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Abstract: We implemented a semi-empirical pseudopotential (SEP) method for calculating the band
structures of graphene and graphene nanoribbons. The basis functions adopted are two-dimensional
plane waves multiplied by several B-spline functions along the perpendicular direction. The SEP
includes both local and non-local terms, which were parametrized to fit relevant quantities obtained
from the first-principles calculations based on the density-functional theory (DFT). With only a
handful of parameters, we were able to reproduce the full band structure of graphene obtained by
DFT with a negligible difference. Our method is simple to use and much more efficient than the
DFT calculation. We then applied this SEP method to calculate the band structures of graphene
nanoribbons. By adding a simple correction term to the local pseudopotentials on the edges of the
nanoribbon (which mimics the effect caused by edge creation), we again obtained band structures
of the armchair nanoribbon fairly close to the results obtained by DFT. Our approach allows the
simulation of optical and transport properties of realistic nanodevices made of graphene nanoribbons
with very little computation effort.

Keywords: semi-empirical pseudopotential (SEP); graphene; graphene nanoribbon; armchair graphene
nanoribbon (AGNRs); density-functional theory (DFT); band structure; 2D materials; B-spline;
mixed basis

1. Introduction

The electronic properties of low-dimensional materials are unique due to unprece-
dented properties that are unparalleled by those in bulk counterparts [1,2]. A scientific
breakthrough occurred in 2004 in the isolation of monolayer graphene by mechanical exfo-
liation. After the discovery of graphene, the research on two-dimensional (2D) materials
stimulated a great deal of interest due to their promising optical, physical, and chemical
properties. These materials are layered, weakly coupled materials that can exist in a few or
single-layer forms. Many 2D materials can be easily fabricated due to recently developed
cutting-edge technology.

Ab initio formalism such as density-functional theory (DFT) [3] has been used ex-
tensively in calculating the electronic structures [4] and thermoelectric [5] and optical
properties of solids [6]. In most calculations, three-dimensional (3D) plane waves are used
as the basis functions. Plane wave (PW) basis is easy to implement, and the convergence
of the calculation can be checked systematically. DFT methods are still affected by the
band-gap problem, which requires numerically expensive GW calculation [7] or hybrid
functionals to correct the band gap and effective mass near the Fermi level. The other
drawback of this basis is the requirement of a large number of PWs needed when the unit
cell is large.
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Li et al. [8–10] introduced a planar-basis method to utilize plane waves along peri-
odic (x-y plane) and Gaussian functions along a non-periodic (z) direction for ab initio
calculations. The planar basis has advantages over the conventional PW basis in that it
resumes the layer-like local geometry that appears in surfaces or 2D materials. Moreover,
one can calculate the total energy for an isolated slab instead of using a superlattice of
alternating slab and vacuum regions. Thus, the work function can be easily obtained [8].
The planar-basis method was further improved by Ren et al. [11,12] via the use of B-spline
functions instead of Gaussian functions along the non-periodic direction. B-splines are
not associated with atomic positions, making the geometry optimization easy to use, and
the relevant matrices are sparse. Another advantage of using a planar basis is the ease of
handling charged 2D materials such as gated 2D materials. This can avoid the artificial
long-range Coulomb interaction introduced by the supercell method [13].

To study bulk materials with one or few atoms per unit cell, the empirical pseudopo-
tential method (EPM) [14,15] presents an efficient and accurate method. EPM is extremely
powerful since very few parameters are needed in order to obtain information about many
properties of the solid, such as band structure, optical properties, and dielectric properties.
Unlike DFT, EPM does not involve a self-consistent solution of the Schrödinger equation
for charge density, thus greatly reducing time and computational cost. Furthermore, this
method has a great advantage when working with a large unit cell of many identical atoms
since the full potential of each atom can be calculated and fitted with a smaller number of
parameters. In EPM, the pseudopotential contains both local and non-local pseudopoten-
tials. The latter depends upon the angular momentum and energy. The incorporation of
both the non-local and local pseudopotentials of the system provides more precise band
structures and wavefunctions [15,16].

DFT is a widely used computational method for studying the electronic structure of
AGNRs [17,18]. DFT calculations provide a first-principles description of the system by
solving the Kohn–Sham equations, taking into account the electron–electron interactions
within an exchange–correlation functional. DFT calculations can accurately predict the
band structure, electronic density of states, and other electronic properties of AGNRs.
However, DFT calculations can be computationally demanding, particularly for larger
AGNR systems, and certain approximations within the exchange–correlation functional
can introduce errors in the result.

Empirical methods, on the other hand, offer an alternative approach to studying
AGNRs [19]. These methods are based on empirical potentials. Empirical potentials
capture the essential physics of the system by using simplified parameterized functions
that reduce the computational cost compared to DFT. Empirical methods can provide
insights into the electronic structure and transport properties of AGNRs with relatively
lower computational requirements. They are particularly useful for studying larger systems
and phenomena beyond the reach of DFT. For 2D materials, the conventional empirical
pseudopotential, which depends on only a few form factors [14,15], does not work well since
the contribution from self-consistent charge density and exchange–correlation potential
is highly anisotropic for the 2D system. Therefore, the existing empirical potentials do
not provide the accuracy desired to provide reliable simulation of the electronic or optical
properties of graphene-related devices. Thus, the development of a more accurate SEP
is warranted.

Graphene nanoribbons (GNRs) [17–25] are narrow strips or ribbons of graphene. They
are characterized by their finite width, orientation, and well-defined edges. The width of
GNRs can range from a few nanometers to tens of nanometers, and it strongly influences
their electronic properties. GNRs can be classified into two main types based on their
geometry along the edge: armchair-edge GNRs and zigzag-edge GNRs. In the current
work, we solely focus on armchair graphene nanoribbons (AGNRs) to demonstrate the
advantage of semi-empirical pseudopotential (SEP). AGNRs have edges formed by rows
of carbon atoms that resemble the shape of an armchair. In this configuration, all carbon
atoms at the edges are fully bonded, forming a stable structure. AGNRs are known for
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their semiconducting behavior [20], meaning they can exhibit a band gap in their electronic
structure. The width of AGNRs determines the size of the band gap, with narrower ribbons
having larger band gaps in general.

In electronics, AGNRs offer tunable bandgaps and unique edge states, making them
potential candidates for high-performance transistors and logic devices [26]. AGNRs also
exhibit attractive optical properties, with efficient light absorption and emission capabil-
ities, making them suitable for optoelectronic applications such as photodetectors [27]
and light-emitting diodes [28]. Furthermore, AGNRs have shown potential in topological
physics [29–32], with the ability to host topological edge states and phenomena such as the
quantum spin Hall effect. This opens up possibilities for the development of topological
quantum devices and spintronics. Additionally, AGNRs can be tailored to exhibit magnetic
properties [33,34] by introducing magnetic dopants or adatoms, enabling applications in
spintronics, magnetic sensors, and information storage. AGNRs show promise in thermo-
electric applications [35–38] due to their low thermal conductivity and tunable bandgap,
enabling efficient energy conversion. The multifunctionality of armchair graphene nanorib-
bons makes them a highly versatile platform for advancing electronic, optical, topological,
thermoelectric, and magnetic technologies, with ongoing research aimed at uncovering
their full potential.

In this paper, we implement a more sophisticated semi-empirical pseudopotential
method (SEPM) within the planar basis to study the atomic and electronic structure of 2D
systems, using graphene and armchair graphene nanoribbons as examples. The applica-
tions of the currently developed SEP include optical and transport properties of graphene
and related structures such as graphene nanoribbons and various junction devices.

2. Calculation Methods
2.1. B-Splines

To calculate the band structures of 2D materials in the semi-empirical pseudopotential
(SEP) model, it is more efficient to adopt a planar basis. The basis consists of localized
finite-element functions, i.e., B-splines [39] in the z coordinate multiplied by plane waves
in the in-plane coordinates (x and y). B-splines of order κ consist of positive piecewise
polynomials of z with degree κ− 1. These polynomials vanish everywhere outside the
sub-inervals ti ≤ z < ti+k. The B-spline basis set with order κ defined by a knot sequence
{ti} is generated by the following relationship:

Biκ(z) =
(

z− ti
ti+κ−1 − ti

)
Bi,κ−1(z) +

(
ti+k − z

ti+k − ti+1

)
Bi+1,κ−1(z) (1)

with Bi1(z) =
{

1 if ti ≤ z < ti+1
0 otherwise

, where i = 1, 2, 3 . . . up to the number of knot sequence.

The first derivative of the B-spline of order κ is given by the following:

d
dz

Biκ(z) =
(

κ− 1
ti+κ−1 − ti

)
Bi,k−1(z)−

(
κ− 1

ti+κ − ti+1

)
Bi+1,κ−1(z) (2)

The derivative of B-splines of order κ is a linear combination of B-splines of order
κ− 1, which is also a simple polynomial and is continuous across the knot sequence. Using
the polynomial expansion

Biκ(z) = ∑4
j=1 ∑κ−1

n=0 Di,j
n zn for ∈ z

(
ti+j−1, ti+j

)
, (3)
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we obtain the Fourier transform of Biκ(z) as the following:

∼
Biκ(g) = 1√

Lc
∑4

j=1 ∑k
n=0 Di,j

n

ti+j∫
ti+j−1

dzeig(z− Lc
2 )zn

≡ eig(ti−Lc/2)
√

Lc
∑4

j=1 ∑κ
n=0 Di,j

n Ii,j
n (g).

(4)

where Ii,j
n (g) can obtain by the following recursion relationship:

Ii,j
n (g) =

∫ τi+j

τi

dz eigzzn=

(
zn

ig
eigz
)∣∣∣∣τi+j−τi

0
− n

ig
In−1
j (g) (5)

with Ii,j
0 (g) =

(
1
ig eigz

)∣∣∣τi+j−τi

0
. Here, Lc is the period length used along z, and In(g) can

be obtained by the recursion relationship. The B-spline functions used for the current
calculation are shown in in Figure 1.
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2.2. Kinetic and Overlap Matrix Elements within Planar Basis

Throughout this paper, we work in atomic units, where energy is in units of Ry, and
distance is in units of Bohr. The Hamiltonian of the system in the ultrasoft pseudopotential
approach [16] is given by the following:

Ĥ = −∇2 + Vloc + V̂nl (6)

Here, Vloc and V̂nl denote the local pseudopotential and non-local pseudopotential.
Planar basis, used to expand ∑i, is defined as the following:

〈r|k + G; i〉 = 1√
A

ei(k+G)·ρBiκ(z) (7)
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where G denotes the in-plane reciprocal lattice vector in 2D, and ρ = (x, y) is the projection
of r in the x-y plane. k is the in-plane wave vector. A is the surface area of the sample. The
overlap matrix elements between two planar basis functions are given by the following:〈

k + G; i
∣∣k + G′; i′

〉
= 〈Biκ|Bi′〉δG,G, (8)

where
〈Biκ|Bi′κ〉 =

∫
dzBiκ(z)Bi′κ(z) ≡ Oii, (9)

is the overlap integral between two B-spline functions. The kinetic energy matrix elements
are given by the following:

Tii′
(
k + G, k + G′

)
=
〈

k + G; i
∣∣∣−∇2

∣∣∣k + G; i′
〉
=
[
Kii′ + Oii′|k + G|2

]
δG,G, (10)

where
Kii′ =

∫
dz

d
dz

Biκ(z)
d
dz

Bi′κ(z) (11)

2.3. Implementation of the Semi-Empirical Local Pseudopotential for Graphene

The local pseudopotential of the crystal is given by the following:

Vloc(r) = Vion(r) + VH(r) + Vxc(r) (12)

where the first term describes the ionic local potential with

Vion(r) = ∑σ ∑R Vσ
L (r−R− τσ) (13)

in which R denotes a bulk lattice vector, and τσ denotes the position of different atoms
within the bulk unit cell. We note that Vσ

L (r) consists of a long-range term that decays like
Zσ/r for large r. For charge-neutral systems, there is a counter long-range term in VH(r)
due to the valence charges, and the sum of Vion(r) + VH(r) will be short-ranged.

For fitting empirical pseudopotentials of bulk materials, one adjusts the Fourier

transform of the potential of Vloc(r) (called “form factors”
∼
V loc(G)) at a small number

of reciprocal lattice vectors until the band structure agrees with the experimental data or
first-principal calculations [14]. To understand the nature of potential, a set of form factors
for the first few shells at a large number of additional reciprocal lattice vectors is needed.
A variety of algebraic forms have been used in the past for bulk materials [40–42]. We
have not found an existing form that has sufficient flexibility to obtain the correct band
structure for 2D materials. In our case, we try to mimic the full local potential by an analytic
expression of the form.

Vloc(r) = ∑σ,R V0(r− τσ −R)+∑σ,G 6=0 ∆
∼
V loc(z, G)eiG·(ρ−τσ) (14)

where G denotes an in-plane 2D reciprocal lattice vector. The first term in Equation (14)
denotes the main part of the local pseudopotential (denoted V0), which is parametrized in
terms of three spherical Gaussian functions, with Cs and αs being fitted parameters. Namely,
V0(r) = ∑3

s=1 Cse−αsr2
. Cs and αs are related to the spatial average of Vloc(r) in the 2D plane

as a function of z. We can rewrite V0(r) in terms of 2D plane waves as the following:

∑R V0(r− τσ −R) = ∑3
s=1 Cse−αsz2 π

Acαs
∑σ,G e−G2/4αs eiG·(ρ−τσ). (15)

Let
∼
V loc(z, G) denote the Fourier transform of Vloc(r) in the 2D reciprocal space. We have

∼
V loc(z, 0) = ∑3

s=1 Cse−αsz2 Naπ

Acαs
≡∑3

s=1 Dse−αsz2
(16)
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for the τσ = 0 term at G = 0. Here, Na denotes the number of atoms per unit cell, and
Ac is the area of the 2D unit cell. We determine the fitting parameters Ds and αs by fitting

the corresponding
∼
V loc(z, 0), determined by a DFT calculation within the same mixed

basis as defined in (7). The implementation of the DFT package within this basis for
graphene and AGNRs was reported in [12]. The DFT results obtained by using the package
developed in [12] were checked against results obtained with the VASP package [43],
and the calculated results for graphene and related nanoribbons obtained by using both
packages are essentially the same. The exchange–correlation functional used is deduced
from the Monte Carlo results calculated by Ceperley and Alder [44] and parametrized
by Perdew and Zunger [45]. The fitted coefficients for Ds can be directly converted to Cs
through the relationship Cs = Ds Acαs/(Naπ). The best-fit parameters for graphene are

given in the first row of Table 1, and the quality of the fit for
∼
V loc(z, 0) is shown in Figure 2a.

Table 1. Fitting parameters for the main part of local potential V0(r).

Exponents Coefficients

α1 α2 α3 C1 C2 C3

0.0396 1.4100 0.3461 −0.3682 −1.7360 −1.5710
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(G ) in the first few shells. The magnitudes of G in subfigures are: (a) G = 0, (b) G = G1 = 1.56 a.u.,
(c) G = G2 = 2.70 a.u., and (d) G = G3 = 3.12 a.u. for shells 0, 1, 2, and 3, respectively.

The second term of Equation (14) denotes the difference Vloc(r)−∑σ,R V0(r− τσ −R),

which is expressed in reciprocal space. Since G = 0 is already well fitted by
∼
V loc(z, 0), we

only have to consider the G 6= 0 contribution. Due to point-group symmetry, the reciprocal
lattice vector G can be sorted into many shells with the magnitude of G vectors being the

same in each shell, and ∆
∼
V loc(z, G) is the same for all G vectors in the same shell. We

found that for G vectors with magnitude G > 4 a.u., ∆
∼
V loc(z, G) can be well fitted by a

short-range correction function of the form:

∆
∼
VS(z, G) = fS(z)

∼
DS(G)S1(G)
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with {
fS(z) =

(
1 + CS

1 z2 + CS
2 z4 + CS

3 z6 + CS
4 z8)e−α0z2

∼
DS(G) =

(
PS

1 G2 + PS
2 G4 + PS

3 G6)e−G2/(4α2)
(17)

S1(G) = 1
Ac

∑σ e−iG·τσ denotes the structure factor of graphene.

Note that the chosen form of ∆
∼
VS(z, G) goes to zero at G = 0, so the fitting does not

affect
∼
V loc(z, 0). We can transform ∆

∼
VS(z, G) back to real space analytically and obtain

the following:

∆VS(r) = ∑σ,G ∆
∼
VS(z, G)eiG·(ρ−τσ) = fS(z)DS(ρ), (18)

where DS(ρ) = ∑σ,G 6=0
∼
DS(G)eiG·(ρ−τσ).

The best-fit parameters for short-range correction functions defined above are listed in
the first row of Table 2. Finally, for the three shells with 0 < G < 4 a.u., we need to fit the

difference ∆
∼
V loc(z, G)− ∆

∼
VS(z, G) by another long-range correction function of the form

∆
∼
VL(z, G) = fL(z)

∼
DL(G) with the following:{

fL(z) =
(
1 + CL

1 z2 + CL
2 z4 + CL

3 z6 + CL
4 z8)e−α0z2

∼
DL(G) =

(
PL

1 G2 + PL
2 G4 + PL

3 G6)e−G2/(4α2)
(19)

The best-fit parameters for fitting fL(z) and
∼
DL(G) for the three shells are shown in the

second row of Table 2. The Fourier transforms of the effective local pseudopotential,

i.e.,
∼
Vloc(z, G) for G shells with magnitude G1, G2, G3 = 1.56, 2.702, and 3.12 a.u., respec-

tively, are shown in Figure 2b–d. Similarly, we can transform ∆
∼
VL(z, G) back to real space

analytically and obtain the following:

∆VL(r) = ∑σ,G ∆
∼
VL(z, G)eiG·(ρ−τσ) = fL(z)DL(ρ) (20)

with DL(ρ) = ∑σ,G
∼
DL(G)eiG·(ρ−τσ). Then, we obtain the following relationship:

∼
Dγ(q) =

1
AC

∑σ∈Ac

∫
dρeiq·ρDγ(ρ− τσ)/S1(q).

where γ = S or L labels the short-range or long-range term.

Table 2. Fitting parameters for the short-range and long-range shape function fS (z) and fL (z) for the

correction terms to
∼
Vloc(z, G) used in this work.

Type Exponent Coefficients for fγ(z) Coefficients for
~
Dγ(G)

γ α0 Cγ
1 Cγ

2 Cγ
3 Cγ

4 Pγ
1 Pγ

2 Pγ
3

Short
Range (S) 2.07 2.0372 −16.164 13.912 −2.8969 0.04494 −0.00574 0.000224

Long
Range (L) 2.07 2.6251 −5.6668 2.1280 1.0239 −0.1650 0.03132 −0.002615

Combining all above, the total local potential is given by the following:

Vloc(r) = V0(r) + ∆VS(r) + ∆VL(r). (21)

For convenience, Dγ(ρ) can be expressed as a polynomial multiplied by a Gaussian
function.

Dγ(ρ) = ∑3
m=0 bγ

mρ2me−α2ρ2
(22)
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where bγ
m can be determined by the following relationship:

∼
Dγ(G) =

1
AC

∫
dreiG·rDγ(ρ) =

1
AC

∑3
m=0 bγ

m

∫
dρeiG·ρρ2me−α2ρ2

(23)

which leads to the following relationship between bγ
m and the set of parameters

{
Pγ

1 , Pγ
2 , Pγ

3
}

.
bγ

0

bγ
1

bγ
2

bγ
3

 =
ACα2

π


1 4α2 32α2

2 384α3
2

0 −4α2
2 −64α3

2 −1152α4
2

0 0 16α4
2 576α5

2

0 0 0 −64α6
2




0
Pγ

1

Pγ
2

Pγ
3

 (24)

To check if the real space form of the local pseudopotential Vloc(r) obtained by the
current SEPs as given by Equation (21) can truthfully represent the DFT results, we com-
pared the results for Vloc(r) obtained by DFT and by the current method in Figure 3. In
Figure 3a, we show the x-dependence of Vloc(r) at z = −0.5∆z and y = a/

(
2
√

3
)

(a line
passing through the center of a C atom). Here, ∆z = W/104 is the grid size for the fast
Fourier transform used in the DFT calculation, and W is the width of the domain along the
z-axis used to define the B-spline basis.
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z = −0.5∆z (half a grid from the center of the supercell). (a) Along the line at y = a

2
√

3
, which passes

through a row of C atoms in the graphene sheet. (b) Along two perpendicular lines (along the x-axis
and y-axis) both passing through the origin, which is the center of the hexagon cell. (c) The difference
of Vloc(ρ, z) obtained by DFT and SEP plotted along the x-axis (green) or y-axis (red). The blue curve
indicates the average of the red and green curves. (d) The best-fit results of the average ∆Vb(ρ, z).

It is seen that the result obtained by SEP matches the corresponding DFT results
very well. In Figure 3b, we show both the x- and y-dependence of Vloc(r) at z ≈ 0 along
lines in x- and y-directions, with both passing through the center of the hexagon cell. The
agreement with the DFT results is still very good, except there is a small deviation near
the center ( ρ ≈ 0). We also noticed that the x- and y-dependence almost coincide for
|ρ| < 0.2a, indicating the potential has nearly cylindrical symmetry near the center of the
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hexagon cell. We then took the difference of the local potential obtained by DFT and by
SEP and plotted the difference function ∆Vb(ρ, 0) in Figure 3c. It turns out that such a
minor correction will still be important for the states derived from the σ-bonds, but it has a
negligible effect on states derived from the π-bonds since the π-orbitals have negligible
amplitude at the center of the hexagon cell. This minor correction is caused by the fact that
all terms included in Vloc(r) in Equation (21) are centered at atomic sites, while the effect of
charge redistribution due to valence charges in the solid cannot be fully absorbed by the
atom-centered terms. Thus, we should also consider contributions described by functions
localized at the center of hexagon cells in the graphene lattice. We shall call such a term the
“bond-charge contribution”.

To determine this contribution, we fit the difference of the local potential obtained by
DFT and by SEP, i.e., ∆Vb(ρ, 0), in Figure 3c by the following analytic function:

∆Vb(ρ, 0) = ∑4
n=0 Cb

nρ2ne−αbρ2 ≡ Db(ρ). (25)

The best-fit parameters { Cb
n; n = 0, . . . , 4

}
and αb are listed in Table 3. We approximate the

net local potential near the center of the hexagon by a separable form:

Vloc(ρ, z) = Vloc(ρ, 0) fb(z) (26)

where fb(z) = Vloc(0, z)/Vloc(0, 0) describes the z-dependence of the bond-charge contri-
bution. Here, fb(z) describes the variation of Vloc(ρ, z)/Vloc(0, 0) along the z-axis at ρ = 0,
i.e., the center of the hexagon cell. By taking the difference between Vloc(r) obtained by
DFT and by SEP, we obtain the following:

∆Vb(ρ, z) ≈ Db(ρ) fb(z), (27)

where we assume that the z-dependent functions obtained by DFT and SEP are the same.

Table 3. Fitting parameters for the bond-charge contribution in pseudopotential localized at the
center of the hexagon cell as described by Equations (25)–(27).

Exponents in Equations (25)
and (28) Coefficients in Equation (25)

αb αh1 αh2 Cb
0 Cb

1 Cb
2 Cb

3 Cb
4 ah

3.0053 0.3601 0.0383 −0.1727 1.5253 −6.4817 11.5249 −5.0681 0.6930

The net local potential of graphene, Vloc(ρ, z), evaluated at ρ = 0 and obtained by
DFT is shown in Figure 4. For convenience, we fit its normalized z-dependent function
fb(z) = Vloc(ρ, z)/Vloc(0, z) by the following expression:

fb(z) = ahe−αh1z2
+ (1− ah)e−αh2z2

(28)

The best-fit parameters ah, αh1, and αh2 are given in Table 3. Adding this bond-charge
contribution, the net local potential in our model becomes the following:

Vloc(r) = V0(r) + ∆VS(r) + ∆VL(r) + ∆Vb(r). (29)
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2.4. Fitting of the Non-Local Pseudopotential for Graphene

The semi-empirical pseudopotential contains both local and non-local terms. The
non-local pseudopotential contains angular momentum and energy-dependent terms [15].
Incorporating non-local in addition to local terms can provide a more accurate energy
range for the valence band edge and best matches to the experimental data. The nonlocal
potential is given by a separable form [16]:

V̂nl = ∑σlm,nn′ Enn′
lm

∣∣∣βnσ
lm

〉〈
βn′σ

lm

∣∣∣ (30)

where βnσ
lm(r) denotes the projector functions for an atom at position τσ. For each atom, the

best-fit β functions take the following form:

βn
lm(r) = An

l (r)r
lYlm(Ω). (31)

for l, m = 00, 10, 11, 20, 21, 22. We fit the beta function for 2S and 2P orbitals for C atom
from the Vanderbilt ultrasoft pseudopotential (USPP) [16]. The fitting potential used has
the form for r < Rs, where Rs is the cut-off radius.

An
l (r) =

(
C0 + C1r2 + C2r4 + C3r6 + C4r8

)
e−αr2

(32)

For the second 2P orbital (2P2), we break the β function into two segments with a
dividing radius at Rs = 0.9228 (indicated by a vertical dashed line in Figure 5d). We fit the
first segment (seg 1) for r < 0.9228 by expression (32). For the second segment (seg 2), we
fit An

l (r) with the following expression:

An
l (r) =

(
C0 + C1r2

s + C2r4
s + C3r6

s + C4r8
s

)
(for 0.9228 < r < 1.2953) (33)

where rs = r− 0.9228. The bet-fit parameter obtained is given in Table 4.
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Table 4. Fitting parameters (a.u.) for β functions used in the non-local pseudopotential of C atom.

Orbitals α Rs C0 C1 C2 C3 C4

2S1 2.747 1.3174 −2.999 −4.209 −11.95 7.612 0

2S2 2.171 1.3174 6.206 −9.434 −21.03 14.21 0

2P1 0.5104 1.3174 −3.941 −1.411 5.485 −1.939 0

2P2(seg1) 1.134 0.9228 −2.492 94.68 −365.4 480.9 −209.8

2P2(seg2) 0.0 1.2953 −0.9771 −350.7 4210 −5711 −4377

The fitting result for each orbital is shown in Figure 5. The quality of fitting to the
input of USPP [16] is excellent.

2.5. Matrix Elements of Local and Nonlocal Pseudopotential

The local pseudopotential Vloc(r) is given by Equation (12). It consists of the atomic-
like term V0(r), which is spherical in 3D space, and the correction term, which has a
short-range part and a long-range part. We define the following:

I(αs; i, , i′) =
∫

dzBi(z)Bi′(z)e−αsz2
. (34)

Bi(z) is the B-spline basis functions with the subscript κ dropped for brevity. Within
the mixed basis, the matrix elements for the atomic-like term can be written as follows:

〈
G; Bi|V0|G′; Bi′

〉
= ∑s Cs I

(
αs; i, , i′

)
S1(∆G)

(
π

αs

)
e−∆G2/(4αs) (35)

within the B-spline basis. Here, ∆G = G′ −G and Cs denote the fitting parameters for a
given C atom in the unit cell, as given in Table 1.

S1(∆G) =
1

Ac
∑σ

ei∆G·τσ =
2

Ac
cos(∆G·τ1) (36)
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denotes the structure factor for graphene. Due to the inversion symmetry of graphene,
we choose the origin to be the center between two C atoms in the unit cell, and τ1 is the
position of one C atom in the unit cell. Thus, S1( ∆G) is real.

Similarly, we obtain the matrix elements for the remaining terms for the local potential
as follows:〈

G; Bi
∣∣∆Vloc

∣∣G′; Bi′
〉
=
∫

dzBi(z)∆
∼
V loc(∆G; z)Bi′κ(z)

=
∫

dzBi(z)
[

fL(z)
∼
DL(∆G)S1(∆G) + f S(z)

∼
DS(∆G)S1(∆G) + fb(z)Bi(z)∆

∼
Vb(∆G)

]
Bi′(z)

(37)

where

∆
∼
Vb(q) = ∑4

m=0 Ch
n

(
− ∂

∂αh

)n π

αh
e−q2/4αh (38)

denotes the in-plane Fourier transform of the bond-charge contribution, ∆Vb(ρ, 0), given in
Equation (25).

2.6. Nonlocal Corrections in Overlap and Potential

The matrix elements for nonlocal potential read as follows [12]:〈
K; Bi

∣∣V̂nl
∣∣K′; Bi′

〉
= ∑

σlm,nn′
Enn′

lm
〈
K; Bi

∣∣βn0
lm
〉〈

βn′0
lm

∣∣∣K′; Bi′
〉

ei(G′−G)·τσ

= 1
Ac

∑σlm ∑nn′ Enn′
lm Pin

lm(K)Pi′n′*
lm (K′)ei(G′−G)·τσ .

(39)

Here, K = k + G; K′ = k + G′. τσ = ±τ1 for σ = 1, 2. Pin
lm(K) = il√Ac

〈
K; Bi

∣∣βn0
lm
〉

denotes the projection of the β functions (with the center shifted to the origin) into our basis.
A detailed description of the evaluation of Pin

lm(K) is given in Appendix A. For calculating
the band structure, we also need to evaluate the correction to the overlap matrix elements.
The correction to the overlap matrix can be written as follows [12]:

〈
K; Bi

∣∣Ŝ ∣∣K′; Bi′
〉
=

1
Ac

∑σlm ∑nn′ q
nn′
lm Pin

lm(K)Pi′n′*
lm

(
K′
)
ei(G′−G)·τσ . (40)

This expression is identical to (39) except that the energy parameters Enn′
lm are replaced

by the overlap parameters qnn′
lm . Here, we adopt the same parameters for Enn′

l and qnn′
l as in

the ab initio input data [12,16] to calculate the matrix elements of non-local pseudopoten-
tials. The input parameter used for Enn′

l and qnn′
l are shown in Table 5.

Table 5. Parameters for the overlap and non-local pseudopotential terms.

n n’ l Enn’
l qnn’

l

1 1 0 3.490422 −0.449056

1 2 0 0.207297 0.344889

2 2 0 −2.748230 −0.212785

3 3 1 2.474918 1.236379

3 4 1 −5.902130 −0.938122

4 4 1 9.289400 0.631727

The formulas derived above can be extended to other two-dimensional materials
beyond graphene, such as transition-metal dichalcogenides. Due to the inversion symmetry
in graphene, all matrix elements become real. Furthermore, there is a mirror symmetry
for the z-axis. By adopting the B-spine basis along the z-axis and taking symmetric and
antisymmetric combinations of these basis functions, we can decouple the eigenstates of the
Hamiltonian within the symmetric and antisymmetric basis sets for any wave vector in the
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2D plane. This significantly improves the speed of computation for the band structures. We
found that using a direct solver for diagonalization becomes even faster than the iterative
solver based on the conjugate-gradient (CG) approach [46] for this system with both
inversion and mirror symmetry. The cut-off used for plane waves used in wavefunctions is
30 a.u. and that in pseudopotential is 180 a.u.

3. Results and Discussions
3.1. Band Structure of Graphene

The all-electron (AE) Bloch states of graphene are written as follows:

Ψν,k(ρ, z) = Ôϕν,k(ρ, z) = Ô∑i,G Zν,k
iG

∼
Bi(z)

1√
A

ei(k+G)·ρ, (41)

where ϕn,k(ρ, z) denotes the pseudo-wavefunction,
∼
Bi(z) denotes the orthogonalized B-

spline function, and Ô is the overlap operator defined in (A5). The all-electron Kohn–Sham
equation [47] reads as follows:

ĤAEΨν,k(ρ, z) = Eν(k)Ψν,k(ρ, z) (42)

where ĤAE is the all-electron Hamiltonian operator, and Eν(k) denotes the energy of the
ν-th band at wavevector k. Substituting Equation (41) into Equation (42) gives rise to the
following generalized eigenvalue problem:

∑i′ ,G′

〈
k + G;

∼
Bi

∣∣∣∣Ĥ∣∣∣∣k + G′;
∼
Bi′

〉
Zν,k

i′G′ = Eν(k)∑i′G′

〈
k + G;

∼
Bi

∣∣∣∣Ô∣∣∣∣k + G′;
∼
Bi′

〉
Zν,k

i′G′ (43)

where Ĥ is the Hamiltonian operator given in Equation (6).
We apply the current SEP to calculate the band structure of graphene. The real-

space structure of graphene can be described by a 2D unit cell with primitive lat-
tice vectors a1 =

(
1,−
√

3 )a/2 and a2 =
(

1,
√

3 )a/2. The positions of carbon atoms

are
(

1,−1/
√

3
)

a/2 and
(
−1, 1/

√
3
)

a/2. The basis vectors in reciprocal space are

b1 = 2π√
3a

(√
3,−1

)
, b2 = 2π√

3a

(√
3, 1
)

. Figure 6 shows the geometry of graphene in real
space and reciprocal space.

In Figure 7, the band structure of graphene calculated by SEP with best-fitted parame-
ters deduced in Section 2 is shown and compared with that obtained from a self-consistent
calculation based on DFT [12]. The overall band structures obtained by the present method
are in close agreement with the ab initio calculation. Since we solve the Bloch states with
even and odd parities (with respect to the mirror symmetry about the z-axis) separately,
the symmetry characteristics of the bands can be easily distinguished. Here, the even (odd)
parity states are presented in green (red) color. It is noted that the red curves (with odd
parity) are related to the pz orbitals of the carbon atoms, and they form π-bonded bands,
whereas the green curves (with even parity) are related to the s, px, andpy orbitals.

As shown in Figure 7, the agreement between the SEP and DFT results obtained by
using the method described in [12] for the lowest 20 bands is excellent. The advantage
of the SEP is that it is easy to use and requires no self-consistent calculation to establish
the charge density. The time needed to calculate the band structures via a direct solver
on a laptop PC is less than 6 s, which is only a fraction (~1/5) of the time needed for the
CG calculation used in the DFT package (after the self-consistent density is established).
The saving is mainly due to the use of the inversion and mirror symmetry properties
of graphene.
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Figure 7. Band structure of graphene obtained by the present SEP with best-fitted parameters (solid
curves). For comparison, the band structure obtained by self-consistent calculation based on DFT
with Vanderbilt USPP is also included (dotted curves).

3.2. Band Structure of Armchair Graphene Nanoribbon

We consider a graphene nanoribbon with armchair edges with a width of Na, where
a is the lattice constant of graphene. The supercell of the armchair graphene nanoribbon
(AGNRs) contains 4N + 2 atoms, as illustrated in Figure 8a. To adopt the 2D plane-wave
basis, we introduce a vacuum region with the width of (M− N)a inside the supercell
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such that the dimension of the rectangular supercell is
√

3a×Ma. The reciprocal lattice
vectors of a superlattice consisting of a 1D periodic of AGNRs along the x-axis can be

written as gn1n2
= n1

∼
b1 + n2

∼
b2, where

∼
b1 = 2π

Ma x̂ and
∼
b2 = π

a ŷ are the basis vectors in
reciprocal space, and n1 and n2 are arbitrary integers. Let gi (i = 1, . . . , 2M) denote those
non-equivalent g vectors falling within the first Brillouin zone of graphene. (See Figure 8b.)
Then, all g vectors of the AGNRs superlattice can be expressed as gi + G, where G denotes
the reciprocal lattice vectors of graphene.
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Figure 8. (a) Position of atoms of a 9 × 2 AGNR and the 16 × 2 supercell used in the calculation
(enclosed within the green rectangular box). The red x marks the origin of the coordinate system
to illustrate the inversion symmetry. (b) Rectangular 2D Brillouin zone (BZ) of the 16 × 2 supercell
for the AGNRs are indicated with the green box, and the non-equivalent AGNRs reciprocal lattice
vectors enclosed within the first BZ of graphene gj (j = 1, . . . , 2M) are indicated by black dots. The
blue rectangular box indicates the BZ of a 1 × 2 supercell for graphene. The black dots outside the
red hexagon (BZ of graphene) can be shifted inside the box by adding a reciprocal lattice vector.

The Bloch states of the AGNRs superlattice can be written as linear combinations of
basis functions that are products of 2D plane waves (labeled by wave vectors k + gj + G )
and B-splines in z (i.e., the mixed-basis introduced in [11]). For wide AGNRs, this basis
set can be quite large. The band structure of the AGNRs is expected to be quite close
to the zone-folded band structure of graphene, with deviation mainly coming from the
quantum confinement effect from the vacuum region and the effect due to the creation
of edges. To describe such a change, it is computationally more efficient to start with the
zone-folded band structures of graphene that can be calculated by using the graphene SEP
code developed above at wave vectors of k + gj (j = 1, . . . , 2M), where k is within the first
mini zone of the AGNR superlattice. A similar approach was applied to the Si 7× 7 surface,
and it was demonstrated that such a method works very well for large superstructures [48].
If the vacuum region introduced in the superlattice is thick enough, the coupling between
adjacent AGNRs can be negligible, and k of interest will be along the long axis of the AGNR
(taken to be parallel to ŷ here). The low-lying pseudo-Bloch states of graphene (with band
labeled by ν) obtained at k + gj (denoted as ϕν,k+gj

) can then be used as a set of contracted
basis functions for calculating the band structures of the AGNR. This set of contracted
bases is a nearly complete basis for AGNR if we use a large number of graphene bands
until the convergence is established for the calculated results.

Thus, we can write the Hamiltonian of the AGNR as H = −∇2 + U1 + Û2, where

U1(r) =
[
V′0(r) + ∆V′S(r) + ∆V′L(r) + ∆V′b(r)

]
(44)

denotes the sum of local potentials of C atoms defined in Equation (12) for atomic sites
(indexed by σ) in the nanoribbon region ANR [with |x| ≤W/2] inside the supercell used
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for AGNRs. Û2 denotes the nonlocal pseudopotential of the nanoribbon. The AGNRs
Hamiltonian matrix within the contracted basis is then given by the following:〈

ϕν,k+gj

∣∣∣ĤGNR

∣∣∣ϕν′ ,k+gj′

〉
=
〈

ϕν,k+gj

∣∣∣−∇2
∣∣∣ϕν′ ,k+gj′

〉
+
〈

ϕν,k+gj

∣∣∣U1 + Û2

∣∣∣ϕ′ ,k+gj′

〉
(45)

where the first term describes the kinetic energy, and the second term consists of the
semi-empirical local (U1) and nonlocal ( Û2

)
pseudopotentials for AGNR. The detailed

expressions for these matrix elements are given in Appendix B.
In addition to the z-mirror symmetry, the AGNR also has x-mirror symmetry for any

wave vector, i.e., k, along the y-axis. Thus, we can define symmetrized basis states with
respect to the x-mirror as follows:

|ϕ s,±
ν,k+gj

〉
= f j

(
|ϕ s

ν,k+gj

〉
± |ϕ s

ν,k+gj

〉)
/
√

2 for gjx ≥ 0, (46)

where gj =
(
−gjx, gjy

)
, ϕs

ν,k+gj
(x, y, z) = ϕs

ν,k+gj
(−x, y, z) (corresponding to flipping

the sign of Gx in the plane-wave basis). f j = 1/
√

2 for gjx = 0, and f j = 1 otherwise.
The symbol “±” denotes even/odd parity states with respect to the x-mirror, while the
superscript s = e, o is the label for the even/odd parity states with respect to the z-mirror.
The Hamiltonian matrix elements between symmetrized states of the same parity read
as follows:〈

ϕs,±
ν,k+gj

∣∣∣∣ĤGNR

∣∣∣∣ϕs,±
ν′,k+gj′

〉
= f j f j′

[〈
ϕs

ν,k+gj

∣∣∣ĤGNR

∣∣∣ϕs
ν′,k+gj′

〉
±
〈

ϕs
ν,k+gj

∣∣∣ĤGNR

∣∣∣ϕs
ν′,k+gj′

〉]
. (47)

The overlap matrix is given by the same expression above, with ĤGNR replaced
by ÔGNR.

Here, we divide the basis set into four different subsets according to different symmetry
types labeled by { π+, π−, σ+, σ−}. π+ and π− states represent π-bonded (pz-like) states
with even and odd parity, respectively, under the x-mirror operation. σ+ and σ− states
represent σ-bonded (px, py, or s-like) states with even and odd parity, respectively, under
the x-mirror operation. Eigenstates of ĤGNR with different symmetry types are decoupled
based on group theory. Thus, we can block-diagonalize the Hamiltonian matrix into four
diagonal sub-blocks, and each diagonal sub-block can be diagonalized separately. By taking
advantage of these symmetry properties, the electronic structures of graphene nanoribbons
can be solved very efficiently with the present SEP via a direct diagonalization method.
Furthermore, the symmetry characteristics of different bands can be easily identified in the
band structure by using different colors. This can help sort out the complex characteristics
in AGNR electronic states and improve the understanding of the electronic properties
of AGNR.

The graphene bulk basis adopted above can describe the band folding due to the
quantum confinement effect in the nanoribbon well, but it requires a large number of
basis states to fully capture the effect of localized edge states. The AGNRs band structures
obtained by solving Equation (43) are shown in Figure 9a,b to compare with the DFT results.
The number of graphene bands included in the calculation is 10 for the π+(π− ) states and
60 for the σ+(σ−) states. Adding more bands produces no significant effect. For the odd
states, the change of energy on the AGNR band structure is less than 0.005 eV within the
energy window of interest. For the σ-bonded (even in z) states, most minibands remain
nearly unchanged when the number of graphene bands included varies from 14 to 60,
while the two pairs of minibands closest to the band-gap region change significantly and
still do not reach the desired convergence level even with 60 graphene bands included in
the basis. These edge-induced states correspond to the bonding and antibonding states
of the dimers on two edges. Since there will be an edge-induced correction in the local
potential, it is unnecessary to spend a significant effort to obtain fully convergent results
for the preliminary investigation in this section.
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(𝐰𝐢𝐭𝐡 𝝅ି 𝐬𝐲𝐦𝐦𝐞𝐭𝐫𝐲 ) and red (with 𝝅ା  symmetry) are derived from 𝝅 -bonded states (odd with 
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Figure 9. The band structure of AGNRs with M = 16 and N = 9. (a) Our SEP results without the
relaxation of the edge atoms. (b) Our SEP results with edge relaxation but without modifying the
pseudopotentials on the edge atoms. (c) DFT results were obtained by using the method described
in [12] for the AGNRs with relaxed atomic positions for the edge atoms. (d) Our SEP results include
the modification of pseudopotentials on the edge atoms. In SEP results (a,b,d), the bands in blue
(with π− symmetry ) and red (with π+ symmetry) are derived from π-bonded states (odd with
respect to the z-mirror), while the bands in green are derived from the σ-bonded states (even with
respect to the z-mirror). Here, we do not distinguish the σ+ from σ− states since the important states
are edge states, and they are essentially degenerate.

We also performed DFT calculations of the same AGNR within the basis constructed by
2D plane waves multiplied by B-spline functions of z, as described in [12]. The edge atoms
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are allowed to relax to minimize the total energy of the AGNR. In the relaxed geometry,
the displacement of the edge atom in the left and upper corner of the AGNR supercell (the
green box) as shown in Figure 8a is described by ∆τ = (∆x, ∆y), with ∆x = 0.2107 a.u. and
∆y = 0.1788 a.u. The displacement of three other edge atoms can be deduced by applying
the x-mirror and y-mirror symmetry. The resulting band structures are shown in Figure 9c.
To make sure that the relaxation of only the edge atoms is sufficient, we also performed the
DFT calculation of the AGNR, in which the outermost four rows of atoms are allowed to
relax, and we found that the major displacement occurs on the edge atoms, while the other
inner rows only relax slightly, and the resulting band structure is quite similar to the one
with relaxation only on the edge atoms. For comparison, we shifted the DFT band structure
rigidly in energy, so the valence-band maximum is aligned with our SEP calculation.

We found that, as shown in Figure 9a, the band structure of the unrelaxed AGNR
looks qualitatively similar to the corresponding DFT results (with edge relaxation) in
Figure 9c. However, the band gap obtained is about 0.45 eV, which is substantially smaller
than the DFT result of ~0.6 eV. Furthermore, we found a pair of mid-gap bands (in green)
that are related to the σ-bonding states of the dimer atoms on the edge. There is also a
pair of σ-antibonding states of the edge dimers with energy near 0 eV at the Γ point (not
shown). These edge-dimer-related minibands are nearly doubly degenerate, corresponding
to dimer states located at the left and right edges of the AGNR. Since the width of the
ribbon is much larger than the spread of the wavefunctions localized on edges on opposite
sides, these states form a closely spaced pair of minibands. In the DFT band structure, the
corresponding σ-bonding states are lowered by ~2.5 eV at the Γ point, and there are no
mid-gap states left. Since the DFT calculation did not separate the even and odd states,
some of them even states look artificially entangled with the odd states.

The SEP band structures of the AGNR with the same relaxed atomic positions as
determined by DFT but with the pseudopotential (PP) given by Equation (29) are shown
in Figure 9b. With the relaxation, the band gap becomes enlarged to ~0.5 eV, and the
overall band structure agrees better with the DFT results. The pair of σ-bonding states of
edge-dimers (in green) is also lowered but only by ~0.5 eV at Γ point, and there are no
states left in the mid gap. We note that for device applications, the π-bonded states (near
the band gap region) play a dominant role. The band structure for these π-bonded states is
not significantly changed due to the relaxation of atomic positions at the edges. However,
there are still noticeable differences between the band structures obtained by SEP and by
DFT, which are mainly caused by the deviation of local potential near the edge atoms as
the graphene is cleaved to form a nanoribbon. We discuss the consequence of this effect
and its remedy below.

3.3. Modification of Pseudopotential for Edge Atoms of Armchair Graphene Nanoribbon

Figure 10 shows the contour plot of the local potential of the 9 × 2 AGNR with
edge relaxation. The ~5% shift of atomic positions near the edges is noticeable in this
plot. To examine the deviation of local potential (Vloc) calculated by SEP from the DFT
results, we plot the line cuts of Vloc(x, y, z) as functions of x at the four different values
of y ( y = −L/2,−3L/17, 0, and 6L/17) and z ≈ 0 in Figure 11. These lines are indicated
by black lines in Figure 10. Here, L =

√
3a is the length of the AGNR supercell along

the y-axis.
As shown in Figure 11, we found that the local potentials obtained by SEP agree very

well with the DFT results in the interior region of the AGNR, with noticeable deviation
from the DFT results only near the two edges (with |x|> 4.5a ). It implies that the SEP
potential centered at an atom follows the position of the relaxed atom very well, while the
cleavage of graphene to form an AGNR causes some charge redistribution that can lead to
the change of the local potential near the edges.
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Figure 11. The net local pseudopotential in one supercell of the AGNRs obtained by the current
SEP (green line) and by DFT (red line) along the lines with z ≈ 0 (near the AGNRs plane) and some
selected values of y. (a) y = −L/2 (along the bottom black line going through the centers of ten
bonds in Figure 10), (b) y = −3L/17 (along the black line going through the centers of nine atoms in
Figure 10), (c) y = 0 (along the middle black line going through the centers of nine bonds in Figure 10),
and (d) y = 6L/17 (along the black line going through the centers of ten atoms in Figure 10).

To investigate the effect of local potential induced by the edge creation, we took the
difference between the DFT (red curve) and SEP results (green curve) in Figure 11 for x
between 3a and 6a at y = −L/2, −3L/17, 0, and 6L/17. The results for the differences at
the selected values of y are shown as dotted lines in Figure 12. These difference curves (for
one of the two edges) can be reasonably fitted by the following functional form:

∆Ve(ρ, 0) ≈
[
Sae−αa(ρ−ρa)

2
+ Sbe−αa(ρ−ρb)

2
+ Sce−αa(ρ−ρc)

2
+ Sde−αb(ρ−ρd)

2]
, (48)

where ρa = (xa,−L/2), ρb = (xb,−3L/17), ρc = (xb, 0), and ρd = (xb, yd) denote the
four locations of effective bond charges near the AGNR right edge. yd = ye + ∆y ≈ 6L/17
denotes the y-coordinate of the relaxation edge atom, including the relaxation ∆y. The
AGNR potential also has a y-mirror symmetry, so we duplicate the terms at yb and yd
and add the same potentials at −yb and −yd. We note that the potentials at ya = −L/2
(equivalent to ya = L/2 due to periodicity) and yc = 0 will be mapped to themselves by
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the y-mirror. Here, xa = 5a denotes the bond-charge location at y = −L/2, and xb = 4.65a
denotes the common bond-charge location near the edges for other y values. The positions
of these bond charges are related to the minimum of the difference in the local potentials
shown in Figure 12. Sa, Sb, Sc, and Sd, describing the variation of potential strength along
the y-axis. Here, we choose αa = 0.4 and αb = 1.1, which approximately describe the width
of the potential wells shown in Figure 12. The best-fit results for ∆Ve(ρ, 0) are shown as
green curves in Figure 12, with best-fit values of Sa, Sb, Sc, and Sd listed in Table 6.
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Figure 12. Difference in the local potentials between DFT and the current SEP results (red curves)
and fitted by expression (48) (green curves) evaluated at (a) y = −L/2, (b) y = −3L/17, (c) y = 0,
and (d) y = 6L/17, respectively.

Table 6. Fitting parameters Sa, Sb, and Sc (in a.u.) at four selected values of y.

Sa Sb Sc Sd

−0.25 −0.34 0.10 −0.42

We approximate the net three-dimensional local potential, including the bond-charge
redistribution near the edges by a separable form:

Vloc(ρ, z) = Vloc(ρ, 0) fe(z) (49)

where fe(z) = Vloc(0, z)/Vloc(0, 0) describes the z-dependence of the bond-charge con-
tribution near the edges. fe(z) can be extracted from the net local potential of AGNR,
Vloc(xb, 0, z), obtained by DFT with x = xb and y = 0. The result is shown in Figure 13, and
it can be well fitted by the sum of two Gaussian functions. The normalized z-dependence
of the local potential is given by the following:

fe(z) = Vloc(xb, 0, z)/Vloc(xb, 0, 0) = Ce
1e−αe1z2

+ Ce
2e−αe2z2

(50)

where Ce
2 = 1−Ce

1 due to the normalization requirement similar to Equation (28). We obtain
Ce

1 = 0.979, αe1 = 1.0926, and αe2 = 0.1026. Thus, the correction to local pseudopotential
due to the bond-charge redistribution near the edges can be approximately given by
the following:

∆Ve(ρ, z) ≈ ∆Ve(ρ, 0) fe(z) (51)

where ∆Ve(ρ, 0) is given in Equation (48) and fe(z) in Equation (50).
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Figure 13. The net local potential of AGNR, Vloc(xb, 0, z), as a function of z obtained by DFT (dashed
black curve) and the best-fit result to Vloc(xb, 0, z) (blue curve). Here, W = 3.25a is the width of the
domain along the z-axis used to define the B-spline basis.

Finally, we add the edge-induced correction in the local pseudopotential, ∆Ve(ρ, z), to
the Hamiltonian of the AGNR in our semi-empirical pseudopotential model. The matrix ele-
ments of ∆Ve(ρ, z) within the contracted basis functions derived from the selected graphene
eigenstates at special reciprocal lattice vectors for AGNR (gj) are given by the following:〈

ϕν,k+gj

∣∣∣∆Ve

∣∣∣ϕν′ ,k+gj′

〉
= ∑iG,i′G’ Z

ν,k+gj
iG Z

ν′ ,k+gj
i′G ∑m=1,2 Ce

m I
(
αem ; i, , i′

)∼
ve

(
∆gjj′ + ∆G

)
(52)

where I(α; i, , i′) is defined in Equation (34), ∆gjj′ + ∆G = gj′ − gj + G′ −G, and

∼
ve(q) =

1
ASC

∫
dreiq·ρ∆Ve(ρ, 0) + c.c. (53)

Here, ∆Ve(ρ, 0) is the edge-induced correction in pseudopotential for the right edge,
as given in Equation (48), and c.c. denotes the term contributed from the left edge, which is
the complex conjugate of the previous term due to the inversion symmetry in the 2D plane
of the AGNR. With the use of the analytic fitting functions introduced above,

∼
ve(q) can be

written as follows:

∼
ve(q) = 2

ASC
{Sa I0(αa, q)cos(qxxa)cos(qxya)

+[2Sb I0(αa, q)cos(qxyb) + Sc I0(αa, q) + 2Sd I0(αb, q)cos(qxyd)]cos(qxxb)}
(54)

with I0(α, q) = π
α e−q2/4α. Due to the x-mirror symmetry, there are four corresponding bond

charges at the left edge.
After adding the correction term ∆Ve(ρ, z), the calculated band structure for the AGNR

is shown in Figure 9d. To improve the convergence for the edge-dimer-related states, we
included 90 graphene bands in our basis for the calculation of even states, while only
10 graphene bands are needed to achieve the desired convergence for odd states. We
found that by adding more graphene bands to the calculation, the results remain nearly the
same. Comparing with Figure 9c, where we did not include the edge-induced correction in
pseudopotential, ∆Ve(ρ, z), we found that the main effect of ∆Ve(ρ, z) is to give a significant
improvement of the miniband structures for the π-bonded states (in red or blue) of the
AGNR, which agree very well with the DFT results as shown in Figure 9c, and the band gap
obtained by SEP (~0.7 eV) also matches the DFT result well. The other important feature
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is the lowering of the σ-bonding states of edge dimers at the zone center from −4.3 eV in
Figure 9b to −6.3 eV in Figure 9d, while the σ-antibonding states of edge dimers are also
lowered by about 2 eV, and they appear in Figure 9d at −2.3 eV at the Γ point. The energy
spacing between these edge-dimer bonding and anti-bonding states is about 4 eV at k = 0
(the zone center), and it reduces to about 3.3 eV at k = π/L (the zone boundary). This
feature also agrees reasonably well with the DFT result shown in Figure 9b. The energy
position of these edge-dimer bonding states (near −6.75 eV at the zone boundary) is close
to the DFT result (−6.8 eV), while the edge-dimer antibonding states sit around −3.46 eV,
which is higher than the corresponding DFT results by about 0.3 eV. This discrepancy
is likely due to other corrections in the pseudopotential that are not yet included by the
current SEP. On the other hand, the band structure of other even states (in green) not
related to the edge-dimer states are in very good agreement with the DFT results. Since the
edge-dimer antibonding states have a minimum at the zone boundary, and their energies
are higher than the conduction band minimum at the zone center, they may not play a
significant role in certain device applications. In case they are needed, a “scissor operation”
can be applied to shift these minibands rigidly to match the DFT results, and phenomena
such as the Gunn effect and negative differential resistance [47,48] can be simulated with
this simple approach, and it remains a reasonable approximation to use the wavefunctions
obtained by SEP with the current set of basis to calculate the carrier-scattering process
in the nano Gunn-diode application by using AGNRs. Since these edge-dimer states are
very sensitive to the chemical modification of the AGNR edges, our model can be used
to simulate the effect of edge modification on the I-V characteristics by imposing a model
potential on the edge atoms.

3.4. Comparison with Experiments

Many experimental studies on graphene and AGNR-related devices have been re-
ported in the last decade [49–61], which validate and complement the theoretical pre-
dictions, providing critical empirical evidence. Techniques such as scanning tunneling
microscopy (STM) [51–57], electrical transport measurements [58–60], and angle-resolved
photo emission spectroscopy (ARPES) [61] are commonly used in AGNR research. Ex-
perimental measurements verify the existence of energy bandgaps, electronic states, and
other electronic and transport phenomena predicted by theory. The band gap of AGNR is
determined by the energy difference between the conduction band and the highest valence
band at the Γ point. We assume that the edge relaxation and the edge-induced correction
in pseudopotential remain unchanged for AGNRs with N = 3 ∼ 12. The corresponding
numbers of dimer lines in these AGNRs are Nd = 2N + 1 = 7 ∼ 25. The calculated band
energies for the highest occupied molecular orbital (HOMO) and lowest unoccupied molec-
ular orbital (LUMO) for AGNRs as functions of Nd are shown in Figure 14. Here, we only
consider the cases with odd Nd so that the x-mirror symmetry holds. The computation time
is less than 10 s for each case shown.

According to simple models that impose rigid boundary conditions on the edges of
AGNRs, the band gap becomes zero when Nd = 3m+ 2, where m is a positive integer [20,62].
Our calculations show that the band gaps indeed shrink to relatively small values at
Nd = 11, 17, 23. However, at Nd = 11 and 17, the band gap is still appreciable (~0.14 eV
and 0.13 eV). This is because the boundary conditions become not so rigid in the realistic
situation. Our calculated value of ~0.14 eV is consistent with the small band gaps (~0.18 eV)
observed in AGNRs of similar dimensions [51]. The band gap obtained by our calculation
for the Nd = 7 case is 1.43 eV, which is close to the result of 1.47 eV obtained by a previous
DFT calculation [63] and also consistent with the experimental result of ~1.4 eV based
on Fourier-transformed scanning tunneling spectroscopy [52]. However, our result is
~0.9 eV, lower than that obtained by the dI/dV measurements for the 7-AGNR, which
shows a band gap ~2.3 eV [52]. Since our calculation does not include the many-body
effect for quasiparticle excitation (nor does the DFT calculation without GW correction),
our result is expected to be significantly lower than the DFT-GW calculation [54], which
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predicts a band gap of ~3.94 eV when the many-body effect is included via the GW
approximation [7]. However, most dI/dV measurements were taken for AGNR samples
placed on Au substrate [51–57], and there is a strong screening effect on the many-body
effect, which explains the large difference in band gap predicted by DFT-GW calculation
and experimental results [63].
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For the case of 9-AGNR, the band gap obtained by the current SEPM is 0.68 eV,
which is 0.7 eV lower than the 9-AGNR band gap measured by dI/dV measurements
(~1.4 eV) [54] due to the many-body effect. For the 13-AGNR, our calculation predicts a
band gap of 0.9 eV, and the LUMO level is ~0.8 eV lower than the 7-AGNR (See Figure 14).
This energy difference in LUMO levels between 7- and 13-AGNRs is close to the result
(~0.7 eV) obtained by the dI/dV measurements on a 7–13 AGNR heterojunction [22]. Since
we adopted a B-spline basis along the z-axis, our calculated band energies are absolute
values with respect to the vacuum level. Therefore, it is meaningful to make such a
comparison. For the case of 15-AGNR, the band gap obtained by the current SEPM is
0.49 eV, which is ~0.5 eV lower than the dI/dV measurements of 1.03 eV [56]. For the
case of 21-AGNR, the SEPM band gap is 0.32 eV, which is ~0.4 eV lower than the value
of 0.7 eV obtained by dI/dV measurements [57]. Therefore, in general, the band gaps for
AGNRs predicted by the current SEPM are fairly close to those obtained by other DFT
calculations (without including the GW correction), and the values are consistently lower
than the dI/dV measurements for AGNRs on Au substrate by an amount that varies from
0.4 eV at Nd = 21 to 0.9 eV at Nd = 7. Including the GW correction tends to obtain much
larger band gaps in comparison to the experimental results [52], which can be attributed to
the screening effect from the metal substrate on the GW correction. Thus, it is necessary to
carry out DFT-GW calculations for AGNRs on Au substrate, as reported in [63], in order to
determine the amount of band-gap correction due to the many-body effect.

4. Conclusions

We developed a semi-empirical pseudopotential (SEP) method that is easy to imple-
ment and capable of obtaining accurate band structures for graphene and armchair-edged
graphene nanoribbons. For the π-bonded states (with odd symmetry with respect to the
z-axis mirror), our SEP method can nearly reproduce all salient features of the DFT results
with good accuracy. The time needed to compute the whole band structure associated
with π-bonded states of graphene is only about a few seconds on a personal computer
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(PC), and it takes around 100 s to compute the whole band structure for π-bonded states of
an AGNR with supercell size of 16a×

√
3a. Thus, it will be a highly efficient method for

modeling AGNR-related devices when the π-bonded states play the primary role. For the
modeling of AGNR devices that involve the indirect valley minimum at the zone boundary,
the edge-dimer antibonding states (which possess even symmetry with respect to the z-axis
mirror) will be needed. For such a case, the current method becomes less efficient. It will
take about one hour on a PC to obtain the nearly correct energy and dispersion of the
localized σ-bonding and σ-antibonding states of the edge dimmers of the AGNR, while the
corresponding DFT calculation will take more than one day.

The SEP method with the same edge-induced correction potential given in Equa-
tion (51) is also applicable for AGNRs of sizes different from the example used here since
the dimer formation on AGNR edges should not be significantly affected by the width of
the interior region. Thus, the current model is suitable for modeling any size of AGNR (as
long as the width is at least 3a) for device applications.

The current approach can still be improved by adding localized basis functions at
the edges to make the convergence of σ-bonding and antibonding states at AGNR edges
much faster. Furthermore, an SEP for the other popular graphene nanoribbons with zigzag
edges will also be useful. The current approach can also be extended to develop similar
SEPs for transition-metal dichalcogenides (TMDs) and related moiré superlattices. All
these improvements are worthy topics for future research. For application to TMDs, some
complications will occur due to the more complicated structure factors, which cannot be
made real. Therefore, finding semi-empirical potentials to fit both the real and imaginary

parts of the complex quasi-2D form factors,
∼
V loc(z, G), for two kinds of atoms will require

more tedious procedures, although it can still be done. Once it is done, the more interesting
application is to develop an SEPM for TMD moiré superlattices considering their high
scientific impact. Here, we have demonstrated the success of using graphene eigenstates
at different gj points enclosed in the graphene Brillouin zone (BZ) (see Figure 8b) as a
contracted basis set to calculate the AGNR band structures efficiently. The same idea can
be applied to deal with twisted bilayer TMDs with a large supercell. Since there are no
edge states to deal with in the moiré superlattices, we expect that only a small number
of TMD bands need to be included in the contracted basis set. By using this contracted
basis, the miniband structures of TMD moiré superlattices can be calculated very efficiently
with good accuracy (similar to the π-bonded states in AGNR). The wavefunctions of
AGNRs calculated by SEPM are very close to the DFT results. Therefore, they can be
used to calculate the electron–phonon scattering with good accuracy. Furthermore, since
all our AGNR wavefunctions (including edge states) are written as linear combinations
of graphene Bloch states, we can relate the electron–phonon scattering matrix elements
to those for graphene, and it will be convenient to model the transport properties in
AGNR-related optoelectronic devices. The software developed here will be valuable for
IC designs of 2D material-based nanoelectronics devices that will be of interest to the
semiconductor industry.

The close interplay between theoretical and experimental studies fosters a deeper
understanding of AGNRs. Moreover, experimental data provide feedback to refine and
improve theoretical methods. The collaboration between theorists and experimentalists
allows for the identification of new phenomena and the validation of theoretical models. To-
gether, theoretical and experimental studies offer a comprehensive perspective on AGNRs’
properties and pave the way for potential applications in nanoelectronics and beyond.
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Appendix A

Matrix Elements of Nonlocal Corrections in Overlap and Potential for Graphene

The nonlocal potential is given by V̂nl = ∑σlm,nn′ Enn′
lm

∣∣∣βnσ
lm

〉〈
βn′σ

lm

∣∣∣. The matrix ele-
ments for nonlocal potential read as follows:〈

K; Bi
∣∣V̂nl

∣∣K′; Bi′
〉
= ∑

σlm,nn′
Enn′

lm
〈
K; Bi

∣∣βn0
lm
〉〈

βn′0
lm

∣∣∣K′; Bi′
〉

ei(G′−G)·τσ

= 1
Ac

∑σlm ∑nn′ Enn′
lm Pin

lm(K)Pi′n′*
lm (K′)ei(G′−G)·τσ .

(A1)

Here, K = k + G, and K′ = k + G′. τσ = ±τ1 for σ = 1, 2. In terms of 3D plane
waves, indexed by Q = K + gzẑ (where gz denotes the reciprocal lattice vectors along the
z-axis for the supercell adopted), the projection of beta function in mixed basis (with respect
to the position of a C atom) is given by the following:

Pin
lm(K) = il

√
Ac

〈
K; Bi

∣∣∣βn0
lm

〉
=

1√
Lc

∑
gz

∼
Bi(gz)I

l

(Q)Ylm(Q̂) (A2)

where

Il(Q) = 4π
∫ RC

0 drrl+2 Al(r)jl(Qr) = 4π∑i Al(ri)
(

rl+2 jl+1(Qr)
)
|ri+
ri+∫ r1+

r1− drrl+2 jl(Qr)=
√

π
2

∫ r1+
r1− drrl+2−1/2 jl+1/2(Qr)=

(
rl+2 jl+1(Qr)

)
|ri+
ri+/Q

Here,
∼
Bi(gz) is the Fourier transform of Bi(z) as given in Equation (4). For crystal

structures with z-mirror symmetry, we obtain the following relationship (in non-orthogonal
B-spline basis):

P−in
lm (K) = Pin

lm(K)(−1)l+m (A3)

where the superscript −i labels the projection function into B-spline B−i(z), which is the
mirror image of Bi(z).

To calculate band structures, we can use either an iterative solver based on the conju-
gate gradient (CG) approach [46] or a direct solver to diagonalize the Hamiltonian matrix.
We can rewrite Equation (A1) as follows:

〈
K; Bi

∣∣Vnl
∣∣K′; Bi′

〉
=

1
Ac

∑σl,m≥0 ∑n,n′ Enn′
lm Re

[
Pin

lm(K)Pi′n′*
lm

(
K′
)]

dmei(G′−G)·τσ , (A4)

where d0 = 1, and dm = 2 for |m| > 0.
For the conjugate gradient (CG) iterative solver, we need to calculate the product of

the overlap
(
Ô
)

and non-local potential operator ( V̂nl
)

with the wavefunction (Ψ). Here,

Ô = 1 + ∑σlm,nn′ q
nn′
l

∣∣∣ βnσ
lm〉
〈

βn′σ
lm

∣∣∣ ≡ 1 + Ŝ (A5)

and
V̂nl = ∑σlm,nn′ Enn′

l

∣∣∣ βnσ
lm〉
〈

βn′σ
lm

∣∣∣. (A6)
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We define Qin
lm(K) =

∣∣Pin
lm(K)

∣∣ and obtain the following:

〈βnσ
lm|Ψ〉 = ∑G;i 〈β

nσ
lm|K; Bi〉〈K; Bi|Ψ〉 = ∑G;i Qin

lm(K)
(

Kx + iKy

K

)m
〈K; Bi|Ψ〉eiK·τσ . (A7)

〈
K; Bi

∣∣ŜΨ
〉
= ∑σlm Qin

lm

(
Kx − iKy

K

)m
e−iK·τσqnn′

lm 〈β
nσ
lm|Ψ〉. (A8)

Then,
〈
K; Bi

∣∣ÔΨ
〉
= 〈K; Bi|Ψ〉+

〈
K; Bi

∣∣ŜΨ
〉

is the updated vector for ÔΨ, while〈
K; Bi

∣∣V̂nlΨ
〉
= ∑σlm Qin

lm(K)
(

Kx−iKy
K

)m
e−iK·τσEnn′

lm
〈

βnσ
lm

∣∣Ψ〉 is the updated vector for

V̂nlΨ. For calculating the band structure, we need to evaluate the nonlocal correction to the
overlap and pseudopotential matrix elements. The correction to the overlap matrix can be
written as follows:

〈
K; Bi

∣∣Ŝ ∣∣K′; Bi′
〉
= ∑n,n′ ,l,|m| q

nn′
l Qin

lm(K)Q
i′n′
lm
(
K′
)(KxK′x + KyK′y

KK′

)|m|
dmS1(∆G) (A9)

where S1( ∆G) is the structure factor given in Equation (36). Similarly for the non-local
pseudopotential, we obtain the following:

〈
K; Bi

∣∣V̂nl
∣∣K′; Bi′

〉
= ∑n,n′ ,l,|m| E

nn′
l Qin

lm(K)Q
i′n′
lm
(
K′
)(KxK′x + KyK′y

KK′

)|m|
dmS1(∆G). (A10)

Appendix B

Matrix Elements for the Hamiltonian of Armchair Graphene Nanoribbon

The matrix elements for the kinetic-energy term of armchair graphene nanoribbon
(AGNR) in (46) of the main text are given by the following:〈

ϕν,k+gj

∣∣∣−∇2
∣∣∣ϕν′ ,k+gj′

〉
= ∑i,i′ ,G Z

ν,k+gj
iG Z

ν′ ,k+gj
i′G Tii′

(
k + gj + G

)
δjj′ (A11)

with Tii′ given by Equation (10).
The matrix elements for the local potential energy term (V′0) are as follows:〈

ϕν,k+gj

∣∣∣V′0∣∣∣ϕν′ ,k+gj′

〉
= ∑iG,i′G′ Z

ν,k+gj
iG Z

ν′ ,k+gj
i′G ∑3

s=1 Cs I
(
αs; i, , i′

)
vs

(
∆gjj′ + ∆G

)
(A12)

where I(αs; i, , i′) is defined in Equation (34), and ∆gjj′ + ∆G = gj′ − gj + G′ −G.

vs(q) =
1

ASC
∑σ∈ANR

∫
dreiq·re−αs(r−τσ)

2
= S′NR(q)

π

αs
e−q2/4αs . (A13)

S′NR(q) =
1

ASC
∑σ∈ANR

eiq·τσ (A14)

Here, ASC is the area of the whole AGNR supercell, and ANR denotes the area covered by
the AGNR only. S′NR(q) denotes the structure factor for the nanoribbon.

With the proper choice of the origin for the AGNR supercell, the inversion symmetry
holds, and S′NR(q) becomes real.〈

ϕν,k+gj

∣∣∣∆V′γ
∣∣∣ϕν′ ,k+gj′

〉
= ∑iG,i′G′ Z

ν,k+gj
iG Z

ν′ ,k+gj
i′G

∫
dzBi(z)Bi′(z) fγ(z)Kγ

(
∆gjj′ + ∆G

)
(A15)

where
Kγ(q) =

1
ASC

∑σ∈ANR

∫
dreiq·rDγ(ρ− τσ) = S′γ(q)

∼
Dγ(q) (A16)
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Here, γ = S, L, b represent the short-range (S), long-range (L) range, and bond-charge

(b) contributions to ∆V, and Dγ(ρ) is related to
∼
Dγ(q) by the Fourier transform.

S′γ(q) = S′NR(q) for γ = S or L, and the structure factor for the bond-charge contri-
bution ( γ = b) is as follows:

S′b(q) =
1

ASC
∑h∈ANR

eiq·τh (A17)

where τh denotes the center positions of hexagon cells inside the AGNR.
Similarly, the matrix elements of the nonlocal pseudopotential are as follows:〈

ϕν,k+gj

∣∣∣Û2

∣∣∣ϕν′ ,k+gj′

〉
= ∑iG,i′G′ Z

ν,k+gj
iG

〈
k + gj + G; Bi

∣∣∣V̂′nl

∣∣∣k + gj′ + G′; Bi′
〉

Z
ν′k+gj′

i′G′

(A18)

where Z
ν,k+gj
iG denotes the eigenvectors obtained by solving Equation (43) for the ν-th

band at wavevector k + gj. The kernel V̂′nl in the above has a separable form, as given
by Equation (A4), with K = k + gj + G and K′ = k + gj′ + G′ and the index σ running
through atoms in the nanoribbon region, ANR. Thus, the sum can be evaluated efficiently.
We obtain the following:

〈
ϕν,k+gj

∣∣∣Û2

∣∣∣ϕν′ ,k+gj′

〉
= 1

ASC
∑σ∈ANR

∑lm,nn′ Enn′
lm

∼
Z
νn

σlm

(
k + gj

)∼
Z
ν′n′*

σlm (k + gj′ )

= ∑σ∈Gr ∑lm,nn′ Enn′
lm

∼
Z
νn

σlm

(
k + gj

)∼
Z
ν′n′*

σlm (k + gj′ )
∼
SNR

(
gj′ − gj

) (A19)

where ∑σ∈Gr indicates a sum over two graphene atoms closest to the origin.

∼
Z
νn

σlm

(
k + gj

)
= ∑i,G Z

ν,k+gj
iG Pin

lm

(
k + gj + G

)
e−i(k+gj+G)·τσ (A20)

and Pin
lm

(
k + gj + G

)
is given in Equation (A2).

∼
SNR(q) = 1

ASC
∑s∈ANR

eiq·Rs , with the
lattice vectors Rs running through all graphene unit cells within the area ANR. Here,
Rs = 0 corresponds to the origin marked by a red cross in Figure 8a.

To find the eigenfunctions and eigenvalues of the AGNR, we express the eigenfunc-
tions of the AGNR by the following:

ΦGNR
k = ∑ν,j ZGNR

ν,j ϕν,k+gj
(A21)

Substituting Equation (A21) into the Kohn–Sham equation for the GNR gives
the following:

∑ν′ j′

〈
ϕn,k+gj

∣∣∣ĤGNR

∣∣∣ϕν′ ,k+gj′

〉
ZGNR

ν′ j′ = E(k)∑ν′ j′

〈
ϕν,k+gj

∣∣∣ÔGNR

∣∣∣ϕν′ ,k+gj′

〉
ZGNR

ν′ j′ , (A22)

where 〈
ϕν,k+gj

∣∣∣ÔGNR

∣∣∣ϕν′ ,k+gj′

〉
= δν,ν′δj,j′ +

〈
ϕν,k+gj

∣∣∣ŜGNR

∣∣∣ϕν′ ,k+gj′

〉
(A23)

with〈
ϕν,k+gj

∣∣∣ŜGNR

∣∣∣ϕν′ ,k+gj′

〉
=

1
ASC

∑σ∈ANR
∑

lm,nn′
qnn′

lm

∼
Z
νn

σlm

(
k + gj

)∼
Z
ν′n′*

σlm (k + gj′ ). (A24)
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