Beyond the Visible: A Review of Ultraviolet Surface-Enhanced Raman Scattering Substrate Compositions, Morphologies, and Performance
Abstract
:1. Twenty Years of Ultraviolet Surface-Enhanced Raman Scattering
- Incompatibility of existing commercially available visible–NIR instrumentation with UV optics, requiring a separate, typically home-built system that reduces accessibility;
- Poor plasmonic properties of typical SERS substrate metals like Ag and Au, thus requiring exploration and fabrication of UV-SERS substrates;
- Photodegradation of analytes with UV excitation.
2. Overview of Raman Spectroscopy and Enhancement Techniques
2.1. Advantages and Disadvantages of UV-SERS
3. UV-SERS Substrate Performance
3.1. Elemental Compositions and Morphologies of UV-SERS Substrates
3.2. UV-SERS Substrate Performance
3.2.1. DUV-SERS Substrate Performance
3.2.2. UV-SERS Substrate Performance
3.2.3. Novel and Emerging Experimental Studies and Numerical Simulations
3.2.4. Challenges and Opportunities for UV-SERS Substrates
- Anodic aluminum oxidation template with electron beam evaporation [55];
- Deposition with annealing [56];
- Molecular-beam epitaxial growth followed by focused ion beam or electron beam irradiation [54];
- Laser interference lithography [57];
- Ion milling [60];
- Nanoimprinting [60];
- Electron beam evaporation [60].
4. Future Directions for the Field of UV-SERS
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langer, J.; Jimenez De Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardinal, M.F.; Vander Ende, E.; Hackler, R.A.; McAnally, M.O.; Stair, P.C.; Schatz, G.C.; Van Duyne, R.P. Expanding Applications of SERS through Versatile Nanomaterials Engineering. Chem. Soc. Rev. 2017, 46, 3886–3903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, S.-Y.; Yi, J.; Li, J.-F.; Ren, B.; Wu, D.-Y.; Panneerselvam, R.; Tian, Z.-Q. Nanostructure-Based Plasmon-Enhanced Raman Spectroscopy for Surface Analysis of Materials. Nat. Rev. Mater. 2016, 1, 16021. [Google Scholar] [CrossRef]
- Ren, B.; Lin, X.-F.; Yang, Z.-L.; Liu, G.-K.; Aroca, R.F.; Mao, B.-W.; Tian, Z.-Q. Surface-Enhanced Raman Scattering in the Ultraviolet Spectral Region: UV-SERS on Rhodium and Ruthenium Electrodes. J. Am. Chem. Soc. 2003, 125, 9598–9599. [Google Scholar] [CrossRef]
- Taguchi, A. Deep-Ultraviolet Surface-Enhanced Raman Scattering. In Far-and Deep-Ultraviolet Spectroscopy; Ozaki, Y., Kawata, S., Eds.; Springer: Tokyo, Japan, 2015; pp. 145–158. ISBN 978-4-431-55549-0. [Google Scholar]
- Zeng, Z.; Liu, Y.; Wei, J. Recent Advances in Surface-Enhanced Raman Spectroscopy (SERS): Finite-Difference Time-Domain (FDTD) Method for SERS and Sensing Applications. TrAC Trends Anal. Chem. 2016, 75, 162–173. [Google Scholar] [CrossRef]
- Katyal, J. Comparative Study Between Different Plasmonic Materials and Nanostructures for Sensor and SERS Application. In Reviews in Plasmonics 2017; Geddes, C.D., Ed.; Reviews in Plasmonics; Springer International Publishing: Cham, Switzerland, 2019; Volume 2017, pp. 77–108. ISBN 978-3-030-18834-4. [Google Scholar]
- Tian, Z.-Q.; Yang, Z.-L.; Ren, B.; Wu, D.-Y. SERS From Transition Metals and Excited by Ultraviolet Light. In Surface-Enhanced Raman Scattering: Physics and Applications; Kneipp, K., Moskovits, M., Kneipp, H., Eds.; Topics in applied physics; Springer: Berlin, German; New York, NY, USA, 2006; ISBN 978-3-540-33566-5. [Google Scholar]
- Hering, K.; Cialla, D.; Ackermann, K.; Dörfer, T.; Möller, R.; Schneidewind, H.; Mattheis, R.; Fritzsche, W.; Rösch, P.; Popp, J. SERS: A Versatile Tool in Chemical and Biochemical Diagnostics. Anal. Bioanal. Chem. 2008, 390, 113–124. [Google Scholar] [CrossRef]
- Zhao, D.; Lin, Z.; Zhu, W.; Lezec, H.J.; Xu, T.; Agrawal, A.; Zhang, C.; Huang, K. Recent Advances in Ultraviolet Nanophotonics: From Plasmonics and Metamaterials to Metasurfaces. Nanophotonics 2021, 10, 2283–2308. [Google Scholar] [CrossRef]
- Fazio, E.; Gökce, B.; De Giacomo, A.; Meneghetti, M.; Compagnini, G.; Tommasini, M.; Waag, F.; Lucotti, A.; Zanchi, C.G.; Ossi, P.M.; et al. Nanoparticles Engineering by Pulsed Laser Ablation in Liquids: Concepts and Applications. Nanomaterials 2020, 10, 2317. [Google Scholar] [CrossRef]
- King, M.E.; Fonseca Guzman, M.V.; Ross, M.B. Material Strategies for Function Enhancement in Plasmonic Architectures. Nanoscale 2022, 14, 602–611. [Google Scholar] [CrossRef]
- Koya, A.N.; Zhu, X.; Ohannesian, N.; Yanik, A.A.; Alabastri, A.; Proietti Zaccaria, R.; Krahne, R.; Shih, W.-C.; Garoli, D. Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis. ACS Nano 2021, 15, 6038–6060. [Google Scholar] [CrossRef]
- Han, X.X.; Rodriguez, R.S.; Haynes, C.L.; Ozaki, Y.; Zhao, B. Surface-Enhanced Raman Spectroscopy. Nat. Rev. Methods Primer 2022, 1, 87. [Google Scholar] [CrossRef]
- Fontaine, N.; Picard-Lafond, A.; Asselin, J.; Boudreau, D. Thinking Outside the Shell: Novel Sensors Designed from Plasmon-Enhanced Fluorescent Concentric Nanoparticles. The Analyst 2020, 145, 5965–5980. [Google Scholar] [CrossRef]
- Raman, C.V. A New Radiation. Indian J. Phys. 1928, 2, 387–398. [Google Scholar] [CrossRef]
- Jones, R.R.; Hooper, D.C.; Zhang, L.; Wolverson, D.; Valev, V.K. Raman Techniques: Fundamentals and Frontiers. Nanoscale Res. Lett. 2019, 14, 231. [Google Scholar] [CrossRef] [Green Version]
- Modern Raman Spectroscopy—A Practical Approach. In Modern Raman Spectroscopy—A Practical Approach; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2004; ISBN 978-0-470-01183-6.
- Grasselli, J.G.; Bulkin, B.J. Analytical Raman Spectroscopy; Chemical analysis; Wiley: New York, NY, USA, 1991; ISBN 978-0-471-51955-3. [Google Scholar]
- Schrader, B. (Ed.) Infrared and Raman Spectroscopy: Methods and Applications; John Wiley & Sons: Chichester, UK, 1995; ISBN 978-3-527-61542-1. [Google Scholar]
- Ferraro, J.R. Introductory Raman Spectroscopy, 2nd ed.; Academic Press: New York, NY, USA, 2002; ISBN 978-0-08-050912-9. [Google Scholar]
- Laserna, J.J. Modern Techniques in Raman Spectroscopy; John Wiley & Sons: Chichester, UK, 1996; ISBN 978-0-471-95774-4. [Google Scholar]
- Turrell, G. Raman Microscopy: Developments and Applications; Academic Press: Cambridge, MA, USA, 1996; ISBN 978-0-12-189690-4. [Google Scholar]
- McCreery, R.L. Raman Spectroscopy for Chemical Analysis; John Wiley & Sons: Chichester, UK, 2000; ISBN 978-0-471-72164-2. [Google Scholar]
- Le Ru, E.C.; Etchegoin, P.G. Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects; Elsevier Science: Amsterdam, The Netherlands, 2008; ISBN 978-0-08-093155-5. [Google Scholar]
- Oladepo, S.A.; Xiong, K.; Hong, Z.; Asher, S.A. Elucidating Peptide and Protein Structure and Dynamics: UV Resonance Raman Spectroscopy. J. Phys. Chem. Lett. 2011, 2, 334–344. [Google Scholar] [CrossRef] [Green Version]
- Asher, S.A. Ultraviolet Raman Spectrometry. In Handbook of Vibrational Spectroscopy; Chalmers, J.M., Griffiths, P.R., Eds.; Wiley: Hoboken, NJ, USA, 2006; ISBN 978-0-471-98847-2. [Google Scholar]
- Willets, K.A.; Van Duyne, R.P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. [Google Scholar] [CrossRef] [Green Version]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Jeanmaire, D.L.; Duyne, R.P.V. Surface Raman Spectroelectrochemistry. J. Electroanal. Chem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L.T.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670. [Google Scholar] [CrossRef] [Green Version]
- Laser Safety Program: Biological Effects of Laser Radiation. Available online: https://blink.ucsd.edu/safety/radiation/lasers/effects.html (accessed on 9 June 2023).
- Hopper, E.R.; Boukouvala, C.; Asselin, J.; Biggins, J.S.; Ringe, E. Opportunities and Challenges for Alternative Nanoplasmonic Metals: Magnesium and Beyond. J. Phys. Chem. C 2022, 126, 10630–10643. [Google Scholar] [CrossRef]
- Cui, L.; Wu, D.-Y.; Wang, A.; Ren, B.; Tian, Z.-Q. Charge-Transfer Enhancement Involved in the SERS of Adenine on Rh and Pd Demonstrated by Ultraviolet to Visible Laser Excitation. J. Phys. Chem. C 2010, 114, 16588–16595. [Google Scholar] [CrossRef]
- Wang, J.W.; Wang, W.N.; Fang, Y. Surface-Enhanced Raman Scattering Studies on the Adsorption of p-Nitrobenzoic Acid at Au Electrode under Different Potential with Ultraviolet Excitation. Vib. Spectrosc. 2006, 40, 197–201. [Google Scholar] [CrossRef]
- Wen, R.; Fang, Y. Surface Raman Scattering Studies on the Adsorption of P-Hydroxybenzoic Acid at Au Electrodes with Ultraviolet Excitation. J. Electroanal. Chem. 2005, 576, 237–242. [Google Scholar] [CrossRef]
- Lin, X.-F.; Ren, B.; Yang, Z.-L.; Liu, G.-K.; Tian, Z.-Q. Surface-Enhanced Raman Spectroscopy with Ultraviolet Excitation. J. Raman Spectrosc. 2005, 36, 606–612. [Google Scholar] [CrossRef]
- Wang, P.; Wu, G. Ultraviolet Laser Excited Surface Enhanced Raman Scattering of Thiocyanate Ion on the Au Electrode. Chem. Phys. Lett. 2004, 385, 96–100. [Google Scholar] [CrossRef]
- Hao, Y.; Fang, Y. Ultraviolet Raman Study of Thymine on the Au Electrode. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2007, 68, 778–782. [Google Scholar] [CrossRef]
- Ding, L.-P.; Fang, Y. The Study of Resonance Raman Scattering Spectrum on the Surface of Cu Nanoparticles with Ultraviolet Excitation and Density Functional Theory. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2007, 67, 767–771. [Google Scholar] [CrossRef]
- Dörfer, T.; Schmitt, M.; Popp, J. Deep-UV Surface-Enhanced Raman Scattering. J. Raman Spectrosc. 2007, 38, 1379–1382. [Google Scholar] [CrossRef]
- Kämmer, E.; Dörfer, T.; Csáki, A.; Schumacher, W.; Da Costa Filho, P.A.; Tarcea, N.; Fritzsche, W.; Rösch, P.; Schmitt, M.; Popp, J. Evaluation of Colloids and Activation Agents for Determination of Melamine Using UV-SERS. J. Phys. Chem. C 2012, 116, 6083–6091. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Mahajan, S.; Cole, R.M.; Soares, B.; Bartlett, P.N.; Baumberg, J.J.; Hayward, I.P.; Ren, B.; Russell, A.E.; Tian, Z.Q. UV SERS at Well Ordered Pd Sphere Segment Void (SSV) Nanostructures. Phys Chem Chem Phys 2009, 11, 1023–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, G.; Soni, R.K. Rhodium Concave Nanocubes and Nanoplates as Deep-UV Resonant SERS Platform. J. Raman Spectrosc. 2022, 53, 1890–1903. [Google Scholar] [CrossRef]
- Li, X.-M.; Bi, M.-H.; Cui, L.; Zhou, Y.-Z.; Du, X.-W.; Qiao, S.-Z.; Yang, J. 3D Aluminum Hybrid Plasmonic Nanostructures with Large Areas of Dense Hot Spots and Long-Term Stability. Adv. Funct. Mater. 2017, 27, 1605703. [Google Scholar] [CrossRef]
- Wu, Y.; Dong, B. Aluminium Nanohole Arrays Enhanced Resonance Raman Scattering Spectra in the near Ultraviolet Region. Sci. China Phys. Mech. Astron. 2014, 57, 2209–2213. [Google Scholar] [CrossRef]
- Rodriguez, R.D.; Sheremet, E.; Nesterov, M.; Moras, S.; Rahaman, M.; Weiss, T.; Hietschold, M.; Zahn, D.R.T. Aluminum and Copper Nanostructures for Surface-Enhanced Raman Spectroscopy: A One-to-One Comparison to Silver and Gold. Sens. Actuators B Chem. 2018, 262, 922–927. [Google Scholar] [CrossRef]
- Sharma, B.; Cardinal, M.F.; Ross, M.B.; Zrimsek, A.B.; Bykov, S.V.; Punihaole, D.; Asher, S.A.; Schatz, G.C.; Van Duyne, R.P. Aluminum Film-Over-Nanosphere Substrates for Deep-UV Surface-Enhanced Resonance Raman Spectroscopy. Nano Lett. 2016, 16, 7968–7973. [Google Scholar] [CrossRef]
- Li, Z.; Li, C.; Yu, J.; Li, Z.; Zhao, X.; Liu, A.; Jiang, S.; Yang, C.; Zhang, C.; Man, B. Aluminum Nanoparticle Films with an Enhanced Hot-Spot Intensity for High-Efficiency SERS. Opt. Express 2020, 28, 9174–9185. [Google Scholar] [CrossRef]
- Lin, B.-W.; Tai, Y.-H.; Lee, Y.-C.; Xing, D.; Lin, H.-C.; Yamahara, H.; Ho, Y.-L.; Tabata, H.; Daiguji, H.; Delaunay, J.-J. Aluminum-Black Silicon Plasmonic Nano-Eggs Structure for Deep-UV Surface-Enhanced Resonance Raman Spectroscopy. Appl. Phys. Lett. 2022, 120, 051102. [Google Scholar] [CrossRef]
- Jha, S.K.; Ahmed, Z.; Agio, M.; Ekinci, Y.; Löffler, J.F. Deep-UV Surface-Enhanced Resonance Raman Scattering of Adenine on Aluminum Nanoparticle Arrays. J. Am. Chem. Soc. 2012, 134, 1966–1969. [Google Scholar] [CrossRef]
- Dubey, A.; Mishra, R.; Cheng, C.-W.; Kuang, Y.-P.; Gwo, S.; Yen, T.-J. Demonstration of a Superior Deep-UV Surface-Enhanced Resonance Raman Scattering (SERRS) Substrate and Single-Base Mutation Detection in Oligonucleotides. J. Am. Chem. Soc. 2021, 143, 19282–19286. [Google Scholar] [CrossRef]
- Raja, S.S.; Cheng, C.-W.; Sang, Y.; Chen, C.-A.; Zhang, X.-Q.; Dubey, A.; Yen, T.-J.; Chang, Y.-M.; Lee, Y.-H.; Gwo, S. Epitaxial Aluminum Surface-Enhanced Raman Spectroscopy Substrates for Large-Scale 2D Material Characterization. ACS Nano 2020, 14, 8838–8845. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Xu, H.; Li, Z.; Shang, Y.; Li, H.; Zhu, S.; Huang, L. Facile Fabrication of Al Nanoparticle Arrays with Continuous Tunable Diameter and Plasmonic Band for UV–Visible SERS Detection. Opt. Mater. 2023, 135, 113318. [Google Scholar] [CrossRef]
- Su, D.; Jiang, S.; Yu, M.; Zhang, G.; Liu, H.; Li, M.-Y. Facile Fabrication of Configuration Controllable Self-Assembled Al Nanostructures as UV SERS Substrates. Nanoscale 2018, 10, 22737–22744. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, X.; Tian, M.; Su, Y.; Li, L. Hybrid Metal-Dielectric Gratings (HMDGs) as an Alternative UV-SERS Substrate. Phys. Chem. Chem. Phys. 2023, 25, 15257–15262. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, Z.; Wei, J.; Hu, J.; Yu, H.; Su, G.; Hu, L.; Yan, X.; Zhan, P.; Liu, F. Improving Aluminum Ultraviolet Plasmonic Activity through a 1 Nm Ta-C Film. ACS Appl. Mater. Interfaces 2021, 13, 7672–7679. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Gao, R.; Wang, J.; Shih, T.-M.; Sun, G.; Lin, J.; He, Y.; Chen, J.; Zhan, D.; Zhu, J.; et al. Light-Trapped Nanocavities for Ultraviolet Surface-Enhanced Raman Scattering. J. Phys. Chem. C 2021, 125, 17241–17247. [Google Scholar] [CrossRef]
- Ding, T.; Sigle, D.O.; Herrmann, L.O.; Wolverson, D.; Baumberg, J.J. Nanoimprint Lithography of Al Nanovoids for Deep-UV SERS. ACS Appl. Mater. Interfaces 2014, 6, 17358–17363. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Fang Lim, S.; Puretzky, A.A.; Riehn, R.; Hallen, H.D. Near-Field Enhanced Ultraviolet Resonance Raman Spectroscopy Using Aluminum Bow-Tie Nano-Antenna. Appl. Phys. Lett. 2012, 101, 113116. [Google Scholar] [CrossRef] [Green Version]
- Sigle, D.O.; Perkins, E.; Baumberg, J.J.; Mahajan, S. Reproducible Deep-UV SERRS on Aluminum Nanovoids. J. Phys. Chem. Lett. 2013, 4, 1449–1452. [Google Scholar] [CrossRef]
- Jha, S.K.; Ekinci, Y.; Agio, M.; Löffler, J.F. Towards Deep-UV Surface-Enhanced Resonance Raman Spectroscopy of Explosives: Ultrasensitive, Real-Time and Reproducible Detection of TNT. The Analyst 2015, 140, 5671–5677. [Google Scholar] [CrossRef]
- Yang, Y.; Callahan, J.M.; Kim, T.-H.; Brown, A.S.; Everitt, H.O. Ultraviolet Nanoplasmonics: A Demonstration of Surface-Enhanced Raman Spectroscopy, Fluorescence, and Photodegradation Using Gallium Nanoparticles. Nano Lett. 2013, 13, 2837–2841. [Google Scholar] [CrossRef]
- Das, R.; Soni, R.K. Highly Stable In@SiO2 Core-Shell Nanostructures for Ultraviolet Surface-Enhanced Raman Spectroscopy. Appl. Surf. Sci. 2019, 489, 755–765. [Google Scholar] [CrossRef]
- Kumamoto, Y.; Taguchi, A.; Honda, M.; Watanabe, K.; Saito, Y.; Kawata, S. Indium for Deep-Ultraviolet Surface-Enhanced Resonance Raman Scattering. ACS Photonics 2014, 1, 598–603. [Google Scholar] [CrossRef] [Green Version]
- Kamali, K. UV Excited Enhanced Raman Scattering on Carbon-Doped SnS2 Nanoflowers. Mater. Res. Bull. 2022, 150, 111757. [Google Scholar] [CrossRef]
- Liu, M.; Shi, Y.; Wu, M.; Tian, Y.; Wei, H.; Sun, Q.; Shafi, M.; Man, B. UV Surface-Enhanced Raman Scattering Properties of SnSe2 Nanoflakes. J. Raman Spectrosc. 2020, 51, 750–755. [Google Scholar] [CrossRef]
- Garoli, D.; Schirato, A.; Giovannini, G.; Cattarin, S.; Ponzellini, P.; Calandrini, E.; Zaccaria, R.P.; D’Amico, F.; Pachetti, M.; Yang, W.; et al. Galvanic Replacement Reaction as a Route to Prepare Nanoporous Aluminum for UV Plasmonics. Nanomaterials 2020, 10, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponzellini, P.; Giovannini, G.; Cattarin, S.; Zaccaria, R.P.; Marras, S.; Prato, M.; Schirato, A.; D’Amico, F.; Calandrini, E.; De Angelis, F.; et al. Metallic Nanoporous Aluminum–Magnesium Alloy for UV-Enhanced Spectroscopy. J. Phys. Chem. C 2019, 123, 20287–20296. [Google Scholar] [CrossRef]
- Kim, J.; Glier, T.E.; Grimm-Lebsanft, B.; Buchenau, S.; Teubner, M.; Biebl, F.; Kim, N.-J.; Kim, H.; Yi, G.-C.; Rübhausen, M.; et al. Quantum Confinement Induced Excitonic Mechanism in Zinc-Oxide-Nanowalled Microrod Arrays for UV–Vis Surface-Enhanced Raman Scattering. J. Phys. Chem. C 2019, 123, 24957–24962. [Google Scholar] [CrossRef]
- Taguchi, A.; Hayazawa, N.; Furusawa, K.; Ishitobi, H.; Kawata, S. Deep-UV Tip-Enhanced Raman Scattering. J. Raman Spectrosc. 2009, 40, 1324–1330. [Google Scholar] [CrossRef]
- Verma, P. Tip-Enhanced Raman Spectroscopy: Technique and Recent Advances. Chem. Rev. 2017, 117, 6447–6466. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Q.; Fang, Y.; Sun, M. Deep Ultraviolet Tip-Enhanced Raman Scattering. Chem. Commun. 2011, 47, 9131. [Google Scholar] [CrossRef] [PubMed]
- Kumamoto, Y.; Taguchi, A.; Kawata, S. Deep-Ultraviolet Biomolecular Imaging and Analysis. Adv. Opt. Mater. 2019, 7, 1801099. [Google Scholar] [CrossRef]
- Pei, H.; Wei, Y.; Dai, Q.; Wang, F. Plasmonic Properties and Optimization of Ultraviolet Surface-Enhanced Raman Spectroscopy. Opt. Commun. 2020, 456, 124631. [Google Scholar] [CrossRef]
- Katyal, J.; Soni, R.K. Field Enhancement Around Al Nanostructures in the DUV–Visible Region. Plasmonics 2015, 10, 1729–1740. [Google Scholar] [CrossRef]
- Katyal, J. Plasmonic Coupling in Au, Ag and Al Nanosphere Homo-Dimers for Sensing and SERS. Adv. Electromagn. 2018, 7, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Katyal, J.; Badoni, V. Localized Surface Plasmon Resonance and Field Enhancement of Au, Ag, Al and Cu Nanoparticles Having Isotropic and Anisotropic Nanostructure. Mater. Today Proc. 2021, 44, 5012–5017. [Google Scholar] [CrossRef]
- Yang, Z.-L.; Li, Q.-H.; Ren, B.; Tian, Z.-Q. Tunable SERS from Aluminium Nanohole Arrays in the Ultraviolet Region. Chem. Commun. 2011, 47, 3909. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Jiang, S.; Ji, D.; Zeng, X.; Zhang, N.; Song, H.; Xu, Y.; Gan, Q. Super Absorbing Ultraviolet Metasurface. IEEE Photonics Technol. Lett. 2015, 27, 1539–1542. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, S.; Fang, Y.; Yang, Z.; Wu, D.; Dong, B.; Xu, H. Near- and Deep-Ultraviolet Resonance Raman Spectroscopy of Pyrazine-Al4 Complex and Al3 -Pyrazine-Al3 Junction. J. Phys. Chem. C 2009, 113, 19328–19334. [Google Scholar] [CrossRef]
- Sanz, J.M.; Ortiz, D.; Alcaraz de la Osa, R.; Saiz, J.M.; González, F.; Brown, A.S.; Losurdo, M.; Everitt, H.O.; Moreno, F. UV Plasmonic Behavior of Various Metal Nanoparticles in the Near- and Far-Field Regimes: Geometry and Substrate Effects. J. Phys. Chem. C 2013, 117, 19606–19615. [Google Scholar] [CrossRef]
- Zyubin, A.Y.; Kon, I.I.; Poltorabatko, D.A.; Samusev, I.G. FDTD Simulations for Rhodium and Platinum Nanoparticles for UV Plasmonics. Nanomaterials 2023, 13, 897. [Google Scholar] [CrossRef]
- McMahon, J.M.; Schatz, G.C.; Gray, S.K. Plasmonics in the Ultraviolet with the Poor Metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys Chem Chem Phys 2013, 15, 5415–5423. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Sun, L.; Du, C.; Fu, T.; Chen, Y.; Rong, W.; Li, X.; Shi, D. Plasmonic Properties of Individual Heterogeneous Dimers of Au and In Nanospheres. Phys. Lett. A 2021, 391, 127131. [Google Scholar] [CrossRef]
- Nie, S.; Emory, S.R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997, 275, 1102–1106. [Google Scholar] [CrossRef] [PubMed]
- Ong, T.T.X.; Blanch, E.W.; Jones, O.A.H. Surface Enhanced Raman Spectroscopy in Environmental Analysis, Monitoring and Assessment. Sci. Total Environ. 2020, 720, 137601. [Google Scholar] [CrossRef]
- McDonnell, C.; Albarghouthi, F.M.; Selhorst, R.; Kelley-Loughnane, N.; Franklin, A.D.; Rao, R. Aerosol Jet Printed Surface-Enhanced Raman Substrates: Application for High-Sensitivity Detection of Perfluoroalkyl Substances. ACS Omega 2023, 8, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Lafuente, M.; De Marchi, S.; Urbiztondo, M.; Pastoriza-Santos, I.; Pérez-Juste, I.; Santamaría, J.; Mallada, R.; Pina, M. Plasmonic MOF Thin Films with Raman Internal Standard for Fast and Ultrasensitive SERS Detection of Chemical Warfare Agents in Ambient Air. ACS Sens. 2021, 6, 2241–2251. [Google Scholar] [CrossRef] [PubMed]
- Beeram, R.; Vepa, K.R.; Soma, V.R. Recent Trends in SERS-Based Plasmonic Sensors for Disease Diagnostics, Biomolecules Detection, and Machine Learning Techniques. Biosensors 2023, 13, 328. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giordano, A.N.; Rao, R. Beyond the Visible: A Review of Ultraviolet Surface-Enhanced Raman Scattering Substrate Compositions, Morphologies, and Performance. Nanomaterials 2023, 13, 2177. https://doi.org/10.3390/nano13152177
Giordano AN, Rao R. Beyond the Visible: A Review of Ultraviolet Surface-Enhanced Raman Scattering Substrate Compositions, Morphologies, and Performance. Nanomaterials. 2023; 13(15):2177. https://doi.org/10.3390/nano13152177
Chicago/Turabian StyleGiordano, Andrea N., and Rahul Rao. 2023. "Beyond the Visible: A Review of Ultraviolet Surface-Enhanced Raman Scattering Substrate Compositions, Morphologies, and Performance" Nanomaterials 13, no. 15: 2177. https://doi.org/10.3390/nano13152177
APA StyleGiordano, A. N., & Rao, R. (2023). Beyond the Visible: A Review of Ultraviolet Surface-Enhanced Raman Scattering Substrate Compositions, Morphologies, and Performance. Nanomaterials, 13(15), 2177. https://doi.org/10.3390/nano13152177