Non-Isothermal Crystallization Kinetics of Montmorillonite/Polyamide 610 Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation and Reagents
2.1.1. Reagents
2.1.2. Instrumentation
2.2. Experimental Details
2.2.1. Preparation of MMT/PA610 Composites
- (1)
- Different amounts of MMT filler were dispersed in rapidly stirred solutions of 60 wt% PA610 to provide samples PA-1, PA-5, and PA-10 containing 1, 5, and 10% of MMT, respectively.
- (2)
- Each of the PA610 samples were transferred to a pressure reactor under an N2 atmosphere before adding sodium hypophosphite (0.2 wt%) as the chain transfer catalyst to initiate the polymerization. The pressure of the sealed reactor was monitored until it reached 0.2–0.3 MPa, then the reaction mixture was stirred rapidly at 85–87 rpm min−1.
- (3)
- The heated 220–240 °C, and the pressure was maintained at 1.9–2.5 Mpa for 2.5–3 h.
- (4)
- The reactor temperature was increased to 240–255 °C while the reactor pressure was gradually released to atmosphere pressure for 1–1.5 h.
- (5)
- The temperature of the reactor was further increased to 260–270 °C for 20–30 min at atmospheric pressure.
- (6)
- Once the temperature of the reactor reached 270–280 °C, the stirred reactor was evacuated to produce a pressure of 0.008–0.01 Mpa for 10–30 min. Stirring was stopped once the torque of the stirring paddle reached 2.5–3 Nm, and the resultant composites were obtained.
2.2.2. DSC Analyses
2.2.3. Calculation of Composite Crystallinity Levels
3. Results and Discussion
3.1. Morphological and Compositional Characterization of the MMT/PA610 Nanocomposites
3.2. Crystallization Behavior of MMT/PA610 Composite Produced at Different Cooling Rates
3.3. Crystallinity Temperatures and Time Curves of the MMT/PA610 Composites
3.4. Analysis of Non-Isothermal Crystallization Processes
3.4.1. Jeziorny’s Method for Analyzing MMT/PA610 Composites
3.4.2. Ozawa’s Method for Analyzing MMT/PA610 Composites
3.4.3. Mo’s Method for Analyzing MMT/PA610 Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eltahir, Y.A.; Saeed, H.A.; Yuejun, C.; Xia, Y.; Yimin, W. Parameters characterizing the kinetics of the non-isothermal crystallization of polyamide 5,6 determined by differential scanning calorimetry. J. Polym. Eng. 2014, 34, 353–358. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, G. Non-isothermal crystallization kinetics of polyamide-6/graphite oxide nanocomposites. Thermochim. Acta 2010, 500, 13–20. [Google Scholar] [CrossRef]
- Li, J.; Fang, Z.; Tong, L.; Gu, A.; Liu, F. Effect of multi-walled carbon nanotubes on non-isothermal crystallization kinetics of polyamide 6. Eur. Polym. J. 2006, 42, 3230–3235. [Google Scholar] [CrossRef]
- Makhlouf, A.; Layachi, A.; Kouadri, I.; Belaadi, A.; Satha, H. Structural study and thermal behavior of composites: Polyamide 66/glass fibers: The reinforcement ratio effect on the kinetics of crystallization. J. Compos. Mater. 2019, 54, 1467–1481. [Google Scholar] [CrossRef]
- Zhang, R.; Jariyavidyanont, K.; Du, M.; Zhuravlev, E.; Schick, C.; Androsch, R. Nucleation and crystallization kinetics of polyamide 12 investigated by fast scanning calorimetry. J. Polym. Sci. 2021, 60, 842–855. [Google Scholar] [CrossRef]
- Lee, M.J.; Lee, P.G.; Bae, I.J.; Won, J.S.; Jeon, M.H.; Lee, S.G. Fabrication of Carbon Fiber Reinforced Aromatic Polyamide Composites and Their Thermal Conductivities with a h-BN Filler. Polymers 2020, 13, 21. [Google Scholar] [CrossRef]
- Meng, C.; Liu, X. One-step method for synthesis of bio-based semi-aromatic high-temperature polyamide PA5T/56 and its non-isothermal crystallization kinetics. J. Therm. Anal. Calorim. 2022, 147, 12245–12252. [Google Scholar] [CrossRef]
- Yu, P.T.; Bonn, E.A.; Lakshmanan, B. Impact of Structural Plastics as Balance of Plant Components on Proton Exchange Membrane Fuel Cell Performance. ECS Trans. 2013, 58, 665–680. [Google Scholar] [CrossRef]
- Ghaffari Mosanenzadeh, S.; Liu, M.W.; Osia, A.; Naguib, H.E. Thermal Composites of Biobased Polyamide with Boron Nitride Micro Networks. J. Polym. Environ. 2015, 23, 566–579. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, D.; Zhang, Y.; Zhang, K.; Wu, G. Influences of Carbon Nanotube Networking on the Conductive, Crystallization, and Thermal Expansion Behaviors of PA610-Based Nanocomposites. J. Macromol. Sci. Part B 2013, 52, 910–923. [Google Scholar] [CrossRef]
- Ning, M.; Kun, L.Y.; Ming, H.M.; Tao, L.W.; Hao, L.; Shen, Z.C.; He, S.Q. Electrical Properties of PA610/Organo-Vermiculite Nanocomposites. Eng. Plast. Appl. 2020, 48, 35–38. [Google Scholar] [CrossRef]
- Quiles-Carrillo, L.; Montanes, N.; Boronat, T.; Balart, R.; Torres-Giner, S. Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion. Polym. Test. 2017, 61, 421–429. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J.; Zhang, Z.; Zhang, J. Aliphatic segmented poly(ether ester amide)s synthesized from hexanediamine, sebacic acid and poly(ethylene glycol)s. Chem. Res. Chin. Univ. 2016, 32, 505–511. [Google Scholar] [CrossRef]
- Marset, D.; Dolza, C.; Boronat, T.; Montanes, N.; Balart, R.; Sanchez-Nacher, L.; Quiles-Carrillo, L. Injection-Molded Parts of Partially Biobased Polyamide 610 and Biobased Halloysite Nanotubes. Polymers 2020, 12, 1503. [Google Scholar] [CrossRef] [PubMed]
- Pai, F.C.; Lai, S.M.; Chu, H.H. Characterization and Properties of Reactive Poly(lactic acid)/Polyamide 610 Biomass Blends. J. Appl. Polym. Sci. 2013, 130, 2563–2571. [Google Scholar] [CrossRef]
- Don, T.M.; Hsu, Y.C.; Tai, H.Y.; Fu, E.; Cheng, L.P. Preparation of bi-continuous macroporous polyamide copolymer membranes for cell culture. J. Membr. Sci. 2012, 415–416, 784–792. [Google Scholar] [CrossRef]
- Qing, C.Z.; Xin, D.; Wen, L.Y. Effeet of Different Hydorgen Bonding in Polyamide6/N-N′-ethylene-bis(tertrabrmophthalimide) on Its Crystalline and Dynamical Mechanical Behavior. China Plast. 2008, 22, 19–22. [Google Scholar] [CrossRef]
- Dong, W.Y.; Peng, F.; Guang, L.X.; Xiang, Z.Q.; Ying, L.M. The Spherulitic Morphology of Nylon 612 and Its Formation Conditions in Isothermal Crystallization. Polym. Mater. Sci. Eng. 2009, 25, 72–75. [Google Scholar]
- Li, X.; He, Y.; Dong, X.; Ren, X.; Gao, H.; Hu, W. Effects of hydrogen-bonding density on polyamide crystallization kinetics. Polymer 2020, 189, 122165. [Google Scholar] [CrossRef]
- Dong, J.; Wang, B.; Xiong, Z.; Bai, W.; Xiong, C. The formation of stereocomplex in asymmetric blends of PLLGA and PDLA and the effect of stereocomplex on PLLGA crystallization. Cryst. Res. Technol. 2014, 49, 521–531. [Google Scholar] [CrossRef]
- Schawe, J.E. Identification of three groups of polymers regarding their non-isothermal crystallization kinetics. Polymer 2019, 167, 167–175. [Google Scholar] [CrossRef]
- Ping, Z.F.; Feng, M.X.; Yang, L.Z.; Ming, X.G.; Jun, Z.L. Non-Isothermal Crystallization Kinetics of Polyamics of Polyamics 6/Amino Graphene composite. Polym. Bull. 2019, 5, 59–64. [Google Scholar]
- Melo, C.C.; Beatrice, C.A.; Pessan, L.A.; Oliveira, A.D.; Machado, F.M. Analysis of nonisothermal crystallization kinetics of graphene oxide—Reinforced polyamide 6 nanocomposites. Thermochim. Acta 2018, 667, 111–121. [Google Scholar] [CrossRef]
- Júnior, L.M.; Oliveira, L.M.; Bocoli, P.F.; Cristianini, M.; Padula, M.; Anjos, C.A. Morphological, thermal and mechanical properties of polyamide and ethylene vinyl alcohol multilayer flexible packaging after high-pressure processing. J. Food Eng. 2020, 276, 109913. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Sun, L.Y.; Li, L.J.; Wei, J.L. Effects of strain rate and high temperature environment on the mechanical performance of carbon fiber reinforced thermoplastic composites fabricated by hot press molding. Compos. Part A Appl. Sci. Manuf. 2020, 134, 105905. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, S.; Qi, Z.; Ge, L.; Hu, Y. Crystallization behaviors of polypropylene/montmorillonite nanocomposites. J. Appl. Polym. Sci. 2010, 83, 1978–1985. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, Z.; Chen, C.; Li, M.; Tan, Y.; Mai, K. Non-isothermal crystallization kinetics of montmorillonite filled beta-isotactic polypropylene nanocomposites. J. Therm. Anal. Calorim. 2015, 121, 829–838. [Google Scholar] [CrossRef]
- Xue, M.; Liu, Y.; Lv, K.; Han, S.; Gao, S.; Yu, G. Prominent crystallization promotion effect of montmorillonite on ptt/pc blends with ptt as the continuous phase. Polymers 2020, 12, 541. [Google Scholar] [CrossRef] [Green Version]
- Jape, S.P.; Deshpande, V.D. Nonisothermal crystallization kinetics of nylon 66/LCP blends. Thermochim. Acta 2017, 655, 1–12. [Google Scholar] [CrossRef]
- Liu, Z.P.; Mei, K.; Liang, W.J.; Li, P.J. Study on Non-isothermal Crystallization Behavior of High Filled Nylon 6-based Composites. Plast. Sci. Technol. 2020, 2, 21–27. [Google Scholar] [CrossRef]
- Li, W.Z.; Huai, G.X.; Yun, Z.S.; Yun, Z.J. Crystallization of Polyamide6/Long Carbon Fiber Composite. Eng. Plast. Appl. 2018, 46, 17–21. [Google Scholar] [CrossRef]
- Jeziorny, A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer 1978, 19, 1142–1144. [Google Scholar] [CrossRef]
- Ozawa, T. Kinetics of non-isothermal crystallization. Polymer 1971, 12, 150–158. [Google Scholar] [CrossRef]
- Mo, Z.S. A method for non-isothermal crystallization kinetics of polymers. Acta Polym. Sin. 2008, 7, 656–661. [Google Scholar] [CrossRef]
- Zou, H.; Zhang, Q.; Tan, H.; Wang, K.; Du, R.; Fu, Q. Clay locked phase morphology in the PPS/PA66/clay blends during compounding in an internal mixer. Polymer 2006, 47, 6–11. [Google Scholar] [CrossRef]
Samples | Φ [°C min−1] | T0 [°C] | Tp [°C] | Tm [°C] | t1/2 [min] | G [min−1] |
---|---|---|---|---|---|---|
PA610 | 5 | 190.6 | 183.3 | 214.9 | 1.69 | 0.59 |
10 | 191.7 | 185.7 | 213.6 | 0.86 | 1.16 | |
15 | 191.8 | 187.7 | 213.4 | 0.60 | 1.68 | |
20 | 192.0 | 188.1 | 213.0 | 0.53 | 1.90 | |
25 | 196.5 | 193.7 | 212.3 | 0.63 | 1.60 | |
PA-1 | 5 | 194.6 | 191.6 | 214.0 | 1.64 | 0.61 |
10 | 192.2 | 188.1 | 213.7 | 1.03 | 0.97 | |
15 | 190.2 | 185.1 | 213.4 | 0.84 | 1.19 | |
20 | 189.4 | 183.6 | 213.3 | 0.61 | 1.64 | |
25 | 189.0 | 182.8 | 212.4 | 0.61 | 1.63 | |
PA-5 | 5 | 189.3 | 185.7 | 208.7 | 1.77 | 0.56 |
10 | 187.9 | 182.8 | 207.6 | 1.00 | 1.00 | |
15 | 185.0 | 179.3 | 206.5 | 0.75 | 1.33 | |
20 | 184.0 | 176.8 | 206.6 | 0.75 | 1.33 | |
25 | 182.7 | 175.1 | 206.4 | 0.63 | 1.59 | |
PA-10 | 5 | 188.8 | 185.6 | 205.6 | 1.58 | 0.63 |
10 | 185.5 | 181.3 | 204.8 | 1.01 | 0.99 | |
15 | 183.6 | 178.1 | 204.0 | 0.80 | 1.24 | |
20 | 182.7 | 176.6 | 205.2 | 0.64 | 1.56 | |
25 | 180.9 | 173.2 | 204.4 | 0.62 | 1.61 |
Sample | Φ [°C min−1] | n | lgZc | Zc | R2 |
---|---|---|---|---|---|
PA610 | 5 | 3.26 | −0.17 | 0.68 | 1.00 |
10 | 5.22 | 0.09 | 1.23 | 0.99 | |
15 | 4.59 | 0.75 | 5.62 | 0.98 | |
20 | 3.61 | 0.78 | 6.03 | 1.00 | |
25 | 3.85 | 0.76 | 5.75 | 0.98 | |
PA-1 | 5 | 2.33 | −0.01 | 0.98 | 0.99 |
10 | 3.04 | 0.41 | 2.57 | 1.00 | |
15 | 3.11 | 0.63 | 4.27 | 1.00 | |
20 | 3.20 | 0.70 | 5.01 | 1.00 | |
25 | 4.46 | 0.67 | 4.68 | 0.99 | |
PA-5 | 5 | 4.15 | −0.75 | 0.18 | 1.00 |
10 | 2.67 | 0.22 | 1.66 | 0.99 | |
15 | 2.79 | 0.53 | 3.39 | 1.00 | |
20 | 3.02 | 0.59 | 3.89 | 1.00 | |
25 | 2.72 | 0.81 | 6.46 | 1.00 | |
PA-10 | 5 | 3.87 | −0.89 | 0.13 | 0.99 |
10 | 4.20 | 0.19 | 1.55 | 1.00 | |
15 | 3.62 | 0.59 | 3.89 | 1.00 | |
20 | 3.92 | 0.83 | 6.76 | 1.00 | |
25 | 3.89 | 0.87 | 7.41 | 0.99 |
Sample | T [°C] | m | lgK(T) | R2 |
---|---|---|---|---|
PA610 | 174 | 0.68 | 1.37 | 0.90 |
175 | 0.81 | 1.49 | 0.90 | |
176 | 0.94 | 1.60 | 0.91 | |
177 | 1.05 | 1.68 | 0.91 | |
178 | 1.13 | 1.71 | 0.92 | |
PA-1 | 174 | 1.67 | 2.28 | 0.96 |
175 | 1.85 | 2.42 | 0.96 | |
176 | 2.01 | 2.51 | 0.95 | |
177 | 2.16 | 2.58 | 0.94 | |
178 | 2.36 | 2.73 | 0.99 | |
PA-5 | 174 | 4.20 | 4.61 | 0.98 |
175 | 4.56 | 4.85 | 0.98 | |
176 | 4.96 | 5.13 | 0.97 | |
177 | 5.65 | 5.68 | 0.98 | |
178 | 8.87 | 8.86 | 0.91 | |
PA-10 | 174 | 0.68 | 1.37 | 0.90 |
175 | 0.81 | 1.49 | 0.90 | |
176 | 0.94 | 1.60 | 0.90 | |
177 | 1.05 | 1.68 | 0.91 | |
178 | 1.13 | 1.71 | 0.92 |
Sample | Xt | lgF(t) | F(t) | a | R2 |
---|---|---|---|---|---|
PA610 | 10% | −0.17 | 0.676083 | 1.63 | 0.95 |
30% | 0.61 | 4.073803 | 1.63 | 0.95 | |
50% | 0.97 | 9.332543 | 1.63 | 0.95 | |
70% | 1.21 | 16.2181 | 1.35 | 0.95 | |
90% | 1.32 | 20.89296 | 1.12 | 0.92 | |
PA-1 | 10% | −0.25 | 0.562341 | 1.80 | 1.00 |
30% | 0.61 | 4.073803 | 1.80 | 1.00 | |
50% | 1.01 | 10.23293 | 1.80 | 1.00 | |
70% | 1.27 | 18.62087 | 1.80 | 1.00 | |
90% | 1.46 | 28.84032 | 1.80 | 1.00 | |
PA-5 | 10% | −0.03 | 0.933254 | 1.52 | 0.95 |
30% | 0.69 | 4.897788 | 1.52 | 0.95 | |
50% | 1.03 | 10.71519 | 1.52 | 0.95 | |
70% | 1.26 | 18.19701 | 1.52 | 0.95 | |
90% | 1.42 | 26.30268 | 1.52 | 0.95 | |
PA-10 | 10% | 0.09 | 1.230269 | 1.35 | 0.99 |
30% | 0.73 | 5.370318 | 1.35 | 0.99 | |
50% | 1.03 | 10.71519 | 1.35 | 0.99 | |
70% | 1.23 | 16.98244 | 1.35 | 0.99 | |
90% | 1.37 | 23.44229 | 1.35 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Huo, C.; Liu, S.; Li, K.; Meng, Y. Non-Isothermal Crystallization Kinetics of Montmorillonite/Polyamide 610 Nanocomposites. Nanomaterials 2023, 13, 1814. https://doi.org/10.3390/nano13121814
Fu Y, Huo C, Liu S, Li K, Meng Y. Non-Isothermal Crystallization Kinetics of Montmorillonite/Polyamide 610 Nanocomposites. Nanomaterials. 2023; 13(12):1814. https://doi.org/10.3390/nano13121814
Chicago/Turabian StyleFu, Yang, Cuimeng Huo, Shuangyan Liu, Keqing Li, and Yuezhong Meng. 2023. "Non-Isothermal Crystallization Kinetics of Montmorillonite/Polyamide 610 Nanocomposites" Nanomaterials 13, no. 12: 1814. https://doi.org/10.3390/nano13121814
APA StyleFu, Y., Huo, C., Liu, S., Li, K., & Meng, Y. (2023). Non-Isothermal Crystallization Kinetics of Montmorillonite/Polyamide 610 Nanocomposites. Nanomaterials, 13(12), 1814. https://doi.org/10.3390/nano13121814