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Abstract: Neuromorphic computing, reconfigurable optical metamaterials that are operational over a
wide spectral range, holographic and nonvolatile displays of extremely high resolution, integrated
smart photonics, and many other applications need next-generation phase-change materials (PCMs)
with better energy efficiency and wider temperature and spectral ranges to increase reliability
compared to current flagship PCMs, such as Ge2Sb2Te5 or doped Sb2Te. Gallium tellurides are
favorable compounds to achieve the necessary requirements because of their higher melting and
crystallization temperatures, combined with low switching power and fast switching rate. Ga2Te3 and
non-stoichiometric alloys appear to be atypical PCMs; they are characterized by regular tetrahedral
structures and the absence of metavalent bonding. The sp3 gallium hybridization in cubic and
amorphous Ga2Te3 is also different from conventional p-bonding in flagship PCMs, raising questions
about its phase-change mechanism. Furthermore, gallium tellurides exhibit a number of unexpected
and highly unusual phenomena, such as nanotectonic compression and viscosity anomalies just above
their melting points. Using high-energy X-ray diffraction, supported by first-principles simulations,
we will elucidate the atomic structure of amorphous Ga2Te5 PLD films, compare it with the crystal
structure of tetragonal gallium pentatelluride, and investigate the electrical, optical, and thermal
properties of these two materials to assess their potential for memory applications, among others.

Keywords: phase-change materials; synchrotron diffraction; first-principles molecular dynamics

1. Introduction

Brain-inspired computing [1–3], light-controlled (i.e., over a wide spectral range, from
visible to THz) or electrically controlled reconfigurable optical metamaterials [4–6], high
resolution holographic and nonvolatile displays [7,8], integrated photonic circuits [9,10],
and many other applications need next-generation phase-change materials (PCMs) with
better energy efficiency and wider temperature and spectral ranges to increase reliability
compared to current flagship PCMs, such as Ge2Sb2Te5, doped Sb2Te, etc. Gallium tel-
lurides seem to be promising candidates to achieve the necessary requirements because
of their higher melting and crystallization temperatures, combined with low switching
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power and fast switching rate [11–13]. Ga2Te3 and non-stoichiometric compositions ap-
pear to be atypical PCMs; they are characterized by regular tetrahedral structures, the
absence of Peierls distortion in the crystalline phase, and metavalent bonding [14–16].
The sp3 gallium hybridization in cubic and amorphous Ga2Te3 [16,17] is also different
from conventional p-bonding in flagship PCMs, raising questions about its phase-change
mechanism. In addition, gallium tellurides exhibit a number of unexpected and highly
unusual phenomena, such as nanotectonic compression [15] and viscosity anomalies just
above their melting points [18,19]. Nanotectonic compression involves the simultaneous
co-crystallization of the stable ambient and metastable high pressure (HP) forms via heating
of glassy g-GaTe3 to above the glass transition temperature Tg. The appearance of metallic
HP-polymorphs seems to be beneficial for PCM performance because of the resulting
higher optical and electric contrast, accompanied by lower power consumption and the
possibility of multilevel writing [16]. The viscosity anomaly for several Ga-Te melts in
the vicinity of a sesquitelluride composition [18,19] appears to be more significant than
the observed “double kink” in liquid germanium tellurides and other PCM alloys [20–23],
allowing us to distinguish between two contrasting models: (1) fragile-to-strong transi-
tion [20–22] and (2) incipient liquid–liquid immiscibility [23]. Recent high-energy X-ray [24]
and neutron diffraction measurements have shown enhanced small-angle scattering below
the scattering vector Q . 0.4 Å−1; this is related to the dense metallic liquid droplets in the
semiconducting Ga2Te3 melt and correlates with non-monotonic viscosity behavior, which
can be quantitatively described by the Taylor model [25] for two-phase emulsions. The
incipient transient immiscibility within a semiconductor–metal transition in liquid telluride
PCMs is an interesting topic for further studies.

The main objectives of the current report are to unravel the atomic structure of amor-
phous Ga2Te5 pulsed laser deposition (PLD) film using high-energy X-ray diffraction,
supported by first-principles simulations, and to compare it with the crystal structure of
tetragonal gallium pentatelluride [26,27]. The PLD technique is often used for PCM growth,
as it provides a stoichiometric transfer from the target to the deposited film and achieves a
higher deposition rate [28,29]. In contrast to cubic gallium sesquitelluride Ga2Te3, which is
a congruently melting compound in the Ga-Te binary system [30–32], tetragonal Ga2Te5
is stable over a limited temperature range and exhibits peritectic decomposition before
melting. Consequently, the relationship between the amorphous material—obtained by the
near instantaneous freezing of the highly excited fragments, particles, liquid globules, etc.,
existing in the laser-induced plasma (plume)—and a metastable crystal is expected to be
complex, leaving room for various intermediate configurations and states. Deep insights
into the atomic structure and associated electronic, optical, thermal, and other properties
are a key for the rational design of next-generation PCMs and new functional materials for
use in photovoltaic, thermoelectric, DNA sensing, and energy storage applications [33–37].

2. Materials and Methods
2.1. Glass and Target Synthesis, Pulsed Laser Deposition

Two different synthesis strategies were applied in efforts to synthesize glassy g-Ga2Te5
alloys. First, a small sample (300 mg) of high-purity gallium (99.999%, Neyco) and tellurium
(99.999%, Cerac) was prepared in a thin-walled silica tube, which was then sealed under
vacuum (10−4 mbar) and placed in a rocking furnace. The maximum temperature was
1250 K. The synthesized and homogenized sample was rapidly quenched using a salty
ice/water mixture. The crystalline sample was synthesized using fast quenching. Second,
a two-step synthesis technique was applied for splat quenching. Crystalline Ga2Te5 was
prepared as the intermediate step via a conventional melt quenching technique. A tiny
piece of the synthesized material was placed into a silica capillary, heated to ≈1050 K,
and kept at this temperature for one hour, with subsequent cooling to 950 K. After a
supplementary equilibration step for 30 min, the sample was splat-quenched under an
argon atmosphere onto a fused silica plate cooled to ≈80 K. A mostly vitreous sample was
obtained via splat-quenching.



Nanomaterials 2023, 13, 2137 3 of 24

The gallium pentatelluride target, Ga2Te5, for pulsed laser deposition was synthesized
in a flat-bottom silica tube with a 25 mm inner diameter. The detailed procedure was
described earlier [16], resulting in the final monolithic target with a thickness of 7 mm.

Ga2Te5 thin films were deposited at room temperature via PLD onto LCD-grade float
glass substrates (Kintec Company, Hong Kong) with a substrate diameter of 2” and a
thickness of 1.1 mm. A Neocera PLD system equipped with a 248 nm KrF excimer laser
(Coherent Compex 102 F) was used for thin film deposition. The laser beam was focused
on a ≈5 mm2 spot on the surface of the rotating target. The target-to-substrate distance
was set at 9 cm, and the pressure in the vacuum chamber was around 3 × 10−6 mbar
with no background gas pressure. For the preparation of “thick” layers with a thickness
of ≈2 µm, 140,000 laser pulses of 200 mJ pulse energy and 10 Hz repetition rate were
used. On the other hand, the “thin” layers with a thickness of ≈100 nm were prepared
using 7000 laser pulses of 200 mJ pulse energy and 10 Hz repetition rate. A detailed PLD
procedure was reported previously [16,38]. The chemical composition of the PLD films
was verified via energy dispersive X-ray spectroscopy and found to be consistent with the
target composition: 29.3 ± 0.6 at.% Ga and 70.7 ± 2.0 at.% Te.

2.2. XRD and DSC Characterization

In situ XRD measurements of a Ga2Te5 PLD film as a function of temperature have
been carried out using a Rigaku Ultima IV diffractometer equipped with a Rigaku SHT-1500
high-temperature platinum camera and sealed Co Kα X-ray tube. The sample was cut
from the PLD film on the glass substrate and had dimensions of 9 × 18 mm. The heating
rate was 10 K min−1 in nitrogen atmosphere. The temperature range was 443 to 653 K
with a step of 10 K. After temperature measurements and cooling down the sample, the
diffraction pattern was recorded again under ambient conditions. Room-temperature XRD
experiments have also been carried out using a Bruker D8 Advance diffractometer (the
Cu Kα incident radiation) equipped with a LinxEye detector.

A PLD film powder, removed from the substrate, was used for DSC measurements
employing a high precision Netzsch DSC 204 F1 Phoenix instrument (Germany) with
µ-sensor. A standard aluminum pan was used for the experiments with a typical heating
rate of 10 K min−1.

2.3. Optical and Electrical Measurements

Optical absorption measurements have been carried out over a wide spectral region
from 700 nm to 6 µm. A Shimadzu UV-3600 spectrophotometer was used for experiments
in the wavelength range of 700–3200 nm. To cover the far-IR region, a Bruker Tensor FTIR
spectrometer was used with the extended IR range up to 25 µm. However, the range was
limited by 6 µm due to phonon absorption in the glass substrate. The two instruments had
overlapping spectral domains in the range of 2.5 and 3.2 µm.

The electrical conductivity of the samples was measured employing a Hewlett Packard
4194A impedance meter over a frequency range of 100 Hz to 15 MHz. The sample resistance
was determined by analyzing the complex impedance plots and was then converted into
electrical conductivity using the geometrical factor. Further experimental details can be
found elsewhere [15].

2.4. High-Energy X-ray Diffraction Measurements

The 6-ID-D beamline at the Advanced Photon Source (Argonne National Laboratory,
Chicago, IL, USA) was used for high-energy X-ray diffraction measurements in the top-
up mode. The photon energy was 99.9593 keV, and the wavelength was 0.124035 Å. A
two-dimensional (2D) setup was used for data collection with a Varex area detector,
2880 × 2880 pixels, and a pixel size of 150 × 150 µm2. The sample-to-detector distance
was 302.5 mm. A Ga2Te5 PLD film powder, removed from the substrate, was placed into a
silica capillary, which was fixed using a sample holder of the instrument. Cerium dioxide
CeO2 was used as a calibrant. The 2D diffraction patterns were reduced using the Fit2D
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software [39]. The measured background intensity of the empty capillary was subtracted,
and corrections were made for the different detector geometries and efficiencies, sample
self-attenuation, and Compton scattering applying standard procedures [40], providing the
X-ray structure factor SX(Q):

SX(Q) = wGaGa(Q)SGaGa(Q) + wGaTe(Q)SGaTe(Q) + wTeTe(Q)STeTe(Q), (1)

where wij(Q) represents Q-dependent X-ray weighting coefficients and Sij(Q) represents
the Faber–Ziman partial structure factors.

2.5. First-Principles Simulation Details

The Born–Oppenheimer molecular dynamics implemented within the CP2K pack-
age [41] was used for the modeling of the diffraction data. The generalized gradient
approximation (GGA) and the PBE0 hybrid exchange–correlation functional [42,43] com-
bining the exact Hartree–Fock and DFT approaches were used, providing better agreement
with experiments [15,16,38,44–46]. The van der Waals dispersion corrections [47] were also
employed, improving first-principles molecular dynamics (FPMD) results for telluride
systems [48,49]. The applied FPMD technique was similar to previous reports [44–46]. The
initial atomic configurations for amorphous Ga2Te5 were created and optimized using the
RMC_POT++ code [50] in comparison with the experimental SX(Q). The cubic simulation
box, containing 210 atoms (60 Ga and 150 Te), has a size matching the experimental density.
Further optimization was carried out using DFT, applying the molecularly optimized cor-
relation consistent polarized triple-zeta valence basis set along with the norm-conserving
relativistic Goedecker–Teter–Hutter-type pseudopotentials [51]. FPMD simulations were
performed using a canonical NVT ensemble employing a Nosé–Hoover thermostat [52,53].
The simulation boxes were heated from 300 K to 1500 K using 100 K steps for 20–25 ps each.
At the highest temperature, the systems were equilibrated for 30 ps and cooled down to
300 K using the same temperature steps but with a longer simulation time (25–30 ps). Final
equilibration and data collection at 300 K were performed for 34 ps. The connectivity and
ring statistics were analyzed using the R. I. N. G. S. package [54] and a modified connec-
tivity program [55]. The pyMolDyn code [56] was used for the calculation of microscopic
voids and cavities.

3. Thermal Properties and Crystallization on Heating

The obtained Ga2Te5 PLD thin films were found to be amorphous and vitreous ac-
cording to XRD and DSC measurements. Typical DSC traces of Ga2Te5 PLD and bulk
glassy g-GaTe3 are shown in Figure 1e. The endothermic glass transition temperature Tg
increases with the gallium content from 448 K (g-GaTe3, 25 at.% Ga) to 491 K (g-Ga2Te5,
28.57 at.%). This increase is accompanied by exothermic crystallization. Bulk g-GaTe3
shows two intense thermal features, peaking at 492 and 602 K, along with a very weak
intermediate effect at 547 K. The 492 K peak corresponds to primary Te crystallization, pre-
senting both the usual trigonal P312 and high-pressure monoclinic P21 forms. On the other
hand, the 602 K feature is associated with the formation of cubic (F43m) and high-pressure
rhombohedral (R3m) Ga2Te3, indicating the occurrence of nanotectonic contraction in a
viscous supercooled liquid [15].

In contrast, g-Ga2Te5 PLD film shows a single narrow and intense exothermic effect
peaking at 545 K with a crystallization onset at Tx ≈ 535 K. The in situ XRD measurements
with a typical DSC heating rate of 10 K min−1 were used to reveal the nature of crystallizing
phase(s). Surprisingly, the first weak Bragg peaks at the scattering angles 2θ = 30.5◦ and
63.2◦ (the Co Kα incident radiation) have appeared just in the vicinity of Tg at ≈483 K,
Figure 1a. They correspond to the (002) and (042) reflections of tetragonal Ga2Te5, I4/m [26],
which was reported to be stable only between 673 and 768 K, Figure 1d. These unexpected
results suggest the existence of certain Ga2Te5 motifs in the vitreous PLD film evolving
into nano-crystallites on heating in a viscous supercooled liquid. Further crystallization
advances in the vicinity of Tx when the remaining Bragg peaks of tetragonal Ga2Te5 become
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visible and grow over the 513 . T . 653 K temperature range, Figure 1b. In addition to
the majority gallium pentatelluride I4/m polymorph, trigonal tellurium, P312 [57], was
also detected as a minority phase, Figure 1c,f. Even after cooling the crystallized sample,
the observed phases remain intact, specifically retaining the tetragonal Ga2Te5, which is
metastable at room temperature.
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Figure 1. Thermal properties of Ga2Te5 PLD films and crystallization on heating. In situ diffraction
measurements (a) at 473 and 483 K, (b) between 443 and 653 K, (c) at 653 K; (d) Ga−Te phase
diagram [30–32]; (e) typical DSC traces for Ga2Te5 PLD and bulk glassy g−GaTe3, and the glass
transition temperatures are also indicated; (f) identification of the crystallized phases in Ga2Te5 PLD
film after cooling from 653 K to room temperature. Trigonal tellurium, P312 [57], and tetragonal
Ga2Te5, I4/m [26], were found.

Even more surprisingly, gallium pentatelluride appears to be perfectly stable after
15 months at room temperature, Figure S1 (Supplementary Information), in contrast to bulk
Ga2Te5, transforming into cubic Ga2Te3 and trigonal tellurium within several weeks [30]. In
other words, a controlled crystallization of the amorphous Ga2Te5 PLD film yields a high-
quality, stable tetragonal crystal promising for photovoltaic, thermoelectric, energy storage,
and memory applications [33–37]. On the contrary, the slow cooling or fast quenching of
molten Ga2Te5 gives a polycrystalline mixture of cubic gallium sesquitelluride and trigonal
Te, Figure S1, fully consistent with the Ga-Te phase diagram, Figure 1d.

4. Electric and Optical Properties

The measured electrical conductivity of bulk crystalline Ga2Te5 is shown in Figure 2a.
In contrast to previously reported results [58], the electrical conductivity follows the Arrhe-
nius relationship over the entire temperature range

σ = σ0 exp(−Ea/kBT), (2)
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where σ0 is the pre-exponential factor, Ea is the conductivity activation energy, and kB and T
have their usual meanings. Nevertheless, the derived activation energy Ea = 0.227 ± 0.003 eV
is identical to that for intrinsic conductivity in tetragonal single-crystal Ga2Te5, measured in
the direction perpendicular to the c-axis [58]. The conductivity pre-factor, σ0 = 17 ± 3 S cm−1,
was situated at the lower limit of the electronic transport regime over the extended
states [59]. This indicates that 2Ea = 0.45 eV is approximately the electrical bandgap.
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Figure 2. Electrical properties of GaxTe1−x amorphous, glassy, and crystalline materials: (a) electrical
conductivity of bulk crystalline Ga2Te5 (this work), bulk glassy g−GaTe4 [15], and interpolated
conductivity for g−Ga2Te5, and the derived activation energies Ea are also indicated; (b) room-
temperature conductivity for amorphous a−Te thin film, corresponding to band-to-band electronic
transport [60], bulk Ga−Te glasses [15], and amorphous a−Ga2Te3 [61]; the interpolated value for
g−Ga2Te5 is also shown.

The electrical conductivity for glassy g-Ga2Te5 was obtained via the interpolation of
the available data for amorphous and glassy GaxTe1−x alloys, where 0 ≤ x ≤ 0.4 [15,60,61],
as shown in Figure 2b. The room-temperature conductivity appears to be a decreasing
exponential function of the gallium content x:

σ298(x) = σ298(0) exp(ax) , (3)

where σ298(0) is the conductivity of amorphous Te and a < 0 is a constant. In other words,
the electronic conductivity of disordered Ga-Te materials primarily relies on the tellurium
concentration. The interpolated g-Ga2Te5 conductivity is lower by two orders of magnitude
compared to the σ298 value of bulk crystalline pentatelluride. The estimated conductivity
activation energy, Ea = 0.41 eV, and the pre-exponential factor, σ0 ≈ 220 S cm−1, suggest
the electrical bandgap of the glassy polymorph is about 0.8 eV.

Figure 3 shows the optical properties of Ga2Te5 PLD films. The absorption mea-
surements reveal a fundamental optical absorption edge below the incident wavelength
λ . 1.2 µm accompanied by distinct interference fringes. These fringes indicate a homoge-
neous nature and uniform thickness of the PLD film. The observed fringes allow both the
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refractive index nR and the film thickness to be calculated using the Swanepoel method [62].
Moreover, due to the well-defined interference across the spectral range and the consider-
able thickness of the PLD film (2.7 µm), it also becomes possible to estimate the refractive
index dispersion nR(λ).
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√
αhν vs. photon energy hν, where

α is the absorption coefficient, yielding the optical band gap Eg; (c) the Cauchy and (d) Sellmeier
approximations [63] describing the dispersion of the refractive index nR as a function of λ. See the
text for further details.

Two approaches are usually applied to represent the refractive index dispersion [63].
The Cauchy approximation of the derived data nR(λ) is given in Figure 3c, as follows:

nR(λ) = A +
B
λ2 +

C
λ4 , (4)

where A, B, and C are constants which are characteristic of any given material. Since the
Cauchy equation is inappropriate in a region of anomalous dispersion [63], the Sellmeier
approach is often used, considering the existence in an optical material of dipole oscillators
with a resonance frequency υ0:

nR(λ)
2 = 1 +

Aλ2

λ2 − λ2
0

, (5)

where A and λ0 = c/υ0 are two characteristic constants, and c is the speed of light. Usually,
the Sellmeier equation is written with a series of terms to account for different resonance
frequencies over an extended domain, that is, υ0, υ1, etc.:

nR(λ)
2 = 1 +

A0λ2

λ2 − λ2
0
+

A1λ2

λ2 − λ2
1
+ . . . (6)
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The Sellmeier coefficients Ai and λi allow the normal dispersion of optical glasses to be
calculated over a wide spectral range. In our case, we were limited to the original Sellmeier
equation (5) with the following coefficients: A0 = 3.5017 and λ0 = 0.3992 (Figure 3d). Due
to an insufficient spectral range and experimental uncertainty, the higher-order terms in
the refractive index dispersion could not be accessed. Nevertheless, despite this limitation,
the two approaches describe the derived nR(λ) values reasonably well.

The optical absorption results were also used to calculate the optical bandgap Eg
applying the Tauc relation [64]:

α =
A
(
hν− Eg

)2

hν
, (7)

where α is the absorption coefficient, hν the photon energy, and A ≈ 105 cm−1 eV−1 is
a constant.

As expected, the derived bandgap Eg = 0.98 ± 0.02 eV, Figure 3b, for glassy gallium
pentatelluride was found to be smaller than that for g-Ga2Te3, which was 1.20 eV [16], sup-
porting the predominant role of the tellurium content on electronic and optical properties
of Ga-Te alloys. Simultaneously, the optical Eg appears to be comparable with the electrical
counterpart, 2Ea = 0.82 eV.

The thermally annealed and crystallized Ga2Te5 PLD film exhibits more complicated
optical absorption, Figure 4. The absorbance below λ . 1 µm shows a distinct blue-shift,
while the low-energy absorbance becomes more intense and mostly loses interference
fringes indicating less homogeneous material in both the chemical composition and thick-
ness. Taking into account the presence of (nano)crystallites in the annealed PLD film,
additional scattering corrections were applied simultaneously with the usual reflection
corrections. The refractive index nR(λ) of g-Ga2Te5 was used for these calculations.

The Mie theory of light scattering for turbidity τ measurements and the wavelength
exponent λ−χ were employed for the scattering corrections [65,66]:

τ = l−1 ln(I0/I), (8)

where l is the scattering path length, and I0 and I are the intensities of the incident and
transmitted beam, respectively. The turbidity depends on several parameters:

τ = BsNpV2
p λ−χ, (9)

where Bs is the scattering coefficient, Np is the particle number density, Vp is the average
volume of the particle, and χ is the wavelength exponent. Combining Equations (8) and (9),
one obtains

D = Ksλ−χ (10)

where D = log(I0/I) is the optical density and Ks is a constant. The values of Ks and χ
were obtained by plotting ln D vs. ln λ (Figure S2), which allows both the turbidity τ(λ)
and χ to be determined and the scattering corrections to be calculated. The theoretical
Heller wavelength exponent χ0 [65] yields the average particle size

〈
rp
〉
, which was found

to be
〈
rp
〉
≈ 110 nm for c-Ga2Te5, Figure S2. The derived

〈
rp
〉

value is consistent with the

size of crystallites, obtained from the XRD linewidth Γ, yielding
〈

rXRD
p

〉
= 2π/Γ > 50 nm.

The final absorbance corrected for reflection and scattering is shown in Figure 4a.
The derived optical absorption coefficient α, presented in Figure 4b, exhibits two op-

tical processes above and below the incident photon energy hν ≈ 1.3 eV. Basically, the
overall shape of the absorption coefficient α is reminiscent of the behavior observed in
materials such as silicon or carbon [67,68]. This shape is typically associated with direct
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optical transition at higher photon energies hν and indirect optical absorption at lower
hν [68–72]. Assuming direct optical transition in crystallized Ga2Te5 above 1.3 eV,

αhν = A
(

hν− Ed
g

)1/2
, (11)

the direct optical bandgap was found to be Ed
g = 1.36 ± 0.03 eV, Figure 4c. The constant A

in Equation (11) is given by A ≈
[
e2/
(
nRch2m∗e

)]
(2m∗)3/2, where e is the electron charge

and m∗ is a reduced electron and hole effective mass [69].
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The optical absorption plotted as
√

αhν vs. photon energy hν, Equation (7), yields the
indirect optical bandgap Ei

g = 0.40 ± 0.03 eV, Figure 4d. The derived value is consistent
with the electrical bandgap of c-Ga2Te5, 2Ea = 0.45 eV, Figure 2a.

The experimental data for tetragonal Ga2Te5, obtained using the conductivity and Hall
effect measurements, are strongly anisotropic and changing over a wide range between
0.46 and 1.79 eV [58]. The calculated Eg values are also variable, 0.86 ≤ Eg ≤ 1.7 eV [72,73],
depending on the applied simulation method. Nevertheless, the results of electrical and
optical measurements show a reasonable contrast between amorphous (SET) and crystalline
(RESET) states for Ga2Te5.

5. High-Energy X-Ray Diffraction

The high-energy X-ray diffraction data in Q-space are shown in Figure 5. In contrast to
fast cooled Ga2Te5 in a thin-walled silica tube, mostly consisting of cubic Ga2Te3 and trigo-
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nal tellurium with some vitreous fraction (Figure S1), the splat-quenching of tiny Ga2Te5
droplets yields an essentially glassy material. However, this glassy material is accompanied
by non-negligible nanocrystals of cubic gallium sesquisulfide, as seen in Figure 5a. The
spontaneous Ga2Te3 crystallization is consistent with the Ga-Te phase diagram, Figure 1d,
related to peritectic decomposition of Ga2Te5 above 768 K. The obtained Ga2Te5 PLD films
are fully vitreous with a distinct glass transition temperature at 491 K, Figure 1e. The X-ray
structure factor SX(Q) of g-Ga2Te5 PLD appears to be intermediate between bulk glassy
GaTe4 and Ga2Te3 PLD film, Figure 5b, suggesting structural similarities and revealing
a systematic evolution of vitreous GaxTe1−x materials with increasing gallium content x
independently of preparation techniques.
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Ga2Te5 and (b) Ga2Te3, Ga2Te5 PLD films and bulk glassy g−GaTe4 over a limited Q -range;
(c) isolated first sharp diffraction peaks (FSDP) for Ga2Te3 and Ga2Te5 PLD films and g−GaTe4;
(d) the interference function Q[SX(Q)− 1] for Ga2Te5 PLD film over the extended Q −range. The
Bragg peaks for cubic Ga2Te3 (space group F43m ) are also shown in (a).

In particular, we observe an emerging and growing first sharp diffraction peak (FSDP),
also shifting to a lower Q with increasing x from Q0 = 0.94 ± 0.01 Å−1 (GaTe4, x = 0.2)
to 0.86 ± 0.01 Å−1 (Ga2Te3, x = 0.4), Figure 5c. The isolated FSDPs were obtained using
the subtraction procedure [74,75]. The FSDP systematics (position Q0 and amplitude A0)
reveals monotonic and nearly linear trends as a function of x, Figure S3, for both bulk
glasses (0.17 ≤ x ≤ 0.25) and vitreous PLD films (0.2857 ≤ x ≤ 0.40). The observed trends
suggest that there are structural similarities on the short- and intermediate-range scale.

Distinct high-Q oscillations, clearly visible over the extended Q-range for the Ga2Te5
interference function Q[SX(Q)− 1], Figure 5d, enable high real-space resolution for atomic
pair distribution gX(r) and total correlation TX(r) functions after the usual Fourier transform:

TX(r) = 4πρ0r +
2
π

∫ Qmax

0
Q[SX(Q)− 1] sin QrM(Q)dQ, (12)
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where ρ0 is the experimental number density, M(Q) the Lorch window function, and
Qmax = 30 Å−1.

The derived TX(r) for g-Ga2Te5 PLD film is shown in Figure 6. The asymmetric
feature between 2.4 and 3.2 Å corresponds to Ga-Te and Te-Te nearest neighbors (NN).
Gaussian fitting of the experimental data (Table 1) yields tetrahedral gallium coordina-
tion at a distance of 2.64 Å, consistent with the known Ga-Te coordination numbers and
NN distances in crystalline and glassy gallium tellurides [14–16,26,27,30,76–78]. On the
contrary, the Te-Te atomic pairs in glassy Ga2Te5 are markedly shorter (2.80 Å) than those
in tetragonal gallium pentatelluride (3.027 Å) [26]. Nevertheless, the Te-Te NN distance
of 2.80 Å is typical for amorphous and trigonal tellurium [57,79] and Te-rich binary and
ternary glasses [15,77,78,80]. The partial Tij(r) correlation functions for tetragonal gallium
pentatelluride are compared in Figure 6b with an experimental TX(r) for g-Ga2Te5. We note
both similarities and differences for the two materials.

Nanomaterials 2023, 13, x FOR PEER REVIEW 11 of 24 
 

 

𝑇ଡ଼(𝑟) = 4𝜋𝜌଴𝑟 + ଶగ ׬ 𝑄[𝑆ଡ଼(𝑄) − 1] sin 𝑄𝑟𝑀(𝑄)d𝑄ொౣ౗౮଴ , (12)

where 𝜌଴ is the experimental number density, 𝑀(𝑄) the Lorch window function, and 𝑄୫ୟ୶ = 30 Å−1. 
The derived 𝑇ଡ଼(𝑟) for g-Ga2Te5 PLD film is shown in Figure 6. The asymmetric 

feature between 2.4 and 3.2 Å corresponds to Ga-Te and Te-Te nearest neighbors (NN). 
Gaussian fitting of the experimental data (Table 1) yields tetrahedral gallium coordina-
tion at a distance of 2.64 Å, consistent with the known Ga-Te coordination numbers and 
NN distances in crystalline and glassy gallium tellurides [14–16,26,27,30,76−78]. On the 
contrary, the Te-Te atomic pairs in glassy Ga2Te5 are markedly shorter (2.80 Å) than those 
in tetragonal gallium pentatelluride (3.027 Å) [26]. Nevertheless, the Te-Te NN distance of 
2.80 Å is typical for amorphous and trigonal tellurium [57,79] and Te-rich binary and 
ternary glasses [15,77,78,80]. The partial 𝑇୧୨(𝑟) correlation functions for tetragonal gal-
lium pentatelluride are compared in Figure 6b with an experimental 𝑇ଡ଼(𝑟) for g-Ga2Te5. 
We note both similarities and differences for the two materials. 

 
Figure 6. Diffraction data in 𝑟-space: the X-ray total correlation function 𝑇ଡ଼(𝑟) for g-Ga2Te5 PLD 
film, showing (a) a four-peak Gaussian fitting of the nearest (NN) and second (2N) neighbor fea-
tures between 2.4 and 4.5 Å; the Ga-Te and Te-Te NNs are highlighted in light green and gray, re-
spectively; the Ga-Ga 2Ns are green; (b) a comparison with the partial correlation functions 𝑇୧୨(𝑟) 
for tetragonal Ga2Te5 (space group 𝐼4/𝑚 [26]), derived using the XTAL code [76]; (c) the crystal 
structure of tetragonal gallium pentatelluride, revealing (1) infinite chain of edge-sharing 
ES-GaTe(II)4 tetrahedra along the 𝑐-axis, (2) two neighboring chains connected by Te(I) species lo-
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in glassy Ga2Te5 PLD films according to high-energy X-ray diffraction and first-principles molecu-
lar dynamics. 

Figure 6. Diffraction data in r-space: the X-ray total correlation function TX(r) for g-Ga2Te5 PLD
film, showing (a) a four-peak Gaussian fitting of the nearest (NN) and second (2N) neighbor features
between 2.4 and 4.5 Å; the Ga-Te and Te-Te NNs are highlighted in light green and gray, respectively;
the Ga-Ga 2Ns are green; (b) a comparison with the partial correlation functions Tij(r) for tetragonal
Ga2Te5 (space group I4/m [26]), derived using the XTAL code [76]; (c) the crystal structure of
tetragonal gallium pentatelluride, revealing (1) infinite chain of edge-sharing ES-GaTe(II)4 tetrahedra
along the c -axis, (2) two neighboring chains connected by Te(I) species located in the center of Te(II)
squares, (3) an approximate (a, b) projection of the crystal structure.

The crystalline counterpart is stable over a narrow temperature range from 673 to
768 K [30–32], as shown in Figure 1d. In contrast to layered compounds like Al2Te5 and
In2Te5 [27], gallium pentatelluride has a 3D structure consisting of infinite chains, parallel
to the c axis. The chains are formed by edge-sharing ES-GaTe(II)4 tetrahedra, Figure 6c.
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Additionally, every four ES-GaTe(II)4 entities from neighboring chains are linked together
by Te(I) species, located at the center of squares, formed by Te(II).

Table 1. Interatomic distances rij and partial coordination numbers Nij of the nearest neighbors in glassy
Ga2Te5 PLD films according to high-energy X-ray diffraction and first-principles molecular dynamics.

Ga-Ga Ga-Te Te-Te
NGa−X

rij (Å) Nij rij (Å) Nij rij (Å) Nij

High-energy X-ray diffraction

- - 2.637(3) 3.98(5) 2.796(5) 1.01(8) 3.98(5)

First-principles molecular dynamics (GGA/PBE0)

2.417 0.03 2.615 * 3.97 2.802 * 0.93 4.00
* asymmetric peak.

These square-planar Te5 units (crosses) are mostly absent in glassy Ga2Te5, as evi-
denced by the significantly lower Te-Te NN coordination number, NPLD

Te−Te = 1.01 ± 0.08
(Table 1), compared to the crystal counterpart, N I4/m

Te−Te= 1.6 = 1/5 × 4 + 4/5 × 1, which
represents the average Te-Te coordination for the Te(I) and Te(II) species, Figure 6c. On
the other hand, the existence of ES-GaTe4 tetrahedra in the glass network is indicated by
the presence of a weak shoulder at 3.39 ± 0.02 Å for the asymmetric second neighbor
peak, centered at ≈4.3 Å. The short Ga-Ga second neighbor correlations, characteristic
of ES-units in tetragonal Ga2Te5, are located at 3.424 Å, Figure 6b. However, due to a
weak average Ga-Ga weighting factor,

〈
wX

GaGa(Q)
〉

= 0.02964 vs.
〈
wX

GaTe(Q)
〉

= 0.28405
or
〈
wX

TeTe(Q)
〉

= 0.68630, the amplitude of this feature is small. The weak average Ga-Ga
weighting factor, as well as the truncation ripples, related to a finite Q-range of the Fourier
transform, enable only a rough estimation of NPLD

Ga−Ga = 1.2 ± 0.4, compared to N I4/m
Ga−Ga = 2.

A deep insight into the atomic structure of vitreous Ga2Te5 PLD films yields first-principles
molecular dynamics.

6. First-Principles Molecular Dynamics

Simulated FPMD X-ray structure factor SX(Q) and pair-distribution function gX(r)
for glassy Ga2Te5 in comparison with experimental results are shown in Figure 7a,b. We
note that the GGA approximation with hybrid PBE0 functional describes the experimental
data well, as it was reported earlier [15,16,44–46]. The positions and amplitudes of the
diffraction features in both Q- and r-space are reproduced.

The calculated partial structure factors Sij(Q) are displayed in Figure 7c. As expected,
the main contribution to the FSDP comes from the Ga-Ga partial SGaGa(Q). The simulated
gij(r), Figure 7d, reveal complicated short- and intermediate-range orders.

The asymmetric Ga-Te NN correlations appear at 2.62 Å and suggest at least two
contributions with slightly different bond lengths. The Ga-Te coordination number is
consistent with the experiment, NFPMD

Ga−Te = 3.97, Table 1, assuming a tetrahedral gallium
local environment. In addition to homopolar Te-Te bonds at 2.80 Å, a weak Ga-Ga NN
feature at 2.42 Å was also found. The amplitude of this peak is too small to be observed
experimentally, Figure 7b. The Ga-Ga second neighbors between 3 and 4.5 Å have a bimodal
distribution. The shoulder at ≈3.35 Å indicates the ES-units, while the main contribution
at 3.92 Å is related to corner-sharing CS-entities. Consequently, the fraction of ES-GaTe4 in
the glassy Ga2Te5, f FPMD

ES = 0.45, is significantly lower than that in tetragonal polymorph,
f I4/m
ES = 1, indicating that only ES-GaTe4 are present in the crystalline counterpart. The

experimental value, f PLD
ES = 0.6 ± 0.2, is reasonably consistent with the FPMD result.

Basically, the experimental and FPMD structural parameters were found to be similar or
identical, Table 1.
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The Ga and Te local coordination distributions are presented in Figure 8. The tetrahe-
dral gallium coordination Ga(Te4−mGam) contains negligible number of Ga-Ga homopolar
pairs (m = 1). In contrast, tellurium has multiple coordination environments Te(Gan−mTem),
1 ≤ n ≤ 4, but only two-fold Te2F (50.5%) and three-fold Te3F (47.6%) coordinated species
are the most abundant. The tellurium forms reveal a large variability in Te-Te bonds,
0 ≤ m ≤ 4, from pure heteropolar Te-Ga coordination (m = 0) to fully homopolar envi-
ronment (m = n). We should, however, note a small fraction of Te4F species (1.87%) and a
negligible number of Te5 square-planar entities (0.23%), the only form of tellurium sub-
network in tetragonal gallium pentatelluride, Figure 6c. This result is coherent with the
reduced Te-Te coordination number NPLD

Te−Te
∼= NFPMD

Te−Te
∼= 1, Table 1.

The geometry of GaTe4 units yields either Te-Ga-Te bond angles or the orientational
order parameter q [81,82]. Figure 9a,c show the calculated BTeGaTe(θ)/ sin θ bond angle
distribution for g-Ga2Te5 in comparison with tetragonal Ga2Te5 and cubic Ga2Te3, respec-
tively. We note a broad and slightly asymmetric BTeGaTe(θ)/ sin θ function, centered at
103.3 ± 0.3◦, for the PLD film (Figure S4). The Te-Ga-Te angles in the two crystalline
references, characterizing both distorted ES-GaTe4 tetrahedra in gallium pentatelluride and
regular CS-units in cubic sesquitelluride, are located within the glassy envelope but do not
reproduce it via simple broadening. Nevertheless, the tetrahedral geometry in tetragonal
Ga2Te5 seems to be closer to that in the glass.

The connectivity of GaTe4 tetrahedra is given by the Ga-Te-Ga triplets or the respec-
tive BGaTeGa(θ)/ sin θ distributions, Figure 9b,d. The difference in connectivity between
g-Ga2Te5 and the crystalline structures is even more significant but a remote resemblance
to the connected ES-entities in the tetragonal crystal still exists.
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0 ≤ m ≤ 4. See the text for further details.

The order parameter q [81,82] is often used to evaluate the polyhedral topology and dis-
tinguish between tetrahedral and non-tetrahedral local geometry of four-fold coordinated
GaTe4 entities

q = 1− 3
8

3

∑
j=1

4

∑
k=j+1

(
cos ψjk +

1
3

)2
, (13)

where ψjk is the Te-Ga-Te angle of the central gallium atom with its nearest Te neighbors j
and k. The average value of q changes between 0 for an ideal gas and q = 1 for a regular
tetrahedral network. The P(q) probability distribution function is shown in Figure 10a.
Asymmetric P(q) is peaked at q = 0.93 and decreases sharply both ways to high and low
q. Usually, the tetrahedral limit is set at q ≥ 0.8 [44,83]. The P(q) integration within
these limitations shows that 97% of GaTe4 units belong to the tetrahedral geometry. The
remaining entities (3%) are likely defect octahedral species GaTe4 with two missing Te
neighbors around the central Ga atom, characterized by 0.4 < q < 0.8. The regular defect
octahedron (ψ1 = π and ψ2 = π/2) has q = 5/8. The obtained results differ drastically from
flagship PCM (GeTe, Ge2Sb2Te5), which show a significant fraction of defect octahedral
sites and a minority of tetrahedral structural units (.40%) [28,83–87]. The exact propor-
tion varies depending on experimental technique, that is, EXAFS or diffraction, and the
exchange–correlation functional for FPMD simulations.
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Two-fold and three-fold coordinated tellurium can explain the asymmetric shape
of the Ga-Te NN peak. The calculated Ga-Te2F and Ga-Te3F distances are presented in
Figure 10b. The two distributions are broad and asymmetric but have slightly different
maxima. The Ga-Te3F bonds are longer (a broad maximum at 2.71 ± 0.03 Å) compared to
Ga-Te2F, peaked at 2.63± 0.02 Å. A similar difference, ∆r3F−2F = 0.12± 0.01 Å, was reported
in monoclinic Ga2S3 [88] with an ordered distribution of gallium vacancies. The ratio of
Ga-Te3F to Ga-Te2F bond populations, r = [Ga− Te3F]/[Ga− Te2F] = 1.75, was also found
to be similar to the expected stoichiometric ratio r0 = 2 for tetrahedral Ga species, which
possess the formal oxidation state Ga3+ and correspond to the Ga2Te3 alloy composition.

The connectivity analysis shows that all Ga and Te species are connected. The analysis
of Te-Te connectivity reveals a different size of Tek fragments, Figure 11a. Tellurium
monomers (k = 1), that is, Te atoms with only heteropolar Te-Ga bonds, and dimers
(k = 2) represent a relative majority, 55%, of all Tek fragments. The remaining fragments can
be divided into two groups: (i) 3 ≤ k ≤ 6 (see the inset in Figure 11a) and (ii) oligomeric
chains, k = 15, for the used 210-atom simulation box. Group (i) represents the remnants of
square-planar Te5 units in tetragonal Ga2Te5 (the inset in Figure 11b), also confirmed by
bond angle distribution BTeTeTe(θ)/ sin θ. Group (ii) is similar to chains in trigonal tellurium,
P312 [57], supported by a contribution at about θTeTeTe ≈ 103◦, Figure 11b. The presence of
two distinct groups is likely a consequence of the limited thermal stability of tetragonal
gallium pentatelluride and peritectic reaction Ga2Te5� Ga2Te3 +2Te above 768 K.
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Figure 11. (a) Size and (b) Te-Te-Te bond angle distribution in Tek oligomeric fragments, k ≤ 15. The
only population of 5-membered Te5 square-planar fragments (crosses) in tetragonal Ga2Te5 is also
shown in (a), as well as the characteristic BTeTeTe(θ)/ sin θ distributions in trigonal tellurium [57] and
tetragonal Ga2Te5 [26]. Typical Tek fragments in glassy and crystalline pentatellurides are shown in
the insets, as well as a part of the helical tellurium chain in c-Te, P312 [57].

The intermediate-range order in glassy and amorphous materials is often described
by ring statistics, that is, by the population of GapTeq rings in the case of gallium tellurides.
The ring population Rc(p + q) [54] in glassy Ga2Te5 (this work) and Ga2Te3 [16] PLD
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films in comparison with crystalline references (tetragonal Ga2Te5 [26], cubic [17], and
rhombohedral [89] Ga2Te3) is shown in Figure 12. The Rc(p + q) population was found to
be different for the two Ga2Te5 forms. The dominant eight-membered rings in tetragonal
polymorphs are hardly populated in the PLD film. On the contrary, the most populated
p + q = 5 entities in g-Ga2Te5 are absent in c-Ga2Te5. The peritectic nature of tetragonal
crystal seems to be related to this difference.
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Gallium sesquitelluride Ga2Te3 is a congruently melting compound, Figure 1d. As
it was reported earlier [16], the ring statistics in g-Ga2Te3 represent a disordered mixture
of Rc(p + q) for the ambient and high-pressure polymorphs, Figure 12b,d, related to
nanotectonic contraction in a viscous supercooled melt.

Microscopic voids and cavities in amorphous Ga-Te alloys, obtained using the
Dirichlet–Voronoi tessellation [56], are displayed in Figure 13b. The fraction of voids
Vc, normalized to the volume of the FPMD simulation box, was found to be nearly in-
variant, 27 ≤ Vc(x) ≤ 29%, over the gallium content x between 0.20 (bulk g-GaTe4) and
0.40 (PLD g-Ga2Te3). This is coherent with a small change in the number density, ≈2%
over the same composition range. Typical cavity radius varies between 0.2 and 4 Å, slightly
increasing with x, Figure 13a.

The total electronic density of states (eDOS) is shown in Figure 14 and appears to
be typical for glassy and crystalline chalcogenides [15,16,59,90–92]. The valence band
(VB) consists of three sub-bands between the Fermi level EF and −16 eV. The upper part,
roughly centered at −3 eV, mostly consists of Te 5p and Ga 4p states and also includes
non-negligible d-electron contributions, as it revealed by the eDOS projections (pDOS) on
Ga and Te atomic pseudo-wave functions. The middle-energy sub-band, centered at −8 eV,
essentially contains Te 5p and Ga 4s electron states, while the lower part, peaked at −13 eV,
has an s-character, populated by Te 5s electrons together with Ga s-, p- and d-electron
contributions. The derived eDOS and pDOS are similar to those in g-Ga2Te3 PLD film [16]
and suggest sp3 gallium hybridization also has a d-electron contribution.
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Figure 13. Microscopic voids in glassy Ga-Te alloys; typical distributions of characteristic cavity radii
in (a) Ga2Te3, (b) Ga2Te5, and (c) GaTe4; snapshots of simulation boxes with microscopic voids for
(d) Ga2Te3 [16], (e) Ga2Te5 (this work), and (f) GaTe4 [15], calculated using the Dirichlet–Voronoi
approximation [56].

The inverse participation ratio IPR [93,94] allows for localized (large IPR→ 1) and ex-
tended electron states (small IPR ≈ N−1, where N is the number of atoms in the simulation
box) to be distinguished

IPR =

∫
dr|ψ(r)|4(∫
dr|ψ(r)|2

)2 , (14)

where ψ(r) is a single-particle Kohn–Sham eigenfunction. The calculated IPRs, derived
using the projections of ψ(r) onto an atomic basis set and the atomic orbital coefficients, are
shown in Figure 14a, plotted together with the eDOS. As it was reported earlier [16,46], a
higher electron localization appears at the band tails (the top of the valence and the bottom
of the conduction bands), consistent with the theories of disordered semiconductors [59].
The remaining electron states in the vicinity of the bandgap are delocalized (extended).
Deeper states of the lower-energy sub-bands, participating in the covalent bonding, are
localized even more strongly.

The derived GGA/PBE0 bandgap, EPBE0
g = 0.80 eV, appears to be smaller than the ex-

perimental optical bandgap, Eg = 0.98 eV, Figure 3b, but nearly identical to the interpolated
electrical counterpart, 2Ea = 0.82 eV, Figure 2a. The main contribution of the Te 5p electron
states to the upper part of the valence band and at the bottom of the conduction band is
also consistent with a dominant role played by Te on the electronic conductivity of Ga-Te
alloys, Figure 2b.
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Figure 14. (a) Electronic density of states (eDOS) and inverse participation ratio (IPR, red spikes) in
g-Ga2Te5 PLD film at 300 K, and projected DOS on (b) tellurium and (c) gallium atomic pseudo-wave
functions. The s (yellow), p (green) and d (magenta) contributions are shown. VB = valence band;
CB = conduction band.

7. Conclusions

Pulsed laser deposition allows for homogeneous and uniform Ga2Te5 films to be
obtained, showing a distinct glass transition at 491 K and accompanied by strong crystal-
lization peaked at 545 K. Thermal annealing of the PLD film with a DSC heating rate and
carried out below the stability limits of tetragonal Ga2Te5 yields a high-quality and long-
living (for at least 15 months) tetragonal polymorph that is thermodynamically metastable
under ambient conditions. Amorphous and crystalline Ga2Te5 forms show reasonably high
electric contrast (two orders of magnitude at room temperature) and distinctly different
optical band gaps, Eg = 0.98 eV for g-Ga2Te5 and indirect optical bandgap Ei

g = 0.40 eV for
c-Ga2Te5. Consequently, gallium pentatelluride can be used for memory applications as
well as for photovoltaics, quantum-dots-based DNA sensors, and for the preparation of
atomically thin layers via the controlled crystallization of amorphous thin films.

The local coordination of tetrahedral gallium is common for these two forms; however,
the intermediate-range order and tellurium subnetwork are drastically different. Square-
planar Te5 units (crosses) connecting edge-sharing Ge-Te chains in tetragonal Ga2Te5, which
are formed by ES-GaTe4 tetrahedra, do not survive in the glassy polymorph, leaving Tek
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remnants, 3 ≤ k ≤ 6, originating from the Te5 entities and oligomeric tellurium chains
similar to those in trigonal Te. Quasi-1D edge-sharing Ga-Te chains lose their exclusive
structural signature, characteristic of tetragonal polymorph, transforming into 2D and
3D structural patches of edge- and corner-sharing GaTe4 tetrahedra. The simulated elec-
tronic density of states is consistent with the experimental optical and conductivity results
and reveals a predominant role of the Te 5p electron states for electronic properties of
gallium pentatelluride.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano13142137/s1, Figure S1. X-ray diffraction patterns of rapidly cooled
Ga2Te5 melt and Ga2Te5 PLD film; Figure S2. Scattering corrections for crystallized Ga2Te5 PLD film;
Figure S3. FSDP parameters for glassy GaxTe1−x alloys; Figure S4. Bond angle distribution BTeGaTe(θ)

in simulated g-Ga2Te5.
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