Preparation of Volborthite by a Facile Synthetic Chemical Solvent Extraction Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experiments
2.2. Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Q.; Shao, M.W.; Que, R.H.; Cheng, L.; Zhuo, S.J.; Tong, Y.H.; Lee, S.T. Silver vanadate nanoribbons: A label-free bioindicator in the conversion between human serum transferrin and apotransferrin via surface-enhanced Raman scattering. Appl. Phys. Lett. 2011, 98, 193110. [Google Scholar] [CrossRef] [Green Version]
- Pan, G.T.; Lai, M.H.; Juang, R.C.; Chung, T.W.; Yang, T.C.K. Preparation of visible-light-driven silver vanadates by a microwave-assisted hydrothermal method for the photodegradation of volatile organic vapors. Ind. Eng. Chem. Res. 2011, 50, 2807–2814. [Google Scholar] [CrossRef]
- Pitale, S.S.; Gohain, M.; Nagpure, I.M.; Ntwaeaborwa, O.M.; Bezuidenhoudt, B.C.B.; Swart, H.C. A comparative study on structural, morphological and luminescence characteristics of Zn3(VO4)2 phosphor prepared via hydrothermal and citrate-gel combustion routes. Phys. B 2012, 407, 1485–1488. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Sun, Y.; Li, C.S.; Hua, R.S. Rational synthesis of copper vanadates/polypyrrole nanowires with enhanced electrochemical property. Mater. Lett. 2013, 91, 154–157. [Google Scholar] [CrossRef]
- Hao, M.F.; Xiao, M.S.; Qian, L.H.; Miao, Y.Q. Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution. Front. Chem. Sci. Eng. 2018, 12, 409–416. [Google Scholar] [CrossRef]
- Pulipaka, S.; Boni, N.; Meduri, P. Copper vanadate (Cu3V2O8):(Mo, W) doping insights to enhance performance as an anode for photoelectrochemical water splitting. ACS Appl. Energy Mater. 2020, 3, 6060–6064. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Li, W.Y.; Li, C.S.; Chen, J. Synthesis, characterization, and electrochemical properties of Ag2V4O11 and AgVO3 1-D nano/microstructures. J. Phys. Chem. B 2006, 110, 24855–24863. [Google Scholar] [CrossRef]
- Chen, Z.J.; Gao, S.K.; Li, R.H.; Wei, M.D.; Wei, K.M.; Zhou, H.S. Lithium insertion in ultra-thin nanobelts of Ag2V4O11/Ag. Electrochim. Acta 2008, 53, 8134–8137. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, S.Y.; Ji, W.Q.; Tao, Z.L.; Chen, J. CuV2O6 Nanowires: Hydrothermal synthesis and primary lithium battery application. J. Am. Chem. Soc. 2008, 130, 5361–5367. [Google Scholar] [CrossRef]
- Sauvage, F.; Bodenez, V.; Tarascon, J.M.; Poeppelmeier, K.R. Room-temperature synthesis leading to nanocrystalline Ag2V4O11. J. Am. Chem. Soc. 2010, 132, 6778–6782. [Google Scholar] [CrossRef]
- Kaur, P.; Khanna, A. Structural, electrical and luminescence properties of M2V2O7 (M = Mg, Ca, Sr, Ba, Zn). J. Mater. Sci. Mater. Electron. 2021, 32, 21813–21823. [Google Scholar] [CrossRef]
- Hillel, T.; Ein-Eli, Y. Copper vanadate as promising high voltage cathodes for Li thermal batteries. J. Power Sources 2013, 229, 112–116. [Google Scholar] [CrossRef]
- Lin, N.; Pei, L.Z.; Wei, T.; Yu, H.Y. Synthesis of Cu vanadate nanorods for visible-light photocatalytic degradation of gentian violet. Cryst. Res. Technol. 2015, 50, 255–262. [Google Scholar] [CrossRef]
- Zhang, S.; Ci, L.; Liu, H. Synthesis, characterization, and electrochemical properties of Cu3V2O7(OH)2·2H2O nanostructures. J. Phys. Chem. C 2009, 113, 8624–8629. [Google Scholar] [CrossRef]
- Wei, Y.J.; Nam, K.W.; Chen, G.; Ryu, C.W.; Kim, K.B. Synthesis and structural properties of stoichiometric and oxygen deficient CuV2O6 prepared via co-precipitation method. Solid State Ion. 2005, 176, 2243–2249. [Google Scholar] [CrossRef]
- Cao, J.Q.; Wang, X.Y.; Tang, A.P.; Wang, X.; Wang, Y.; Wen, W. Sol–gel synthesis and electrochemical properties of CuV2O6 cathode material. J. Alloys Compd. 2009, 479, 875–878. [Google Scholar] [CrossRef]
- Sivakumar, V.; Suresh, R.; Giribabu, K.; Manigandan, R.; Munusamy, S.; Praveen Kumar, S.; Muthamizh, S.; Narayanan, V. Copper vanadate nanoparticles: Synthesis, characterization and its electrochemical sensing property. J. Mater. Sci. Mater. Electron. 2014, 25, 1485–1491. [Google Scholar] [CrossRef]
- Ponomarenko, L.; Vasil’ev, A.; Antipov, E.; Velikodny, Y.A. Magnetic properties of Cu2V2O7. Phys. B Condens. Matter 2000, 284, 1459–1460. [Google Scholar] [CrossRef]
- Seabold, J.A.; Neale, N.R. All first row transition metal oxide photoanode for water splitting based on Cu3V2O8. Chem. Mater. 2015, 27, 1005–1013. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, Y.; Li, C.; Ci, L. Cu3V2O8 hollow spheres in photocatalysis and primary lithium batteries. Solid State Sci. 2013, 25, 15–21. [Google Scholar] [CrossRef]
- Ni, S.B.; Wang, X.H.; Zhou, G.; Yang, F.; Wang, J.M.; He, D.Y. Hydrothermal synthesis and magnetic property of Cu3(OH)2V2O7·nH2O. Mater. Lett. 2010, 64, 516–519. [Google Scholar] [CrossRef]
- Yu, X.; Hu, F.; Guo, Z.-Q.; Liu, L.; Song, G.-H.; Zhu, K. High-performance Cu0.95V2O5 nanoflowers as cathode materials for aqueous zinc-ion batteries. Rare Met. 2022, 41, 29–36. [Google Scholar] [CrossRef]
- Bayat, A.; Reza Mahjoub, A.; Amini, M. Facile hydrothermal synthesis of the colloidal hierarchical Volborthite (Cu3V2O7(OH)2·2H2O) hollow sphere phosphors. J. Lumin. 2018, 204, 204382–204385. [Google Scholar] [CrossRef]
- Fu, X.; Hu, Z.S.; Gu, G.H.; Wang, D.B.; Zhu, H.T.; Zhou, X.D. Study on the preparation of nano-materials with extractant and extraction systems. In Proceedings of the International Solvent Extraction Conference 2005, Beijing, China, 19–23 September 2005; China Academic Journal (CD) Electronic Publishing House: Beijing, China, 2005; pp. 852–857. [Google Scholar]
- Shi, H.Q.; Fu, X.; Zhou, X.D.; Hu, Z.S. Preparation of organic fluids containing Ag2S nano-particles with the extractant Cyanex 301. In Proceedings of the International Solvent Extraction Conference 2005, Beijing, China, 19–23 September 2005; China Academic Journal (CD) Electronic Publishing House: Beijing, China, 2005; pp. 874–880. [Google Scholar]
- Zhang, S.L.; Shi, H.Q.; Fu, X.; Hu, Z.S. Preparation and characterisation of organic fluids containing Bi2S3 nano-particles. In Proceedings of the International Solvent Extraction Conference 2005, Beijing, China, 19–23 September 2005; China Academic Journal (CD) Electronic Publishing House: Beijing, China, 2005; pp. 858–863. [Google Scholar]
- Sánchez-Loredo, G.; Tovar-Tovar, R.; Aguilera-Mares, J.; Ruiz, F.; Martínez-Castañón, G. Stabilized metal and metal sulphide nanoparticles prepared by the two-phase liquid-liquid method. Solvent Extraction: Fundamentals to Industrial Applications ed B Moyer; The Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, QC, Canada, 2008; pp. 1621–1626. [Google Scholar]
- Konishi, Y.; Asai, S.; Murai, T.; Takemori, H. Preparation of fine ceria powders by hydrolysis of cerium(IV) carboxylate solutions. Metall. Mater. Trans. B 1997, 28, 959–961. [Google Scholar] [CrossRef]
- Doyle, F.M. Integrating solvent extraction with the processing of advanced ceramic materials. Hydromet. 1992, 29, 527–545. [Google Scholar] [CrossRef]
- Palomares-Sánchez, S.A.; Ponce-Castañeda, S.; Martínez, J.R.; Ruiz, F.; Chumakov, Y.; Domínguez, O. Quantitative analysis of iron oxide particles embedded in an amorphous xerogel matrix. J. Non Cryst. Solids 2003, 325, 251–257. [Google Scholar] [CrossRef]
- Lutterotti, L.; Matthies, S.; Wenk, H.-R. MAUD: A friendly Java program for Material Analysis Using Diffraction. Newsl. CPD 1999, 21, 14–15. [Google Scholar]
- Bergmann, J.; Friedel, P.; Kleeberg, R. BGMN—A new fundamental parameters-based Rietveld program for laboratory X-ray sources, its use in quantitative analysis and structure investigations. CPD Newsl. 1998, 20, 5–8. [Google Scholar]
- Döbelin, N.; Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 2015, 48, 1573–1580. [Google Scholar] [CrossRef] [Green Version]
- Lafontaine, M.A.; Le Bail, A.; Ferey, G. Copper-containing minerals—I. Cu3V2O7(OH)2.2H2O: The synthetic homolog of volborthite; crystal structure determination from X-ray and neutron data; structural correlations. J. Solid State Chem. 1990, 85, 220–227. [Google Scholar] [CrossRef]
- Ishikawa, H.; Yamaura, J.; Okamoto, Y.; Yoshida, H.; Nilsen, G.J.; Hiroi, Z. A novel crystal polymorph of volborthite, Cu3V2O7(OH)2·2H2O. Acta Cryst. 2012, C68, i41–i44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, R.D.; Calvo, C. Crystal structure of Cu5V2O10. Acta Cryst. 1973, B29, 1338–1345. [Google Scholar] [CrossRef] [Green Version]
- Leblanc, M.; Ferey, G. Room-temperature structures of oxocopper(II) vanadate(V) hydrates, Cu3V2O8(H2O) and CuV2O6(H2O)2. Acta Cryst. 1990, C46, 15–18. [Google Scholar] [CrossRef]
- Ghiyasiyan-Arani, M.; Masjedi-Arani, M.; Ghanbari, D.; Bagheri, S.; Salavati-Niasari, M. Novel chemical synthesis and characterization of copper pyrovanadate nanoparticles and its influence on the flame retardancy of polymeric nanocomposites. Sci. Rep. 2016, 6, 25231. [Google Scholar] [CrossRef] [Green Version]
- Naz, G.; Othaman, Z.; Shamsuddin, M.; Krishna Ghoshal, S. Aliquat 336 stabilized multi-faceted gold nanoparticles with minimal ligand density. Appl. Surf. Sci. 2016, 363, 74–82. [Google Scholar] [CrossRef]
- Gole, A.; Murphy, C.J. Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed. Chem. Mater. 2004, 16, 3633–3640. [Google Scholar] [CrossRef]
- Xu, Z.X.; Zhuang, X.D.; Yang, C.Q.; Cao, J.; Yao, Z.Q.; Tang, Y.P.; Jiang, J.Z.; Wu, D.Q.; Feng, X.L. Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv. Mater. 2016, 28, 1981–1987. [Google Scholar] [CrossRef]
- Xia, H.C.; Xu, Q.; Zhang, J.N. Recent progress on two-dimensional nanoflake ensembles for energy storage applications. Nano Micro Lett. 2018, 10, 66. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, S.A.; Bendary, S.H.; Salem, A.A.; Fouad, O.A. Facile synthesis of high yield two-dimensional zinc vanadate nanoflakes, SN. Appl. Sci. 2019, 1, 497. [Google Scholar]
- Le, M.N.; Son, S.H.; Lee, M.S. Extraction behavior of hydrogen ion by an ionic liquid mixture of Aliquat 336 and Cyanex 272 in chloride solution. Korean J. Met. Mater. 2019, 57, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.N.H.; Le, M.N.; Lee, M.S. Comparison of extraction ability between a mixture of Alamine 336/Aliquat 336 and D2EHPA and ionic liquid ALi-D2 from weak hydrochloric acid solution. Metals 2020, 10, 1678. [Google Scholar] [CrossRef]
- Mireles, L.K.; Wu, M.-R.; Saadeh, N.; Yahia, L.H.; Sacher, E. Physicochemical characterization of polyvinyl pyrrolidone: A tale of two polyvinyl pyrrolidones. ACS Omega 2020, 5, 30461–30467. [Google Scholar] [CrossRef] [PubMed]
- Frost, R.L.; Palmer, S.J.; Čejka, J.; Sejkora, J.; Plášil, J.; Bahfenne, S.; Keeffe, E.C. A Raman spectroscopic study of the different vanadate groups in solid-state compounds—Model case: Mineral phases vésigniéite [BaCu3(VO4)2(OH)2] and volborthite [Cu3V2O7(OH)2·2H2O]. J. Raman Spectrosc. 2011, 42, 1701–1710. [Google Scholar] [CrossRef] [Green Version]
- Mineral Data Publishing. Available online: http://www.handbookofmineralogy.org/pdfs/volborthite.pdf (accessed on 10 June 2022).
- Hiroi, Z.; Hanawa, M.; Kobayashi, N.; Nohara, M.; Takagi, H.; Kato, Y.; Takigawa, M. Spin-1/2 Kagomé-like lattice in Volborthite Cu3V2O7(OH)2.2H2O. J. Phys. Soc. Jpn. 2001, 70, 3377–3384. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Luo, Y.; Xu, X.; He, L.; Tan, J.; Li, Z.; Hong, X.; He, P.; Mai, L. Facile and scalable synthesis of Zn3V2O7(OH)2·2H2O microflowers as a high-performance anode for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 27707–27714. [Google Scholar] [CrossRef]
Experiment | Cu(II), M | Cl−, M | PVP, g/L | O/A |
---|---|---|---|---|
Set 1 | ||||
PS-1 | 0.05 | 4 | 0 | 1/1 |
PS-2 | 0.1 | 4 | 0 | 1/1 |
PS-3 | 0.05 | 4 | 20 | 1/1 |
CP-1 * | 0.1 | 4 | 20 | - |
Set 2 | ||||
PS-4 | 0.1 | 4 | 0 | 1/1 |
PS-5 | 0.05 | 4 | 0 | 1/1 |
PS-6 | 0.05 | 2 | 20 | 1/1 |
PS-7 | 0.05 | 2 | 40 | 1/1 |
PS-8 | 0.05 | 4 | 0 | 1/2 |
PS-9 | 0.05 | 2 | 20 | 1/2 |
PS-10 | 0.05 | 4 | 0 | 2/1 |
PS-11 | 0.05 | 2 | 20 | 2/1 |
Sample | PS-1 | PS-2 | |
---|---|---|---|
Compound | Tricopper divanadate dihydroxide dihydrate Volborthite [34] | Tricopper divanadate dihydroxide dihydrate Volborthite [34] | Tricopper divanadate dihydroxide dihydrate Volborthite [35] |
Molecular formula | Cu3V2O7(OH)2·2(H2O) | Cu3V2O7(OH)2·2(H2O) | Cu3V2O7(OH)2·2(H2O) |
Molecular weight (g/mol) | 474.56 | 474.56 | 474.56 |
wt. (%) | 100 | 57.69 | 42.30 |
Symmetry | Monoclinic | Monoclinic | Monoclinic |
Space group (H. M.) | C2/m | C2/m | C2/c |
a (Å) | 10.610(3) | 10.716(7) | 10.947(3) |
b (Å) | 5.912(1) | 5.837(5) | 6.023(2) |
c (Å) | 7.242(1) | 7.160(3) | 13.683(5) |
β (°) | 94.23(2) | 93.78(6) | 94.01(3) |
Crystallite size (Å) | 99.6(5) | 105(1) | 151(3) |
ρX-ray (g/cm3) | 3.47 | 3.52 | 3.47 |
Rwp (%) | 1.561 | 1.001 | |
Rb (%) | 1.112 | 0.706 | |
Rexp (%) | 0.540 | 0.405 |
Distribution of V(V), % | Chemical Composition, % | V/Cu Ratio | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cu(II) mol/L | Cl− mol/L | PVP g/L | O/A | V(V) Org | V(V) Solid | V(V) Aq | V(V) | Cu(II) | ||
PS-1 | 0.05 | 4 | 0 | 1/1 | 71.7 | 28.3 | 0.0 | 18 | 42 | 0.43 |
PS-2 | 0.1 | 4 | 0 | 1/1 | 87.5 | 12.5 | 0.0 | 13.6 | 44 | 0.31 |
PS-3 | 0.05 | 4 | 20 | 1/1 | 33.4 | 66.0 | 0.6 | 24.8 | 54.4 | 0.45 |
Cu(II) mol/L | Cl− mol/L | PVP g/L | O/A | % V Org | % V Solid | % V Aq | % Cu Org | % Cu Solid | % Cu Aq | pH eq Aq | |
---|---|---|---|---|---|---|---|---|---|---|---|
PS-4 | 0.1 | 4 | 0 | 1/1 | 61.2 | 38.7 | 0.1 | 43.6 | 19.5 | 36.9 | 3.39 |
PS-5 | 0.05 | 4 | 0 | 1/1 | 60.9 | 38.9 | 0.2 | 78.1 | 13.1 | 8.7 | 3.54 |
PS-6 | 0.05 | 2 | 20 | 1/1 | 37.1 | 62.8 | 0.1 | 55.8 | 21.0 | 23.2 | 3.84 |
PS-7 | 0.05 | 2 | 40 | 1/1 | 38.4 | 61.5 | 0.1 | 52.3 | 24.4 | 23.3 | 3.89 |
PS-8 | 0.05 | 4 | 0 | 1/2 | 68.8 | 31.0 | 0.3 | 72.1 | 4.1 | 23.8 | 3.41 |
PS-9 | 0.05 | 2 | 20 | 1/2 | 32.8 | 66.8 | 0.4 | 51.2 | 9.8 | 39.0 | 3.61 |
PS-10 | 0.05 | 4 | 0 | 2/1 | 70.9 | 23.8 | 5.3 | 85.6 | 14.2 | 0.1 | 4.82 |
PS-11 | 0.05 | 2 | 20 | 2/1 | 30.9 | 68.9 | 0.2 | 56.2 | 37.2 | 6.6 | 3.73 |
Cu(II) mol/L | Cl− mol/L | PVP g/L | O/A | % V | % Cu | % Cl− | V/Cu | |
---|---|---|---|---|---|---|---|---|
PS-4 | 0.1 | 4 | 0 | 1/1 | 13.2 | 33.9 | 4.7 | 0.39 |
PS-5 | 0.05 | 4 | 0 | 1/1 | 17.8 | 30.5 | 5.4 | 0.58 |
PS-6 | 0.05 | 2 | 20 | 1/1 | 18.5 | 31.5 | 3.3 | 0.59 |
PS-7 | 0.05 | 2 | 40 | 1/1 | 18.1 | 36.3 | 6.3 | 0.50 |
PS-8 | 0.05 | 4 | 0 | 1/2 | 17.1 | 22.8 | 3.2 | 0.75 |
PS-9 | 0.05 | 2 | 20 | 1/2 | 19.3 | 28.2 | 3.2 | 0.68 |
PS-10 | 0.05 | 4 | 0 | 2/1 | 10.4 | 15.5 | 25.1 | 0.67 |
PS-11 | 0.05 | 2 | 20 | 2/1 | 25.5 | 34.3 | 1.7 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Loredo, M.G.; Palomares-Sánchez, S.A.; Labrada-Delgado, G.J.; Helbig, T.; Chekhonin, P.; Ebert, D.; Möckel, R.; Owusu Afriyie, J.; Kelly, N. Preparation of Volborthite by a Facile Synthetic Chemical Solvent Extraction Method. Nanomaterials 2023, 13, 1977. https://doi.org/10.3390/nano13131977
Sánchez-Loredo MG, Palomares-Sánchez SA, Labrada-Delgado GJ, Helbig T, Chekhonin P, Ebert D, Möckel R, Owusu Afriyie J, Kelly N. Preparation of Volborthite by a Facile Synthetic Chemical Solvent Extraction Method. Nanomaterials. 2023; 13(13):1977. https://doi.org/10.3390/nano13131977
Chicago/Turabian StyleSánchez-Loredo, María Guadalupe, Salvador Antonio Palomares-Sánchez, Gladis Judith Labrada-Delgado, Toni Helbig, Paul Chekhonin, Doreen Ebert, Robert Möckel, Jones Owusu Afriyie, and Norman Kelly. 2023. "Preparation of Volborthite by a Facile Synthetic Chemical Solvent Extraction Method" Nanomaterials 13, no. 13: 1977. https://doi.org/10.3390/nano13131977
APA StyleSánchez-Loredo, M. G., Palomares-Sánchez, S. A., Labrada-Delgado, G. J., Helbig, T., Chekhonin, P., Ebert, D., Möckel, R., Owusu Afriyie, J., & Kelly, N. (2023). Preparation of Volborthite by a Facile Synthetic Chemical Solvent Extraction Method. Nanomaterials, 13(13), 1977. https://doi.org/10.3390/nano13131977