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Abstract: The topological insulator 2D Bi2Se3 is promising for electronic devices due to its unique
electronic properties; however, it is challenging to prepare antioxidative nanosheets since Bi2Se3 is
prone to oxidation. Surface passivation using ligand agents after Bi2Se3 exfoliation works well to
protect the surface, but the process is time-consuming and technically challenging; a passivation
agent that is stable under a highly biased potential is significant for in situ passivation of the Bi2Se3

surface. In this work, the roles of halide anions (Cl−, Br−, and I−) in respect of the chemical properties
of synthetic Bi2Se3 nanosheets during electrochemical intercalated exfoliation were investigated to
determine the antioxidation capacity. It was found that Bi2Se3 nanosheets prepared in a solution
of tetrabutylammonium chloride (TBA+ and Cl−) have the best oxidation resistance via the surface
bonding of Bi with Cl, which promotes obtaining better device stability. This work paves an avenue
for adjusting the components of the electrolyte to further promote the stability of 2D Bi2Se3-nanosheet-
based electronic devices.

Keywords: two-dimensional materials; bismuth selenide; antioxidation; field-effect transistors

1. Introduction

Two-dimensional (2D) semiconductors have greatly facilitated the rapid development
of electronic and optoelectronic devices, owing to their remarkable charge transport prop-
erties and robust mechanical properties [1–3]. Among the 2D material family, 2D Bi2Se3
is a promising material for electronic devices due to its unique electronic properties as a
topological insulator, which means that its bulk is an insulator while the surface exhibits
metallic behavior [4–6]. The surface conductivity arises from topologically protected sur-
face states, resulting in unique electronic properties, including high carrier mobility and
immunity to scattering by non-magnetic impurities [7,8]. Such unique electronic properties
make 2D Bi2Se3 ideal for low-power and high-speed electronic devices, especially those
investigated as field-effect transistors (FETs) [9–12]. Theoretical studies have predicted
the behavior of 2D Bi2Se3 FETs with a thickness regime of 1–6 nm, in which a small gap
induced by hybridization between the top and bottom surfaces is sufficient to obtain tran-
sistor operation at room temperature [9,12]. The primary research on two-dimensional
Bi2Se3-based FETs aims to improve the electrical performance and reliability for application
via optimizing the fabrication method or modifying the device structures [13]. However, as
one of the challenging problems, Bi2Se3 nanosheets are air-sensitive and prone to oxidation,
which leads to the degradation of device performance when exposed to air [14–17].

To address this issue, researchers have proposed various strategies to protect Bi2Se3
nanosheets from oxidation, i.e., encapsulation techniques that can shield the material from
the air or passivate the nanosheet surface with some organic or inorganic molecules [18].
These strategies can proceed after the Bi2Se3 nanosheet is synthesized using the techniques
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of chemical vapor deposition, molecular beam epitaxy, or pulsed laser deposition [19–21].
However, these techniques are limited by the stringent reaction conditions and complicated
transferring procedures required to transfer the thin films from the growth substrate to
the target substrate [22]; these transfers are time-consuming and technically challenging,
leading to irreversible damage to the device performance when considering potential
oxidation during the transfer.

In comparison, using solution-phase exfoliation to produce Bi2Se3 nanosheets and
passivating them in situ in the solution can be more convenient, avoiding the exposure of
unprotected nanosheets to the air [20,23]. Surface passivation in situ in the solution is a
simpler and more scalable method, which can better control the thickness and quality of the
passivation layer. Passivation agents such as thiols have been determined to be effective by
forming strong covalent bonds with the surface of the Bi2Se3 nanosheets [24,25]. Yang et al.
compared the antioxidant ability of electrochemically modified and thiol-functionalized
Bi2Se3-based nanosheets, finding that pentanedithiol-modified surfaces can avoid oxidation
in the air for hours [24]. However, due to their instability under a highly biased potential,
such agents are mostly utilized after Bi2Se3 exfoliation to avoid agent decomposition during
the exfoliation process [25]. Less consideration is put into passivation agents that are stable
under a highly biased potential, while it is possible to passivate the Bi2Se3 surface in situ.

In this work, we investigate the roles of halide anions (Cl−, Br−, and I−) in respect of
the chemical properties of synthetic Bi2Se3 nanosheets, especially the oxidation resistance
that is significant for device stability. Electrochemical intercalation exfoliation was carried
out in solutions containing tetrabutylammonium cations (TBA+), while the anions were
changed within halide anions (Cl−, Br−, and I−). Ultrathin Bi2Se3 nanosheets were success-
fully synthesized with most thicknesses around 5 nm. It was found that Bi2Se3 nanosheets
prepared in a solution of TBAC (TBA+ and Cl−) have the best oxidation resistance. This
work paves an avenue to adjust the components of the electrolyte to further promote the
stability of 2D Bi2Se3-nanosheet-based electronic devices.

2. Materials and Methods
2.1. Chemicals

Bismuth selenide (Bi2Se3, vacuum deposition grade, 99.995%) was purchased from
Alfa Aesar (Waltham, MA USA). Acetonitrile (C2H3N, 99.8%, H2O ≤ 0.003%), 1-Methyl-2-
pyrrolidinone (C5H9NO, NMP, for HPLC, 99.5%), silver nitrate (AgNO3, 99.99% metals
basis), and tetrabutylammonium perchlorate (C16H36ClNO4, electrochemical grade) were
purchased from Shanghai Aladdin Biochemical Technology (Shanghai, China). Tetrabuty-
lammonium chloride (C16H36NCl, 99%), tetrabutylammonium bromide (C16H36NBr, 99%),
tetrabutylammonium iodide (C16H36NI, 99%), isopropyl alcohol (C3H8O, IPA, 99.5%),
and polyvinylpyrrolidone ((C6H9NO)n, PVP, MW 24000) were purchased from Shanghai
Macklin Biochemical Technology (Shanghai, China). All chemicals were used without
further purification.

2.2. Synthesis of Bi2Se3 Nanosheets

A single-crystal Bi2Se3 plate was used as the working electrode to prepare Bi2Se3
nanosheets via electrochemical exfoliation. A reference electrode of Ag/Ag+ (0.01 M
AgNO3) and a counter electrode of a Pt foil were used in the electrochemical cell. The
electrochemical exfoliation proceeded under −2.5 V (vs. Ag/Ag+) for 10 min in acetonitrile
solution containing 0.05 M TBA+, in which the anion could be changed and selected as
Cl−, Br−, and I− in this work. The exfoliated Bi2Se3 was soaked immediately in an NMP
solution containing 20 g/L PVP and sonicated for 1 min. The suspension was centrifuged
for 10 min under a rotation speed of 10,000 rpm, and Bi2Se3 was washed through 3 cycles
of the above process with IPA refilled to maintain liquid volume. The supernatant of the
Bi2Se3 nanosheets was obtained with final centrifugation for 3 min under a rotation speed
of 1000 rpm. The Bi2Se3 nanosheets prepared in different electrolytes containing Cl−, Br−,
and I− were denoted as TBAC-Bi2Se3, TBAB-Bi2Se3, and TBAI-Bi2Se3, respectively.
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2.3. Characterization

X-ray diffraction (XRD, Rigaku Smart Lab Cu Kα, Tokyo, Japan) was used to determine
the crystalline structure of the synthetic nanosheets. X-ray photoelectron spectroscopy (XPS,
ESCALAB 250Xi analysis system at 12.5 kV, Waltham, MA, USA) was applied to measure the
chemical states using monochromatized Al Kα as the X-ray source. Raman measurements
(WITec Alpha 300R, Ulm, Germany) were carried out under a wavelength of 532 nm using
a laser with a 50× objective lens to characterize the crystallinity of the Bi2Se3 nanosheets.
The morphologies and elemental distributions were determined via a transmission electron
microscope (TEM, Talos F200X, Waltham, MA, USA) along with affiliated energy-dispersive
spectroscopy (EDS, Super-X EDS, Waltham, MA, USA), while the thickness was determined
via atomic force microscopy (AFM, Bruker Dimension Icon, Karlsruher, Germany). The
electrical characteristics were measured with a semiconductor analyzer (Keysight 2902A,
Santa Rosa, CA, USA) under ambient conditions at room temperature.

2.4. Fabrication of Field-Effect Transistors

A 30 nm Al2O3/n-Si wafer was prepared using atomic layer deposition (ALD, PICO-
SUN R-200 Standard ALD system, Espoo, Finland), with 315 cycles of trimethylaluminum
and water vapor pulses under 300 ◦C. Bi2Se3 nanosheet suspensions were dropped onto the
as-prepared silicon wafer and spin-coated at 5000 rpm to obtain a discontinuous membrane
of Bi2Se3 nanosheets. Subsequently, a thin film of polymethyl methacrylate (Microchem
PMMA 950 A4, NEWTON, MA, USA) was spin-coated onto the membrane and baked
at 180 ◦C for 3 min. Electron-beam lithography (EBL, FEI Inspect F50 ELPHY Quantum,
20 kV, Dortmund, Germany) was applied to locate a single Bi2Se3 nanosheet and define
appropriate electrodes. The write field was aligned with a 1 mm standard chess wafer. The
electron beam lens aperture was set to 3.5 with a magnification of 1000×, and the scanning
step was fixed to 20 nm to achieve a balance between speed and precision. Electron beam
evaporation (EBE, Vnano VZS-600, Beijing, China) was applied to deposit 5 nm Ti and
50 nm Au films, followed by a standard lift-off procedure.

3. Results and Discussion
3.1. Characterization of Synthetic Bi2Se3 Nanosheets

The bulk Bi2Se3 has a layered structure in which each layer comprises five atomic
layers called quintuple layers (QL) [5]. The atoms in each quintuple layer are bonded
in the sequence Se-Bi-Se-Bi-Se, while the quintuple layers are held together via weak
van der Waals interactions, as shown in Figure 1A. The weak van der Waals interactions
between the layers benefit electrochemical exfoliation via cation-assisted intercalation.
Thus, electrochemical intercalation exfoliation was carried out in this work through a
three-electrode system that used the bulk Bi2Se3 plate as the working electrode (Figure 1B,
see more details in Section 2).

Notably, the TBA+ cation was used as the intercalation agent since it has been deter-
mined to be efficient for the exfoliation of layered materials [26]. Intercalation of the TBA+

cation brings less charge and more layer expansion because of its larger ionic size compared
to metal ions such as Li+ or Na+, allowing it to intercalate with less damage over the
crystal structures. In addition, the anions were changed in this study to Cl−, Br−, and I− to
determine the anion effect over the chemical properties of the synthetic Bi2Se3 nanosheets,
especially the ability for oxidation resistance that is significant for device stability.

To facilitate efficient exfoliation, the working voltage had to be optimized for the TBA+

intercalation. The electrochemistry of TBA+ intercalation into the bulk Bi2Se3 was then
studied using linear sweep voltammetry (Figure S1a) before a decision was made on the
constant potential for TBA+ intercalation. A peak cathodic current was observed around
−2.2 V, corresponding to the TBA+ intercalation process. The potential was then chosen as
−2.5 V for the electrochemical intercalation of TBA+ cations in the TBAB solution. As shown
in Figure S1b, the current exhibits a fluctuating profile with time due to a significant change
in the host structure during the exfoliation, breaking the ionic channel or decreasing the
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electronic conductivity. After electrochemical intercalation, an apparent volume expansion
of the bulk Bi2Se3 is observed (Figure 1B, inset ii), and a short sonication time yields a
concentrated dispersion that contains the Bi2Se3 nanosheets (Figure 1B, inset iii).
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Figure 1. (A) Top and side views of the atomic structure of layered Bi2Se3 crystal and (B) schematic
images of the electrochemical cathodic exfoliation of Bi2Se3 using TBA+ as the intercalant. Insets:
photographs and schematic images of (i) the working electrode of the Bi2Se3 plate before electrochem-
ical intercalation, (ii) TBA-intercalation Bi2Se3 with volume expansion, and (iii) Bi2Se3 nanosheet
dispersion after sonication in NMP solution.

The optical microscopy image of the drop-casted TBAB-Bi2Se3 nanosheet on a Si
substrate with a SiOx layer indicates a large number of TBAB-Bi2Se3 nanosheets with lateral
sizes around 10 µm, as shown in Figure 2a. The thicknesses can be further determined
distinctly via AFM in Figure 2b, in which the thickness of the TBAB-Bi2Se3 nanosheet is
around 5 nm, indicating that the nanosheet consists of several QLs since a mono QL is
around 1 nm. Notably, several nanosheets of smaller lateral sizes can also be observed
with larger thicknesses, which might have been generated during the sonication process.
The TEM images and the EDS mapping images are shown in Figure 2c. As observed, the
lamellar structure of the TBAB-Bi2Se3 nanosheets is confirmed, although the structure was
formed with inadequate exfoliation, in which some layers with smaller lateral sizes remain
unexfoliated. The remaining smaller Bi2Se3 layer suggests a potential sheet fracture during
the electrochemical exfoliations. The exfoliation is generally efficient, with a high yield of
large Bi2Se3 nanosheets using the electrochemical exfoliation under −2.5 V as an optimized
potential. The EDS mapping shows a uniform distribution of the Bi and Se, suggesting
an unchanged chemical element during the electrochemical exfoliation. The signals from
the Br element in element mapping are found due to possible surface bonding of Br with
Bi during the electrochemical exfoliation. In addition, the aspect ratio of the nanosheet
morphology remains large, as shown in Figure S2, even though the anion was changed in
the electrolyte during the exfoliation process.

As is known, the intercalation of cations with smaller ionic radii occasionally changes
the crystal structure of exfoliated nanosheets [27–30]. For example, Li+ intercalation results
in a phase conversion from 2H to 1T in 2D MoS2 [31]. In this paper, XRD patterns of the
three exfoliated Bi2Se3 nanosheets are shown to determine an unchanged crystal structure
with the bulk Bi2Se3. Compared with the diffraction peaks shown in Figure S3 for the
bulk Bi2Se3 powder (rhombohedral phase, PDF#JCPDS:033-0214), only two prominent
diffraction peaks located at 18.5◦ and 47.6◦ corresponding to the (006) and (0015) planes
can be observed in Figure 3a, indicating a preferential stacking orientation of the z-axis for
the thin film of Bi2Se3 nanosheets. Such a phenomenon is caused by the high aspect-ratio
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of the Bi2Se3 nanosheets (Figure S2), which leads to high flexibility and only horizontal
tiling of nanosheets on the substrate. On the other side, this proves the high quality of
the Bi2Se3 nanosheet suspension as there is no bulk Bi2Se3 residue. In particular, the
half-peak widths of the (006) and (0015) planes are broader than those of the pristine ones
because of the significant decrease in the layer number of nanosheets. No other diffraction
peaks can be found, suggesting an unchanged phase structure of the Bi2Se3 nanosheets
compared with that of the bulk Bi2Se3. The XRD patterns present similar behavior for all
three Bi2Se3 nanosheets of TBAC-Bi2Se3, TBAB-Bi2Se3, and TBAI-Bi2Se3. Thus, the anion
change has not affected the crystal structures of the synthetic Bi2Se3 nanosheets. Moreover,
a crystalline characteristic of the Bi2Se3 nanosheets is demonstrated in the selected area
electron diffraction (SAED) pattern (inset figure in Figure 2c), in which a typical d-space
of 0.359 nm corresponding to the (110) direction of the Bi2Se3 nanosheet is indicated. The
results of SAED are consistent with those of XRD, which further confirms that the exfoliated
nanosheet is crystalline Bi2Se3.
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nanosheet with a height profile along the dashed line that indicates a layer thickness of around 5 nm.
(c) Transmission electron microscopy image with the corresponding energy dispersive spectroscopy
mapping images of the exfoliated TBAB-Bi2Se3. The elements Bi (purple), Se (indigo), O (red),
and Br (yellow) are shown. Inset figure: the selected area electron diffraction pattern of the TBAB-
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In addition, Raman spectroscopy was applied to characterize the Bi2Se3 nanosheets,
as shown in Figure 3b. In the bulk Bi2Se3, Raman-active modes 1Eg, 1A1g, 2Eg, and 2A1g

were recorded [32] at about 37, 72, 132, and 174 cm−1, respectively, while the last three
values were shifted to 69, 128, and 176 cm−1, respectively. The 3 cm−1 redshift of 1A1g
combined with asymmetric broadening can be attributed to the confined phonon states in
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the Bi2Se3 nanosheets, which have been confirmed with Fauchet and Campbell’s extended
model [32,33], indicating a thickness of 6 QLs. In addition, a phenomenological exponential
relation can explain that the full-width at half-maximum of the 2Eg mode broadens to
20 cm-1 in the finite size regime [32,34], and an average thickness of 6 QLs can be estimated.
Therefore, the Raman spectroscopy data confirm the successful preparation of a few QL
Bi2Se3 nanosheets, as shown by the AFM images.
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3.2. Effects of Halide Ion over the Surface Stability of the Bi2Se3 Nanosheets

X-ray photoelectron spectroscopy was utilized to analyze the surface chemistry of
the Bi2Se3 nanosheets as well as their antioxidation capacity by analyzing the oxidizing
components. The XPS results were calibrated with the binding energy of C 1s (284.8 eV).
The high-resolution X-ray photoelectron spectra of the as-synthesized TBAC-Bi2Se3, TBAB-
Bi2Se3, and TBAI-Bi2Se3 nanosheets for the Bi 4f and Se 3d are shown in Figure 4a,b along
with the deconvolved peaks. Two dominant peaks at approximately 163.0 and 157.8 eV in
Bi 4f are indicated to be the Bi 4f5/2 and 4f7/2 in the Bi-Se bonds, consistent with the two
peaks at approximately 54.0 and 53.1 eV in Se 3d for the Se 3d3/2 and 3d5/2 components.
The as-synthesized nanosheets are likely to be oxidized slightly, which may be indicated
by the peaks at 164.1 and 158.7 eV in Bi 4f corresponding to the oxidized Bi (Bi-O) and
the peaks around 58.5 eV in Se 3d corresponding to the oxidized Se [14,17]. Specifically,
the oxidized components of Bi and Se in the as-synthesized TBAC-Bi2Se3, TBAB-Bi2Se3,
and TBAI-Bi2Se3 nanosheets show little distinguishable difference, as can be observed in
Table 1, in which the estimated atomic ratios of the oxidized Bi and Se components from
the deconvolved peaks areas are around 15% for all three samples.

Table 1. Atomic ratios of Bi and Se and the oxidized components. The values were estimated from
the deconvolved peak areas in Figure 4, and the total number of oxidized and unoxidized Bi atoms in
each sample was fixed to 2 for comparison.

As-Synthesized Bi2Se3 Air-Exposed Bi2Se3 for 5 Days

Bi 4f oxid. Bi 4f Se 3d oxid. Se 3d Bi 4f oxid. Bi 4f Se 3d oxid. Se 3d

TBAC-Bi2Se3 1.66 0.34 2.9 0.25 1.48 0.52 2.49 0.52
TBAB-Bi2Se3 1.64 0.36 2.85 0.35 0.96 1.04 1.91 0.92
TBAI-Bi2Se3 1.69 0.31 2.96 0.34 0.92 1.08 1.88 1.08
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To determine the antioxidative capacity of the nanosheets, all the samples were air-
exposed for 5 days, and XPS was carried out for the air-exposed samples, as shown in
Figure 4c,d. Obviously, the intensity of the peaks corresponding to the oxidized components
of Bi-O in Bi 4f increases after air exposure for all the samples of the TBAC-Bi2Se3, TBAB-
Bi2Se3, and TBAI-Bi2Se3 nanosheets. However, it shows a much weaker oxidation trend
for the TBAC-Bi2Se3 nanosheets since the smallest intensity is obtained. Such an oxidation
trend is also reflected by Se 3d in Figure 4d, in which the peak intensity corresponding to
the oxidized Se shows the smallest intensity for the TBAC-Bi2Se3 nanosheet. In addition,
the increased peak intensity at 54.6 eV corresponding to Se-Se bonds indicates the formation
of Se particles on the surface of the Bi2Se3 nanosheets during oxidation in the air.

The estimated oxidized components from the thorough simulation for Bi 4f and Se 3d
of the air-exposed Bi2Se3 nanosheets are shown in Table 1, and the total number of oxidized
and unoxidized Bi atoms in each sample is fixed to 2 for comparison. The atomic ratio of
oxidized Bi in TBAC-Bi2Se3 increased only from 0.34 to 0.52, which indicates antioxidative
capacity in the order TBAC-Bi2Se3 > TBAB-Bi2Se3 > TBAI-Bi2Se3. Such antioxidative
capacity is proposed to be affected by halide passivation through the bond formation
between the Bi and halide atoms. The binding energy of the 4f electrons in Bi in freshly
synthesized TBAC-Bi2Se3 increased by approximately 0.1 eV compared to TBAB-Bi2Se3 or
TBAI-Bi2Se3. This is due to the decreasing electronegativity of the Cl, Br, and I elements.
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However, the chemical shift in the Bi 3f signal is not apparent because only a few halogen
atoms displaced the Se vacancies on the surface of nanosheets, which can be proved with
the EDS results. Several previous works have reported a small amount of the Se vacancy
combined with selenium oxide and metal selenide [14,25,35]. As is known, the Se vacancy
is prone to being refilled by other anions by forming Bi-anion bonds [36], and such vacancy
refilling will affect the anti-resistance capacity of the Bi2Se3 nanosheets. We propose that a
larger electronegativity of Cl than that of Br or I leads to increased electronic distribution
from Bi to Cl, resulting in increased antioxidative capacity, although the TBAC-Bi2Se3
nanosheets will still be oxidized.

3.3. Device Performance

The thickness of the Bi2Se3 nanosheet in the fabricated FET is 6.1 nm, as measured
via AFM and as shown in Figure 5a. To avoid oxidation in air, output characteristics
(Figure 5b) and transfer characteristics (Figure 5c) were measured within one hour after
the lift-off process. A liner curve of drain-to-source current (ID) versus drain-to-source
voltage (VD) indicates good ohmic contact between the Bi2Se3 nanosheet channel and metal
electrode without the existence of a Schottky barrier. In the absence of the contact resistance,
the sheet resistance was estimated as 2.4 kΩ/sq. The ID increasing monotonically with
gate-to-source voltage (VG) in Figure 5c indicates the n-type nature of the Bi2Se3 nanosheet
and the main current carrier is the electron. The field-effect mobility values (µFE) of the
Bi2Se3 nanosheet FET were extracted from the linear region of the ID-VD curves using the
following equation [37]: µFE = Lch × gm/(Wch × CG × VD), in which Lch is the channel
length, Wch is the channel width, CG is the gate capacitance, and gm is the terminal
transconductance. The maximum µFE value of 58.5 cm2·V−1·s−1 was obtained in the
negative range of VG, indicating the configuration of the N-channel depletion mode. This
value is close to the estimated value (66 cm2·V−1·s−1) from the exponential relation between
electron effective mobility and temperature [10] but is much higher than the experimental
value (10 cm2·V−1·s−1 at 245 K) obtained for a mechanically exfoliated Bi2Se3 device [38].
To further expand the application of the Bi2Se3 nanosheet suspension, spin-coated films of
Bi2Se3 were fabricated, as shown in Figure S4. Three layers of nanosheets were obtained
after spin-coating more than 4 times, with a sheet resistance of 1 kΩ/sq, which is consistent
with the output characteristics of the TBAC-Bi2Se3 FET device.
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Figure 5. (a) Atomic force microscopy topography image of FET device using TBAC-Bi2Se3 nanosheet.
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4. Conclusions

In conclusion, the antioxidative capacity of electrochemically exfoliated 2D Bi2Se3
nanosheets through changing the halide passivation was determined for the enhanced
performance of electronic devices. Synthetic Bi2Se3 nanosheets with thicknesses of less
than 5 nm can be obtained with a large lateral size greater than 5 µm, independent of the
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halides contained in the electrolytes used, while the antioxidative capacity depends on the
halides used. In particular, Bi2Se3 nanosheets passivated using the Cl element have the best
stability since they are less prone to air sensitivity. The underlying reason is proposed to be
that the larger electronegativity of Cl than that of Br or I leads to an increased electronic
distribution from Bi to Cl, resulting in an increased antioxidative capacity for TBAC-Bi2Se3
devices. This work paves an avenue for adjusting the components of electrolytes to further
promote the stability of 2D Bi2Se3-nanosheet-based electronic devices.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13142056/s1. Figure S1. (a) Linear sweep voltammetry of
the electrochemical intercalation of TBA+ and (b) the profile of the current change with time at the
potential of −2.5 V in the solution containing TBA+. Figure S2. Transmission electron microscopy
images of the TBAC-Bi2Se3, TBAB-Bi2Se3, and TBAI-Bi2Se3 nanosheets are shown as (a), (b) and (c),
respectively. Figure S3: XRD pattern of the Bi2Se3 powder and PDF#JCPDS:033-0214. The peaks
corresponding to the crystal facets were assigned and shown in a dotted line. Nanosheet film was
fabricated by spin-coating, while the blue line corresponds to drop casting. Figure S4: (a) Sheet
resistance of annealed Bi2Se3 thin films obtained by different spin-coating times, (b) optical image of
spin-coated films on a wafer, and (c) atomic force microscope image of the film with an artificial step.
More than 4 times of spin-coating will form a thin Bi2Se3 film with a sheet resistance of 1 kΩ/sq.
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