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Abstract: The oxygen reduction reaction is crucial in the cathode of fuel cells and metal–air batteries.
Consequently, designing robust and durable ORR catalysts is vital to developing metal–air batteries
and fuel cells. Metal–organic frameworks feature an adjustable structure, a periodic porosity, and
a large specific surface area, endowing their derivative materials with a unique structure. In this
study, F and N co-doped on the carbon support surface (Co/FN-C) via the pyrolysis of ZIF-67 as a
sacrificial template while using Co/FN-C as the non-noble metal catalysts. The Co/FN-C displays
excellent long-term durability and electrochemical catalytic performance in acidic solutions. These
performance improvements are achieved because the CQDs alleviate the structural collapse during
the pyrolysis of ZIF-67, which increases the active sites in the Co nanoparticles. Moreover, F- and
N-doping improves the catalytic activity of the carbon support by providing additional electrons
and active sites. Furthermore, F anions are redox-stable ligands that exhibit long-term operational
stability. Therefore, the well-dispersed Co NPs on the surface of the Co/FN-C are promising as the
non-noble metal catalysts for ORR.

Keywords: carbon quantum dots; heteroatom co-doping; oxygen reduction reaction; metal–organic
framework; oxygen reduction reaction catalytic activity

1. Introduction

Owing to the limited reserves and environmental pollution worldwide, concerns
regarding fossil fuel depletion have increased. Therefore, highly efficient, renewable,
and clean energy sources have received increasing attention [1–3]. Among the various
sources of regenerative energy, fuel cells and metal–air batteries are the best prospective
chemical energy sources because of their low cost, sizeable energy-converting efficiency,
and large theoretical energy density [4,5]. The oxygen reduction reaction (ORR) is one
of the two half-reactions indispensable for energy transformation and storage. However,
the ORR presents some issues, such as slow electron transfer, low mass transfer efficiency,
and slow kinetics, which hinder the practical development of these devices. Therefore,
sufficient, stable, and efficient catalysts for the ORR are essential for the efficient operation
of the abovementioned devices [6,7]. Among the various catalysts, Pt-based catalysts
have attracted widespread attention for their high selectivity and large electrocatalytic
activity. High price and low stability hinder their application in energy storage devices [8,9].
Therefore, the non-noble metal catalyst has been extensively explored because of its low
cost and excellent stability [10–12]. Despite these advantages, non-noble metal catalysts
present critical issues, for example, low catalytic activity, i.e., lower than noble metal-based
catalysts. Therefore, the practical design and fabrication of non-noble metal catalysts are
crucial to enhancing the catalytic activity of ORRs.

Co-metal catalyst has been extensively studied among non-noble metal catalysts be-
cause of their benefits, such as abundant resources, low preparation cost, and bifunctional
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catalytic activity [13–17]. However, Co-metal catalysts present some limitations, such as low
selectivity and stability, which impede their advanced application [18,19]. Li et al. directly
grew Co3O4 with Fe-doped nanosheets on Ni foam to overcome these limitations. The syn-
ergistic action between Fe and Co atoms enabled an extremely low overpotential and high
oxygen-evolving reaction (OER) stability [20]. Huang et al. introduced Mo atoms into a
cobalt-based metal–organic framework (MOF) to construct a hierarchical microstructure of
CoOx-MoC/N-doped carbon, which showed excellent long-term stability and outstanding
OER catalytic activity [21]. Nevertheless, increasing stability and electrocatalytic activity by
optimizing the morphology of the catalyst requires further investigation. As self-sacrificing
templates, zeolitic imidazolate framework (ZIF), a type of MOF, has been applied to obtain
Co-based electrocatalysts with carbon supports via pyrolysis [22]. Furthermore, Co-based
electrocatalysts derived from ZIFs exhibit stable catalytic performance in acidic or alkaline
electrolytes [23,24]. Especially, Co-NC catalysts involving Co-Nx species manifest signifi-
cant ORR performances in acidic solutions due to the bonding of nitrogen atoms with cobalt
atoms in their porphyrin-like structure. However, due to each atom’s high specific surface
energy during pyrolysis, Co agglomerates significantly efficiently reduce the utilization
of the metal active site [25]. Simultaneously, the polyhedral shape of the ZIFs collapses,
which hinders the active site exposure and reduces electrocatalytic activity [26]. Therefore,
to maintain the polyhedral structure of the ZIF during pyrolysis, it should be developed
as an effective electrocatalyst for ORR. In this regard, well-dispersed electrocatalysts on
carbon support that maintains a polyhedral structure and possesses high electrocatalytic
activity and stability must be achieved.

Herein, we propose well-dispersed Co nanoparticles (NPs) on an F and N co-doping
carbon support (Co/FN-C) by mixing F and N co-doping carbon quantum dots (FNCQDs)
with ZIF-67 and performing pyrolysis for non-noble metal catalysts for ORR. Notably, the
carbon quantum dots (CQDs) comprise abundant functional groups on their surfaces, which
can protect the carbon structure and stabilize the metal NPs during pyrolysis. Therefore,
the Co NPs are well distributed on the carbon support surface. Furthermore, the FNCQDs
provide F and N atoms into the carbon support. The well-dispersed Co NPs increase
electrocatalytic active sites, and F- and N-doping in the carbon support enhances ORR’s
catalytic stability and activity.

2. Materials and Methods

FNCQDs were fabricated through a hydrothermal process. Specifically, urea (1.24 g,
99.5%, Sigma, St. Louis, MO, USA), sodium fluoride (0.9 g, 99.5%, Sigma), and citric acid
(2.73 g, 99%, Sigma) were dissolved entirely in deionized water. The solvent was put into a
hydrothermal synthesis autoclave lined with Teflon and heat-treated at 180 ◦C for 6 h. The
obtained solvent was centrifuged thrice (30 min, 10,000 rpm) and then dialyzed for 24 h
through a cut-off membrane (molecular weight of 6–8 kD). Finally, to fabricate FNCQDs,
the dialysate was dried at 50 ◦C. The same procedure fabricated N-doped CQDs (NCQDs)
without NaF to confirm the effect of F doping. To fabricate an F and N co-doped carbon
support (Co/FN-C), 2-methylimidazole (99%, Sigma), cobalt (II) nitrate hexahydrate (98%,
Sigma), and FNCQDs were stirred for 6 h in 23 mL of deionized water and obtained after
three rounds of centrifugation (5 min, 5000 rpm). The precipitate was dried overnight at
50 ◦C. In addition, NCQD/ZIF-67 was obtained by replacing the FNCQDs with NCQDs
using the same method. Finally, Co/C, Co/N-C, and Co/FN-C were prepared by heating
ZIF-67, NCQD/ZIF-67, and FNCQD/ZIF-67 at 750 ◦C in an Ar atmosphere for 2 h.

The structure, morphology, and elemental distribution of the fabricated sample were
investigated via transmission electron microscopy (TEM, Tecnai G2, FEI, Hillsboro, OR,
USA), energy dispersive spectroscopy (EDS, Tecnai G2, FEI, Hillsboro, OR, USA) mapping,
and field emission scanning electron microscopy (EVO10, Carl Zeiss, FESEM, Oberkochen,
Germany), and the surface functional groups, chemical bonding states, and crystal structure
of the sample was investigated via Raman spectroscopy (NRS-5100, JASCO, Tokyo, Japan),
X-ray photoelectron spectroscopy (XPS, ESCALAB 250, Thermo Fisher, Waltham, MA,
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USA), and X-ray diffraction (XRD, Rigaku D/Max-2500 diffractometer, Rigaku, Tokyo,
Japan), respectively. Specific surface area and pore structure determined of the sample
was investigated by Brunauer–Emmett–Teller (BET, BELSORP-mini II, BEL Japan INC,
Osaka, Japan).

Potentiostat/galvanostat (Ecochemie Autolab, PGST302N, Metrohm, Utrecht, The
Netherlands) for measuring the electrochemical performance of catalysts. This potentio-
stat/galvanostat has a rotating disc electrode and an electrochemical workstation with a
speed controller. The three-electrode assembly comprised a working electrode, a reference
electrode, and a counter electrode. Homogeneous inks, which contained 10 mg of the fabri-
cated samples as a catalyst in Nafion® perfluorinated resin solution (57.2 µL), deionized
water (50 µL), and 2-propanol (900 µL), were prepared via dispersion through sonication
30 min and string 12 h. The ink (1.8 µL) was dispersed on the working electrode surface
(area: 0.0706 cm2) and dried (30 min, 50 ◦C) before the measurement was performed. Cyclic
voltammetry (CV) was performed in Ar and O2 saturated 0.1 M HClO4 electrolyte. Linear
sweep voltammetry (LSV) was measured at rotational speeds of 100, 400, 900, and 1600 and
a scanning rate of 5 mV/s in O2-saturated 0.1 M HClO4 electrolyte. Finally, the accelerated
durability test (ADT) was tested at a scanning rate of 100 mV/s for 5000 cycles to confirm
the long-term electrocatalytic stability. LSV results were re-tested again at 1600 rpm after
the ADT.

3. Result and Discussion

Figure 1 illustrates a diagram graphic of the fabricating method for the (a) FNCQDs,
(b) FNCQD/ZIF-67, and (c) Co/FN-C. The FNCQDs were fabricated through a hydrother-
mal process. Urea provided the N source, sodium fluoride provided the F source, and
citric acid provided the C source. FNCQD/ZIF-67 was fabricated by stirring FNCQDs
and ZIF-67. Finally, F- and N-doped carbon-supported cobalt NPs were obtained via the
pyrolysis of FNCQD/ZIF-67. During the pyrolysis, carbon support was formed from ZIF-67
as a sacrificial template, and Co NPs were forming on the surface of carbon support owing
to the diffusion of Co atoms in ZIF-67. The CQDs effectively maintained the structure of
the sacrificial template of ZIF-67; therefore, the Co NPs were well dispersed on the carbon
support surface, thus increasing electrocatalytic active sites. Furthermore, F and N were
doped into the carbon support via F and N atoms from the FNCQDs during pyrolysis,
which enhanced the catalytic stability and ORR activity of the Co/FN-C.

Figures S1 and S2 show the TEM and EDS mapping of NCQD and FNCQD. The NCQD
and FNCQD particles were uniform in size with a diameter of ~5.0 nm (Figures S1a and S2a)
and the lattice fringe space is about 0.32 nm, representing the (002) plane of graphite
(Figures S1b and S2b). In Figure S1c, the EDS mapping indicated that C and N atoms were
present in the NCQDs. Meanwhile, as shown in Figure S2c, the EDS results indicated that
C, F, and N existed in the FNCQDs. This indicates that we have successfully prepared F-
and N-doped CQDS.

To confirm the elemental distribution, the TEM-EDS mapping of the (a) ZIF-67,
(b) NCQD/ZIF-67, and (c) FNCQD/ZIF-67 was performed (Figure S3). The TEM images of
the three samples exhibited a polygonal structure with a size ranging from ~365 to ~395 nm.
The EDS mapping indicated that C, Co, and N existed in the ZIF-67, NCQD/ZIF-67, and
FNCQD/ZIF-67. Furthermore, only FNCQD/ZIF-67 showed F atoms. This shows that F
atoms can be doped at Co/FN-C after pyrolysis of FNCQD/ZIF-67.

As shown in Figure S4, the XRD pattern was analyzed to check the crystal structures
of ZIF-67, NCQD/ZIF-67, and FNCQD/ZIF-67. All samples exhibited sharp diffraction
peaks at 7.4◦, 10.4◦, 12.6◦, 14.7◦, 16.5◦, 18.1◦, 22.2◦, 24.5◦, 25.6◦, 26.7◦, 29.6◦, 31.5◦, and
32.4◦ which was attributed to the (011), (002), (112), (022), (013), (222), (114), (233), (002),
(134), (044), (244), and (235) planes of simulate ZIF-67 [27]. The intensity of the diffraction
peak at 12.6◦ for NCQD/ZIF-67 and FNCQD/ZIF-67 nanocomposites is lower than that
of pure ZIF-67, suggesting that the crystal structure of ZIF-67 changes with the formation
of the composites. Figure S5 shows the N2 adsorption–desorption isotherms of ZIF-67,
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NCQD/ZIF-67, and FNCQD/ZIF-67. Three samples all displayed type-I isotherms. The
BET surface areas of ZIF-67, NCQD/ZIF-67, and FNCQD/ZIF-67 were 1152.2, 1166.6,
and 1158.5 m2 g−1, respectively (Figure S5a). The results showed that the surface areas
of ZIF-67, NCQD/ZIF-67, and FNCQD/ZIF-67 were almost the same and had a higher
specific surface area [28].
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Figure 1. Schematic image of fabricating process about (a) FNCQDs, (b) FNCQD/ZIF-67, and
(c) Co/FN-C.

FESEM was conducted on all samples to examine their morphology (see Figure 2).
Figure 3a shows that Co/C sizes of ~295 to ~353 nm exhibited a collapsed polyhedral
structure. During the pyrolysis of ZIF-67, shrinkage occurred because of the dehydration
of the organic components under anaerobic conditions [29,30]. Furthermore, the Co NPs
agglomerated because of the significant surface energy of the single atoms, significantly
reducing the active sites’ efficiency utilization [31]. However, Co/N-C and Co/FN-C
(Figure 2a,b, respectively), exhibited polyhedral structures and bumpy surfaces with sizes
of ~350 to ~410 nm. The unchanged polyhedral structure of Co/FN-C and Co/N-C was
due to the CQDs, which served as protective layers. The plentiful oxidized functional
groups of the CQDs strongly coordinate with the Co nodes in ZIF-67. Subsequently, ZIF-67
is pyrolyzed, and the CQDs interact strongly with ZIF-67 alleviating the structure collapse
while preventing the severe aggregation of adjacent Co, thus affording well-dispersed Co
NPs on the carbon support surface [32–34]. This confirmed that carbon support derived
from ZIF-67 as a sacrificial template was fabricated successfully and enabled a polyhedral
structure to be maintained via the CQDs.

To characterize the nanostructures, a TEM analysis of the Co/FN-C was performed.
As shown in Figure 3a, relatively dark spots of Co NPs in the size range of ~15 to ~52 nm
were observed with the relatively bright region of the carbon support, which exhibited a
polygonal structure with sizes from ~378 to ~398 nm. Furthermore, Figure 3b shows that
the bright region featuring the lattice fringe space is about 0.34 nm, representing the (002)
plane of graphite, whereas the dark spot featuring the lattice fringe space is about 0.17 nm,
representing the (200) plane of Co. To confirm the elemental distribution, a TEM-EDS
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mapping of the Co/FN-C was performed (Figure 3c). The EDS results indicated that C, N,
F, and Co were uniform dispersion along the NPs and carbon support. These results prove
that the Co NPs were well dispersed in the Co/FN-C, thus enhancing the electrocatalytic
activity by increasing the active sites in the Co NPs.
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Figure 3. (a) Low- and (b) high-resolution TEM images, and (c) EDS mapping of C, N, F, and Co
of Co/FN-C.

Figure 4a shows that the XRD pattern was analyzed to investigate the crystal struc-
tures of three samples. All samples showed a broad peak of diffraction at ~24.6◦, which
corresponds to the (002) plane of graphite (JCPDS 65-6212), and sharp peaks of diffraction
at ~75.9◦, ~51.3◦, and ~44.2◦, which corresponds to the (220), (200), and (111) planes of
Co (JCPDS 15-0806) [35,36]. Peaks other than those of amorphous graphite and metallic
Co were not observed, indicating that all the Co2+ in ZIF-67 was completely reduced to
metallic Co during pyrolysis. The graphitization degrees of three samples were determined
using Raman spectroscopy (Figure 4b). Three samples exhibited two characteristic Raman
absorption peaks within the compass of 1000–1800 cm−1 (1350 cm−1: D-band absorption
peak, 1580 cm−1: G-band absorption peak). Theoretically, the G bands belong to the or-
der of the degree of the sp2 carbon graphitic structures, and the D bands represent the
disorder and defects of the sp3 hybridized carbon. The material’s graphitizing degree is
compared through ID/IG [37,38]. Compared with Co/C (1.010), Co/FN-C and Co/N-C
exhibited significantly large ID/IG of 1.032 and 1.028, suggesting that the F and N atoms
doping induced defects in the carbon lattice and exposed the edge plane. ORR activity was
generated by activating the π electrons, which was achieved by disrupting the integrity of
its π-conjugated structure. Therefore, F and N doping in sp2 carbons resulted in defects
by breaking the integrity of its π-conjugated structure, thus enhancing the activity of the
ORR [39–42].
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Figure 5 shows that the chemical bonding states of Co/C, Co/N-C, and Co/FN-C
were analyzed using XPS. The C 1s XPS profiles of all samples exhibited three charac-
teristic peaks, which corresponded to O=C-O/C-F groups (~288.95 eV), C-N groups
(~286.47 eV), and C-C groups (~284.71 eV). Co/FN-C and Co/N-C showed larger C-
N peaks compared to Co/C because of the additional N doping owing to the FNC-
QDs [43]. The N 1s XPS profiles showed the peaks of graphitic N (~400.80 eV), pyrrolic
N (~399.99 eV), Co-N (~399.09 eV), and pyridinic N (~397.35 eV) (Figure 5b). Via the
aromatic system, pyridinic N supplies two p-electrons, whereas pyrrolic-N provides one
p-electron, thus resulting in increased catalytic activity [44,45]. Two core-level signal
peaks at ~781.84 eV and ~797.50 eV were visible in the XPS spectrum of Co 2p (Figure 5d),
corresponded to Co 2p3/2 and Co 2p1/2, and minor peaks of the Co2+ satellite (~802.67,
~786.86 eV), and Co-N (~779.31 eV). Furthermore, only Co/FN-C showed two peaks
at ~684.6 and ~687.6eV in the F 1s XPS spectra, which represent the semi-ionic and
covalent bonds of C-F, owing to the F atoms in the FNCQDs (Figure 5c). The doped F
atoms can enhance the number of edge defects of the carbon lattice, thus providing more
electrocatalytic active sites [46]. Furthermore, F anions provide redox-stable ligands,
which can effectively improve catalytic stability [47,48].
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Figure 6a–c shows the electrochemical activities of the Co/C, Co/N-C, and Co/FN-C
electrodes measured via CV with different scanning rates from 10 to 100 m V s−1. All
electrodes showed quasi-rectangular CV curves, which is characteristic of the charge and
discharge process of electrostatic double-layer capacitors [49]. Moreover, we evaluated
the electrochemical active surface area (ECSA), which is an indicator for comparing active
sites of catalysts involved in the electrochemical reaction and is generally considered an
important parameter for high ORR performance. In a without Faradaic potential window
(0.1–0.3 V) [50–55], the Cdl (electrical double layer capacitance) and ECSA were tested and
calculated by CV at different scanning rates as follows [56,57]:

Cdl = j/r (1)

ECSA = Cdl /Cs, (2)

where r corresponds to the scan rate, Cs corresponds to the specific capacitance
(Cs = 0.035 mF/cm2), and j corresponds to the current density. Figure 6d shows that
the Cdl values of the Co/C, Co/N-C, and Co/FN-C electrodes were 30.9, 45.4, and
62.9 mF cm−2, respectively [45]. Meanwhile, their ECSA values were 882.8, 1297.1, and
1797.1 cm 2, respectively (Figure 6e). The largest ECSA shown by the Co/FN-C electrode
indicates that improved electrocatalytic active sites by the well-dispersed Co NPs on the
carbon support increased the defects by N- and F-doping in carbon and effectively extended
the electrochemically available active sites, unlike the cases with the other electrodes [58].
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As shown in Figure 7a, to understand the electrochemical activity more comprehen-
sively, LSV measurement was employed. The Co/FN-C electrode showed excellent ORR ac-
tivities, including a limited current density of −4.678 mA/cm2, a half-wave potential (E1/2)
of 0.702 V, and an onset potential (Eonset) of 0.917 V, compared with the Co/C and Co/N-C
electrodes (Co/C: a limited current density of −2.923 mA/cm2, E1/2: 0.702 V, Eonset: 0.840 V;
NCQD/Co/C: a limited current density of −4.678 mA/cm2, E1/2: 0.745 V, Eonset: 0.888 V).
Compared with other published papers, Co/FN-C sample outperformed the Eonset and
E1/2 (Table 1) [50,59–62]. Furthermore, there are two main electronic pathways for the
reduction of O2. In the direct 4-electron reaction, the single oxygen bond directly cleavage
to generate H2O with high reaction efficiency, whereas the 2-electron reduction of the H2O2
intermediate is not only a low-efficiency ORR but also increases the ORR overpotential
and corrodes the carbon catalyst support. Therefore, the reduction of H2O2 through the
4-electron pathway is conducive to the ORR [63]. The amount of oxygen reduction electron
(n) was calculated through the Koutecky–Levich Formula (K–L) (3) and (4) [37].

1
.
J
=

1
jd

+
1
jk

=
1

Bω
1
2
+

1
jk

(3)

B = 0.62nFC0(D0)
2
3 V− 1

6 (4)

where j is the measured current, jd corresponds to the limiting current, jk corresponds to the
kinetic current, measured current, and limiting current, B corresponds to the proportionality
coefficient, which is calculated using Equation (4); ω corresponds to the rate of angular
rotation of the electrode (ω = 2 n*π/60, where n* corresponds to the number of rotations of
the electrode per minute); n corresponds to the electrons transferred number when reducing
one oxygen; C0 corresponds to the solubility of oxygen in the solution; v corresponds to
the kinetic viscosity coefficient; Faraday constant is 96,485 C/mol; and D0 corresponds to
the diffusion coefficient. To identify the ORR performance more clearly, the LSV result of
the Co/FN-C electrode was measured at 100–1600 rpm (Figure 8a). According to the above
formula, the electron transfer number in the 0.2–0.4 V (vs. RHE) range was 3.98 (about 4)
(Figure 8b). Therefore, the Co/FN-C electrode induced an excellent ORR process in an
acidic electrolyte owing to the 4-electron pathway, which was ascribed to the increased
electrochemically active sites by the uniform dispersed of Co NPs on the carbon support
and increased ORR activity by F and N doping in carbon [64,65]. Furthermore, to confirm
the electrocatalytic stability, we compared the LSV curves of the three electrodes before
and after CV for 5000 cycles (Figure 7b–d). After 5000 cycles, the Co/FN-C electrode
showed the lowest potential degradation at ∆E1/2 = 2.1 mV compared with the Co/C
(41.7 mV) and Co/N-C (5.4 mV) electrodes. The catalytic stability of the Co/FN-C electrode
is excellent because F anions, as redox-stable ligands, are electron-withdrawing groups that
effectively reduce the electron cloud density of carbon materials, thereby increasing their
resistance to oxidative degradation. Furthermore, F anions can reduce the electron densities
of metal nuclei ions and then increase the polarity of metal compounds, thereby improving
the catalytic stability of the ORR. The following factors are responsible for this excellent
electrochemical performance and stability: (1) the well-dispersed Co NPs, which increased
the catalytic active sites; (2) F and N doping in carbon, which enhanced the catalytic activity;
and (3) the redox-stable ligand by F anions, which reinforced the catalytic stability. To test
the stability of the electrode in 0.1 M HClO4, we added Co/C, Co/N-C, and Co/FN-C
to 0.1 M HClO4 overnight and examined their crystal structure by XRD. Figure S6 shows
the XRD patterns of before and after HClO4 treatment of Co/C, Co/N-C, and Co/FN-C
samples. All samples showed a broad peak of diffraction at ~24.6◦, which corresponds to
the (002) plane of graphite (JCPDS 65-6212), and sharp peaks of diffraction at ~75.9◦, ~51.3◦,
and ~44.2◦, which corresponds to the (220), (200), and (111) planes of Co (JCPDS 15-0806),
which means that the crystal structure of all samples was maintained after HClO4 treatment.
Meanwhile, we add SEM-EDS mapping images and chemical composition before and after
the electrochemical test of the Co/FN-C electrode, as shown in Figure S7 and Table S1.
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After the HClO4 treatment, the elements were well dispersed, and the atomic percentage of
Co is maintained. Therefore, these results also indicate that the Co/FN-C sample can be
electrochemically tested in HClO4.
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Table 1. Compared to other published papers the value of Eonset and E1/2.

Material Eonset (V) E1/2 (V)

Co-NSC 200 0.81 0.74
Fe-N-C 0.85 0.74

CAPANI-Fe-NaC Not mentioned 0.73
PNGr 0.87 0.64

FeCo/C680 0.9 0.76
Co/FN-C 0.917 0.753
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4. Conclusions

In this study, we fabricated well-dispersed Co NPs on F and N carbon supports using
ZIF-67 as a sacrificial template for an ORR catalyst. During the pyrolysis of ZIF-67 to
obtain Co NPs with carbon support, the mixed FNCQDs alleviated the structural collapse
of ZIF-67 and doped the carbon support with F and N atoms. The Co/FN-C electrode
showed excellent ORR activities, including an ECSA of 3028.0 cm−2, a limited current
density of −4.678 mA/cm2, E1/2 of 0.702 V, and an Eonset of 0.917 V. Simultaneously,
the Co/FN-C electrode induced an excellent ORR in an acidic electrolyte because of the
4-electron pathway. Furthermore, after 5000 cycles, the Co/FN-C exhibited excellent long-
term stability with an ∆E1/2 of only 2.1 mV. These performance improvements are attributed
to: First, the well-dispersed Co NPs increase the active sites, thus alleviating the structural
collapse of the CQDs during pyrolysis and improving the active sites number. Second,
the F and N co-doping in the carbon support enhanced catalytic activity, which provided
additional electrons and increased the number of edge defects. Finally, F anions, which
served as redox-stable ligands, reinforced the catalytic stability. In conclusion, dispersing
Co NPs uniformly in Co/FN-C is a prospective strategy for non-precious metal catalysts to
be used in the ORR.
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//www.mdpi.com/article/10.3390/nano13142093/s1, Figure S1: (a) Low- and (b) high-resolution
TEM images, (c), EDS mapping results of NCQD; Figure S2: (a) Low- and (b) high-resolution TEM
images, (c), EDS mapping results of FNCQD; Figure S3: TEM-EDS mapping results of (a) ZIF-67,
(b) NCQD/ZIF-67, and (c) FNCQD/ZIF-67; Figure S4: XRD patterns of ZIF-67, NCQD/ZIF-67 and
FNCQD/ZIF-67; Figure S5: (a) BET gas adsorption plots, (b) change on BET of ZIF-67, NCQD/ZIF-67
and FNCQD/ZIF-67; Figure S6: X-ray patterns of (a) before and (b) after HClO4 treatment of Co/C,
Co/N-C, and Co/FN-C; Figure S7: SEM-EDS mapping of C, N, F, and Co of (a) before and (b) after
electrochemical test of Co/FN-C electrode; Table S1: The chemical composition (atomic percent) of
before and after the electrochemical test of Co/FN-C electrode.
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