinska-Wojcik, B.; Vincent, T.A.; Chowdhury, M.F.; Gardner, J.W. Ultrasensitive WO3 gas sensors for NO2 detection in air and low oxygen environment. Sens. Actuators B Chem. 2017, 239, 1051–1059. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Chen, Y.; Zhang, Y.; Gao, X.; Xu, P.; Li, X.; Fang, J.; Wen, W. An integrated micro-chip with Ru/Al2O3/ZnO as sensing material for SO2 detection. Sens. Actuators B Chem. 2018, 262, 26–34. [Google Scholar] [CrossRef]
- Gerdroodbary, M.B.; Anazadehsayed, A.; Hassanvand, A.; Moradi, R. Calibration of low-pressure MEMS gas sensor for detection of hydrogen gas. Int. J. Hydrog. Energy 2018, 43, 5770–5782. [Google Scholar] [CrossRef]
- Mahyari, A.; Gerdroodbary, M.B.; Mosavat, M.; Ganji, D. Detection of ammonia gas by Knudsen thermal force in micro gas actuator. Case Stud. Therm. Eng. 2018, 12, 276–284. [Google Scholar] [CrossRef]
- Boisen, A.; Dohn, S.; Keller, S.S.; Schmid, S.; Tenje, M. Cantilever-like micromechanical sensors. Rep. Prog. Phys. 2011, 74, 036101. [Google Scholar] [CrossRef]
- Yu, F.; Yu, H.; Xu, P.; Li, X. Precise extension-mode resonant sensor with uniform and repeatable sensitivity for detection of ppm-level ammonia. J. Micromech. Microeng. 2014, 24, 045005. [Google Scholar] [CrossRef]
- Dorsey, K.; Bedair, S.; Fedder, G. Gas chemical sensitivity of a CMOS MEMS cantilever functionalized via evaporation driven assembly. J. Micromech. Microeng. 2014, 24, 075001. [Google Scholar] [CrossRef]
- Faegh, S.; Jalili, N.; Sridhar, S. Ultrasensitive Piezoelectric-Based Microcantilever Biosensor: Theory and Experiment. Mechatron. IEEE/ASME Trans. 2015, 20, 308–312. [Google Scholar] [CrossRef]
- Spletzer, M.; Raman, A.; Wu, A.Q.; Xu, X.; Reifenberger, R. Ultrasensitive mass sensing using mode localization in coupled microcantilevers. Appl. Phys. Lett. 2006, 88, 254102. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Montaseri, M.H.; Wood, G.S.; Pu, S.H.; Seshia, A.A.; Kraft, M. A review on coupled MEMS resonators for sensing applications utilizing mode localization. Sens. Actuators A Phys. 2016, 249, 93–111. [Google Scholar] [CrossRef]
- Walter, V.; Bourbon, G.; Le Moal, P.; Kacem, N.; Lardiès, J. Electrostatic actuation to counterbalance the manufacturing defects in a MEMS mass detection sensor using mode localization. Procedia Eng. 2016, 168, 1488–1491. [Google Scholar] [CrossRef]
- Yabuno, H.; Seo, Y.; Kuroda, M. Self-excited coupled cantilevers for mass sensing in viscous measurement environments. Appl. Phys. Lett. 2013, 103, 063104. [Google Scholar] [CrossRef]
- Endo, D.; Yabuno, H.; Higashino, K.; Yamamoto, Y.; Matsumoto, S. Self-excited coupled-microcantilevers for mass sensing. Appl. Phys. Lett. 2015, 106, 223105. [Google Scholar] [CrossRef] [Green Version]
- Pallay, M.; Daeichin, M.; Towfighian, S. Dynamic behavior of an electrostatic MEMS resonator with repulsive actuation. Nonlinear Dyn. 2017, 89, 1525–1538. [Google Scholar] [CrossRef]
- Singh, T.; Elhady, A.; Jia, H.; Mojdeh, A.; Kaplan, C.; Sharma, V.; Basha, M.; Abdel-Rahman, E. Modeling of low-damping laterally actuated electrostatic MEMS. Mechatronics 2018, 52, 1–6. [Google Scholar] [CrossRef]
- Kang, D.K.; Yang, H.I.; Kim, C.W. Geometrically nonlinear dynamic behavior on detection sensitivity of carbon nanotube-based mass sensor using finite element method. Finite Elem. Anal. Des. 2017, 126, 39–49. [Google Scholar] [CrossRef]
- Mehdipour, I.; Erfani-Moghadam, A.; Mehdipour, C. Application of an electrostatically actuated cantilevered carbon nanotube with an attached mass as a bio-mass sensor. Curr. Appl. Phys. 2013, 13, 1463–1469. [Google Scholar] [CrossRef]
- Azizi, S.; Kivi, A.R.; Marzbanrad, J. Mass detection based on pure parametric excitation of a micro beam actuated by piezoelectric layers. Microsyst. Technol. 2017, 23, 991–998. [Google Scholar] [CrossRef]
- Kumar, V.; Boley, J.W.; Ekowaluyo, H.; Miller, J.K.; Marvin, G.C.; Chiu, G.T.C.; Rhoads, J.F. Linear and nonlinear mass sensing using piezoelectrically-actuated microcantilevers. In MEMS and Nanotechnology, Volume 2; Springer: Berlin/Heidelberg, Germany, 2011; pp. 57–65. [Google Scholar]
- Bouchaala, A.; Jaber, N.; Yassine, O.; Shekhah, O.; Chernikova, V.; Eddaoudi, M.; Younis, M.I. Nonlinear-based MEMS Sensors and active switches for gas detection. Sensors 2016, 16, 758. [Google Scholar] [CrossRef] [Green Version]
- Bouchaala, A.; Nayfeh, A.H.; Jaber, N.; Younis, M.I. Mass and position determination in MEMS mass sensors: A theoretical and an experimental investigation. J. Micromech. Microeng. 2016, 26, 105009. [Google Scholar] [CrossRef]
- Nguyen, V.N.; Baguet, S.; Lamarque, C.H.; Dufour, R. Bifurcation-based micro-/nanoelectromechanical mass detection. Nonlinear Dyn. 2015, 79, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Nayfeh, A.; Ouakad, H.; Najar, F.; Choura, S.; Abdel-Rahman, E. Nonlinear dynamics of a resonant gas sensor. Nonlinear Dyn. 2010, 59, 607–618. [Google Scholar] [CrossRef]
- Ghaemi, N.; Nikoobin, A.; Ashory, M.R. A Comprehensive Categorization of Micro/Nanomechanical Resonators and Their Practical Applications from an Engineering Perspective: A Review. Adv. Electron. Mater. 2022, 8, 2200229. [Google Scholar] [CrossRef]
- DeMartini, B.E.; Rhoads, J.F.; Zielke, M.A.; Owen, K.G.; Shaw, S.W.; Turner, K.L. A single input-single output coupled microresonator array for the detection and identification of multiple analytes. Appl. Phys. Lett. 2008, 93, 054102. [Google Scholar] [CrossRef] [Green Version]
- DeMartini, B.E.; Rhoads, J.F.; Shaw, S.W.; Turner, K.L. A single input—Single output mass sensor based on a coupled array of microresonators. Sens. Actuators A Phys. 2007, 137, 147–156. [Google Scholar] [CrossRef]
- Rathinavel, S.; Priyadharshini, K.; Panda, D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater. Sci. Eng. B 2021, 268, 115095. [Google Scholar] [CrossRef]
- Choudhary, M.; Sharma, A.; Raj, S.A.; Sultan, M.T.H.; Hui, D.; Shah, A.U.M. Contemporary review on carbon nanotube (CNT) composites and their impact on multifarious applications. Nanotechnol. Rev. 2022, 11, 2632–2660. [Google Scholar] [CrossRef]
- Islam, M.H.; Afroj, S.; Uddin, M.A.; Andreeva, D.V.; Novoselov, K.S.; Karim, N. Graphene and CNT-Based Smart Fiber-Reinforced Composites: A Review. Adv. Funct. Mater. 2022, 32, 2205723. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, K.; Dixit, A.R. A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene. Carbon Lett. 2021, 31, 149–165. [Google Scholar] [CrossRef]
- Sathishkumar, S.; Jawahar, P.; Chakraborti, P. Influence of carbonaceous reinforcements on mechanical and tribological properties of PEEK composites—A review. Polym.-Plast. Technol. Mater. 2022, 61, 1367–1384. [Google Scholar] [CrossRef]
- Palumbo, A.; Li, Z.; Yang, E.H. Trends on Carbon Nanotube-Based Flexible and Wearable Sensors via Electrochemical and Mechanical Stimuli: A Review. IEEE Sens. J. 2022, 22, 20102–20125. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R. Processing of Conducting Polymers for Sensors Applications: A State of Art Review and Future Applications. In Encyclopedia of Materials: Plastics and Polymers; Hashmi, M., Ed.; Elsevier: Oxford, UK, 2022; pp. 495–502. [Google Scholar] [CrossRef]
- Talò, M.; Krause, B.; Pionteck, J.; Lanzara, G.; Lacarbonara, W. An updated micromechanical model based on morphological characterization of carbon nanotube nanocomposites. Compos. Part B Eng. 2017, 115, 70–78. [Google Scholar] [CrossRef]
- Formica, G.; Lacarbonara, W. Three-dimensional modeling of interfacial stick-slip in carbon nanotube nanocomposites. Int. J. Plast. 2017, 88, 204–217. [Google Scholar] [CrossRef]
- Lacarbonara, W.; Guruva, S.K.; Carboni, B.; Krause, B.; Janke, A.; Formica, G.; Lanzara, G. Unusual nonlinear switching in branched carbon nanotube nanocomposites. Sci. Rep. 2023, 13, 5185. [Google Scholar] [CrossRef]
- Pierre, C.; Dowell, E. Localization of vibrations by structural irregularity. J. Sound Vib. 1987, 114, 549–564. [Google Scholar] [CrossRef]
- Formica, G.; Lacarbonara, W. Asymptotic dynamic modeling and response of hysteretic nanostructured beams. Nonlinear Dyn. 2019, 99, 227–248. [Google Scholar] [CrossRef]
- Lacarbonara, W. Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Formica, G.; Talò, M.; Lacarbonara, W. Nonlinear modeling of carbon nanotube composites dissipation due to interfacial stick—Slip. Int. J. Plast. 2014, 53, 148–163. [Google Scholar] [CrossRef]
- Cetraro, M.; Lacarbonara, W.; Formica, G. Nonlinear Dynamic Response of Carbon Nanotube Nanocomposite Microbeams. J. Comput. Nonlinear Dyn. 2017, 12, 031007. [Google Scholar] [CrossRef]
- Formica, G.; Milicchio, F.; Lacarbonara, W. A Krylov accelerated Newton–Raphson scheme for efficient pseudo-arclength pathfollowing. Int. J. Non-Linear Mech. 2022, 145, 104116. [Google Scholar] [CrossRef]
- Lacarbonara, W.; Vestroni, F.; Capecchi, D. Poincaré map-based continuation of periodic orbits in dynamic discontinuous and hysteretic systems. In Proceedings of the ASME Design Engineering Technical Conference, Las Vegas, NV, USA, 12–16 September 1999; Volume 7B-1999, pp. 2215–2224. [Google Scholar]
- Formica, G.; Vaiana, N.; Rosati, L.; Lacarbonara, W. Pathfollowing of high-dimensional hysteretic systems under periodic forcing. Nonlinear Dyn. 2021, 103, 3515–3528. [Google Scholar] [CrossRef]
- Ghatkesar, M.K.; Barwich, V.; Braun, T.; Ramseyer, J.P.; Gerber, C.; Hegner, M.; Lang, H.P.; Drechsler, U.; Despont, M. Higher modes of vibration increase mass sensitivity in nanomechanical microcantilevers. Nanotechnology 2007, 18, 445502. [Google Scholar] [CrossRef] [Green Version]
- Bouchaala, A.; Nayfeh, A.H.; Younis, M.I. Analytical study of the frequency shifts of micro and nano clamped—Clamped beam resonators due to an added mass. Meccanica 2017, 52, 333–348. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Formica, G.; Lacarbonara, W.; Yabuno, H. Nonlinear Dynamic Response of Nanocomposite Microbeams Array for Multiple Mass Sensing. Nanomaterials 2023, 13, 1808. https://doi.org/10.3390/nano13111808
Formica G, Lacarbonara W, Yabuno H. Nonlinear Dynamic Response of Nanocomposite Microbeams Array for Multiple Mass Sensing. Nanomaterials. 2023; 13(11):1808. https://doi.org/10.3390/nano13111808
Chicago/Turabian StyleFormica, Giovanni, Walter Lacarbonara, and Hiroshi Yabuno. 2023. "Nonlinear Dynamic Response of Nanocomposite Microbeams Array for Multiple Mass Sensing" Nanomaterials 13, no. 11: 1808. https://doi.org/10.3390/nano13111808
APA StyleFormica, G., Lacarbonara, W., & Yabuno, H. (2023). Nonlinear Dynamic Response of Nanocomposite Microbeams Array for Multiple Mass Sensing. Nanomaterials, 13(11), 1808. https://doi.org/10.3390/nano13111808