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Abstract: Nanoscopic materials have demonstrated a versatile role in almost every emerging field
of research. Nanomaterials have come to be one of the most important fields of advanced research
today due to its controllable particle size in the nanoscale range, capacity to adopt diverse forms
and morphologies, high surface area, and involvement of transition and non-transition metals. With
the introduction of porosity, nanomaterials have become a more promising candidate than their
bulk counterparts in catalysis, biomedicine, drug delivery, and other areas. This review intends to
compile a self-contained set of papers related to new synthesis methods and versatile applications of
porous nanomaterials that can give a realistic picture of current state-of-the-art research, especially for
catalysis and sensor area. Especially, we cover various surface functionalization strategies by improv-
ing accessibility and mass transfer limitation of catalytic applications for wide variety of materials,
including organic and inorganic materials (metals/metal oxides) with covalent porous organic (COFs)
and inorganic (silica/carbon) frameworks, constituting solid backgrounds on porous materials.

Keywords: nanomaterials; porosity; stability; catalysis; biosensing

1. Introduction

The concept of nanotechnology was first introduced by the world-famous Noble
Laureate Richard P. Feynman during his lecture “There’s Plenty of Room at the Bottom:
An Invitation to Enter a New Field of Physics” at the annual meeting on 29 December
1959, when he tried to manipulate matter on an atomic scale [1]. Nanoparticles (NPs) and
nanostructured materials, parts of the nanotechnology field, have recently been the focus
of worldwide interest owing to their broad scopes of applications [2,3]. NPs are substances
with external nanoscale dimensions in the 1–100 nm range and can be one (1D), two (2D),
or three (3D) dimensional, depending on their shapes. Nanomaterials (NMs) are materials
with an internal or external structure of nanoscale dimensions, and are generally composed
of several agglomerated particles [4].

NMs and nanostructured materials have recently attracted interest for technological,
biomedical, and socioeconomic applications, owing to their highly tunable physical and
chemical properties [5,6]. Since the first discovery of MCM-41-type ordered mesoporous
silica by scientists of Mobil corporation in 1992 [7,8], considerable progress has been made
over 30 years in the synthesis of mesoporous materials with various structures and com-
ponents [9,10]. Similar to hexagonal mesoporous MCM-41 and large-pore SBA-15 silicas,
there has been a surge in the popularity of introducing porosity onto NMs matrices. NMs
offer greater versatility in surface functionality, catalytic properties, and biosensing than
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their nonporous bulk counterparts [11,12]. Thus, widespread knowledge and financial
investment have been directed towards the development of advanced and versatile appli-
cations for newly synthesized porous NMs [5–7,13,14]. Due to their innovative properties,
porous nanomaterials in the form of silica- [15], carbon- [16–19], and noble/non-noble-
metal-based [20–24] nanomaterials have been intelligently engineered for a wide range of
uses, including catalysis [25–30], energy conversion and storage [31–35], biosensors [36–45],
antibacterial [46], drug delivery [47], and gas uptake [48].

Consequently, many communications, research articles, reviews, and mini-reviews on
the applications of porous NMs have been published in both national and international
journals. These publications are readily available in the Web of Science database, indicating
the high level of interest and activity in this field of research [1–48]. Recognizing the vast
amount of research on porous NMs and the numerous applications that have been explored,
we have chosen to narrow the focus of this review to the catalytic and sensing applications
of these materials. In this review, we aim to provide an overview of the different types of
porous NPs, including their syntheses and properties. Furthermore, we will examine the
most important applications of these materials in the fields of catalysis and sensing.

The NMs can be classified according to their morphologies, dimensionalities, states,
chemical compositions, and other factors. Depending on their morphologies, NMs can
have a high or low aspect ratio (e.g., nanotubes and nanospheres). NMs can exist in
dispersed, suspended, agglomerated, and other forms, based on their syntheses and
surface functionalizations. NMs are broadly divided into four groups according to their
dimensionality (0D, 1D, 2D, and 3D) [2,4]. To further illustrate the diversity of porous
NPs, a flowchart has been provided in Figure 1 that outlines different categories of these
materials. In addition to the porous NPs mentioned in the flowchart, it is also worth noting
that nanomaterials can be classified based on their chemical composition into well-known
classes, such as carbon-based nanomaterials, inorganic-based materials, organic-based
nanomaterials, and composite-based nanomaterials. Some examples of carbon-based NMs,
which are mainly constituted of carbon, are carbon nanotubes (CNTs) and graphene [49–51].
In contrast, inorganic NMs can have metallic (e.g., Ag, Cu, and Au) or metal oxide (e.g.,
TiO2, Al2O3, and ZnO) structures [4]. Inorganic-based NMs include mixed oxides such as
ZnTiO3, NiAl2O4, and silica (SiO2). Furthermore, dendrimers, cyclodextrins, liposomes,
and other materials formed from organic compounds should be considered as organic-
based NMs. Composite NMs have multiple phases with at least one phase of nanoscale
dimensions. Thus, combinations of porous metal oxides, silicas, oxides, and carbon can
be considered composite-based NMs [52]. In this review, we aim to provide an overview
(Figure 2) of the different types of porous NPs, including their syntheses and properties.
Furthermore, we will examine the most important applications of these materials in the
fields of catalysis and sensing.
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Figure 1. Classification of the NMs based on different categories.
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2. Properties and Characterization of Porous NMs

Porous NMs find widespread applications in various fields such as daily commodities,
industry, biomedicine, and chemical research [4,52]. The adequate application of NMs
depends on the detailed determination of their physicochemical properties, including
crystallinity, phase purity, morphology, particle size, surface properties, internal structure,
thermal stability, reactivity, and biocompatibility. Several analytical techniques and instru-
ments have been used to characterize NMs [53]. Some of the most common techniques
and instruments used to determine the properties of NMs are listed in Table 1. In addition,
specific analytical tools have been occasionally employed to study the application of NMs,
such as gas chromatography–mass spectrometry for catalytic studies, UV-spectrometry for
photocatalysis, cyclic voltammetry (CV) and amperometry for sensing analysis, physical
property measurement systems to evaluate magnetic properties, and in vitro cell viability
and in vivo microbial colony viability tests for biological studies.

Table 1. Analytical techniques and instruments used for the characterization of porous NMs.

Analytical Technique Instrument Properties

Powder X-ray diffraction (small and wide
angle) Powder X-ray diffractometer Mesostructure, porosity, phase purity,

and crystallinity
Brunauer–Emmett–Teller (BET) surface

area analysis BET surface area analyzer Surface area, porosity, pore-diameter,
pore volume, and shapes of pores

Transmission electron microscopy (TEM) Transmission electron microscope Internal nanostructure, particle size, pore
crystallinity, and aggregation

Scanning electron microscopy (SEM) Scanning electron microscope Morphology, particle size and
distribution, shape, and aggregation

Atomic force microscopy Atomic force microscope Particle size and distribution, shape,
structure, and aggregation

X-ray photoelectron spectroscopy X-ray photoelectron spectroscope Oxidation state and chemical
composition of surface

Fourier transform infrared
spectroscopy Fourier transform infrared spectroscope Chemical bonding and bonding

connectivity
UV-visible spectroscopy UV-visible spectrophotometer Chemical environment

Thermogravimetric analysis Thermogravimetric analyzer Thermal stability
Dynamic light scattering Dynamic light scattering instruments Size distribution

3. Catalytic Applications of Porous NMs

NMs have a wide range of applications, owing to their unique properties. As covering
all fields of application is unfeasible, this review highlights two of the most significant
and extensively researched areas of NMs, namely, catalytic and biosensing applications.
Porous NMs are versatile catalysts with controllable morphologies and local environments
that allow for the optimization of catalytic activity [54]. Their tunable pore diameters and
good surface areas make them suitable for catalytic beds. Moreover, these materials can
be functionalized to alter the textural properties and polarity of the base matrix. Porous
NMs possess favorable stability, bio-compatibility, and reusability towards heterogeneous
catalysis for various advanced acid–base, redox, photocatalytic, organic, and environmen-
tally benign reactions [11]. Magnetic porous materials have also been used as supports to
prepare porous solid catalysts for several organic transformation reactions [55–58].

3.1. Silica and Silica-Supported Catalysts

In this section, we review recent reports on the catalytic properties of porous silica and
silica-supported NMs.

3.1.1. Functionalized Mesoporous Silica Nanocatalyst

Mesoporous silica NPs (MSNs) are widely used catalysts in the mesoporous family of
materials (Figure 3) [47]. Porous silicas have extremely high BET surface areas and good
pore volumes with tunable pore diameters, rendering them suitable for heterogeneous
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catalysis [59]. Although pure silica rarely exhibits appreciable catalytic activity, owing to its
structural inertness, its catalytic properties can be improved by incorporating suitable metal
ions or organic functional groups into the covalent Si-O framework. Rana et al. recently
reported the synthesis of amine-functionalized silica using sonication. This material was an
excellent catalyst for the Knoevenagel condensation of benzaldehyde and a malonic ester
to produce cinnamic acid (Figure 4) [60]. A product selectivity of up to 95% obtained at
room temperature was the highest among reported NH2-functionalized silicas. The catalyst
could be reused three times without significant loss of activity [60]. The morphology of the
silica NPs is crucial in the catalytic performance of functionalized silicas [61]. For example,
silica hollow nanospheres (SHNs) with large core spaces can effectively accommodate the
reagents required for catalytic reactions, and their porous shells help them diffuse into the
core.
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In 2013, Li et al. reviewed the role of organo-functionalized SHNs in chiral catalysis
and cascade reactions [62]. The 4-(dialkylamino)pyridine-functionalized mesoporous silica
nanospheres synthesized by Chen et al. proved to be efficient nucleophilic catalysts for
Baylis–Hillman, acylation, and silylation reactions, presenting high reactivity, reusability,
and selectivity [63].

MSNs immobilized with both acidic and basic groups have been successfully used as
bifunctional heterogeneous catalysts for C-C bond formation [64]. Shylesh et al. reported
the one-step synthesis of amine- and sulfonic acid-functionalized silica nanospheres and
investigated their cooperative role in various organic coupling reactions, such as nitroaldol
and deacetalization–aldol reactions [64]. Furthermore, bifunctionalized MSNs successfully
catalyzed the synthesis of HMF from bio-based carbohydrates, such as glucose, fructose,
sucrose, and starch-based biomolecules, enabling the environmentally friendly conversion
of biomass to an alternative energy source [65].
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3.1.2. Porous Silica Supported Metal-Doped Catalysts

The energy crisis, or the depletion of fossil fuels, is one of the world’s most im-
portant issues. Furthermore, the combustion of fossil fuels contributes significantly to
environmental pollution by releasing CO2 into the atmosphere. As a result, hydrogen
gas production via water splitting via electricity has been regarded as the most pure and
abundant energy source in this decade [66–68]. Several electrocatalysts have been pro-
duced by researchers worldwide, but there are several limitations such as high cost, low
durability, and high toxicity [69–71]. Porous silica materials have no such disadvantage
and also demonstrate outstanding electrocatalytic activity towards the over water splitting
reaction, which is currently the greatest method for clean energy production [72–78]. Very
recently, Meng et al. have created an in-situ CoP-doped Co3(Si2O5)2(OH)4 nanosheets ma-
terial for bifunctional electrocatalysis, i.e., hydrogen evolution reaction (HER) and oxygen
evolution reaction (OER). This electrocatalyst (CoP/CSNSs) displayed an overpotential
of 251 mV@10 mA/cm2 current density with respect to a reference hydrogen electrode
(RHE) in a 1 M KOH electrolyte for HER, and, surprisingly, the activity of the silica com-
posite was equal to a commercially available Pt/C electrocatalyst at a high current density
(∼150 mA/cm2) [79]. Metal nanoparticle-, metal oxide- or mixed-oxide-based silica NMs
can be synthesized by co-condensation or post-impregnation of the silica framework with
suitable reagents. Metal-based silica NMs can be versatile catalysts, depending on the
metal ions incorporated into the silica matrix. For example, Ce(IV)O2-loaded silica nanos-
tructures oxidized benzyl alcohol to benzaldehyde at room temperature under solvent-free
conditions [80]. Furthermore, Ce(IV)O2/Ce2(III)O3-loaded silica mesoporous compos-
ites exhibited both redox and acidic properties for the oxidation of hydrocarbons and
acid-catalyzed acylation of aromatic and aliphatic alcohols, respectively [81]. Periodic
mesoporous organosilicas (PMO) grafted with different transition metals, such as Ti, V, Cr,
and Mo, have been used in various chemical reactions [82–84]. In 2022, Chatterjee et al.
prepared a novel PMO using a Schiff base precursor synthesized by the condensation of
p-terphenyl-4,4′-dialdehyde and APTMS [85]. The PMO was grafted with Ag NPs to form
Ag@PMO, which has been shown to be an excellent catalyst for the oxidation of styrene
to styrene oxide using CO2 as an oxidant under mild reaction conditions (Figure 5) [85].
Transition metal oxide NPs supported on silica materials also exhibit versatile catalytic
performance towards different organic transformations. Kankala et al. reported the en-
capsulation of metal species into MSNs and their application in catalysis [86]. Magnetic-
nanoparticle-doped silica (Fe3O4@Silica) is an ideal support material for the immobilization
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of Pd and Ag NPs in order to create suitable catalysts for the reduction of organic molecules,
allowing for simple catalyst separation using a strong magnet [87].
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Morphology-oriented silica nanocatalysts have been extensively applied in hetero-
geneous catalysis [61]. The catalytic activity and product yield significantly depended
on the structure of the NMs. Diacon et al. recently incorporated iron oxide into silica
hollow spheres and studied their catalytic performances in the Fischer–Tropsch conversion
of CO to CO2 [88]. According to the Polshettiwar group, fibrous silica nanospheres have
distinguishable catalytic activities when loaded with different metal ions, such as Pd, Ru,
and Pt, owing to their exceptionally unique microstructures. Therefore, they are excellent
candidate catalysts for various organic reactions [89]. Metal-oxide-loaded silica core–shell
nanostructures have also proven to be efficient catalysts for hydrogenation and other cat-
alytic reduction reactions [90,91]. The use of porous materials to prepare the immobilized
enzymes has been extensively investigated in the past years, and this material showed
excellent catalytic activities towards several organic transformation reactions [92,93]. In
2016, Xie et al. used a surfactant-directed sol-gel technique to create a Fe3O4-MCM-41
nanocomposite capable of immobilizing lipase on a core-shell structure. After immobilizing
the lipase, the heterojunction nanocomposite has been utilized as a magnetically separable
biocatalyst for the interesterification reaction in-between soybean oil and lard [94].

3.1.3. Porous Phyllosilicate Nanocatalysts

Supported metal (oxide) NPs have gained interest in the last decade because of their
energy and/or selectivity in oxidation and (de)hydrogenation reactions, which are the most
common catalytic reactions used in pollution control, energy, and chemical industries [95].
However, their lower thermal stability limits their catalytic potential. In 2013, Dumitriu
et al. developed a novel method for the synthesis of metal (oxide) NPs in a phyllosili-
cate (PS) structure with improved dispersion and stability, which are useful for catalytic
applications [96]. PS, also known as sheet silicate, is a mineral class that includes mica,
chlorite, serpentine, and talc and is characterized by continuous tetrahedral and octahedral
sheets. The tetrahedral sheets have a central cation, T, coordinated to four tetrahedral
oxygen atoms, three of which are linked to the adjacent tetrahedra, forming a boundless
broadened hexagonal sheet along the 2D crystallographic direction (Figure 6a). In contrast,
in octahedral sheets, the cation is situated at the center, coordinating with six anions (e.g., F,
Cl, O, and OH) and sharing six corners with the neighboring octahedron (Figure 6b). A
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common plane (Figure 6c) was formed by the tetrahedra, with the free corners pointing to
the same side of the sheet [97].
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Kaolinite is composed of one tetrahedral sheet and one octahedral sheet (1:1), and
Smectite is composed of two tetrahedral sheets sandwiched between one octahedral sheet
(2:1). The Si4+, Al3+, and Fe3+ central cations (T) lead to the formation of tetrahedral
sheets, whereas Mg2+, Mn2+, Ni2+, Co2+, Cu2+, and Zn2+ form octahedral sheets. As
shown in Figure 6, the sheets can bend and roll because of the similar molecular sizes of
silicon tetrahedrons and metal octahedrons. Several PS-based materials have recently been
applied in metal-ion batteries [98], supercapacitors [99], and metal-ion adsorbents. The
chemical, environmental, and energy industries primarily use PSs as catalysts or catalyst
precursors. The catalytic properties of Ni, Cu, Co, and Ce PSs were recently examined.
Among metal silicates, Ni-based silica materials have been widely studied because of their
high abundance, activity, cost-effectiveness, and availability of silica supports with varying
pore structures. However, there are some limitations in the synthesis of these catalysts, such
as the need for high temperatures (>180 ◦C), long reaction times (>24 h), and excess nickel
reagents due to the lack of surface silanol groups. Thus, Ni utilization was lower than
those of the silica materials. Liu et al. developed a double accelerator method to synthesize
Ni-PS materials at lower temperatures (40 ◦C) without using an excess Ni precursor [100].
Furthermore, Cho et al. recently reported the first mesoporous spherical Ni-PS (Ni/Si
= 1) with excellent structural integrity after 8 weeks of hydrothermal (100 ◦C) treatment
(Figure 7) [101]. Ni-PSs are commonly used for the catalytic conversion of methane, a
greenhouse gas, to syngas through partial oxidation or dry reforming processes because
of their superior stability and carbon resistance. These reactions correspond to steam and
dry (CO2) reforming (SRM and DRM) and partial oxidation of methane (POM) methods.
Sivaiah et al. reported the use of pure Ni-PS in a DRM process with excellent catalytic
conversion at 700 ◦C for 12 h [102]. The presence of a larger number of hydroxyl (-OH)
groups on the PS surface suppressed carbon formation. A different Ni-PS supported on
porous silica nano-spheres was reported by Yang et al. [103] for the POM at 700 ◦C for 50 h.
TEM imaging of the material after the catalytic oxidation process revealed a homogeneous
distribution of Ni-NPs over the specimen without carbon deposition. The water–gas shift
reaction (WGS) is commonly combined with methane steam reforming in downstream
processes to balance the H2/CO ratio. This is one of the most important reactions in the
chemical industry, allowing the production of methanol, ammonia, and hydrocarbons,
along with H2 gas.
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The three main reactions involved in methane gas reforming are as follows:

(1) H2O + CH4 → CO + 3H2
(2) CO2 + CH4 → 2CO + 2H2
(3) O2 + 2CH4 → 2CO + 4H2

The Fe-Cr catalyst, known as a high-temperature shift catalyst (HTS), was previously
used as a catalyst for this reaction at moderately high temperatures (583–683 K). However,
the high toxicity of chromium led to the development of alternative Ni catalysts. Despite
their high catalytic performance, Ni-based materials have seldom been applied in industry
for HTS because of their greater tendency towards methanation (Figure 8), which sup-
presses the production of H2 [104]. In Figure 8, Kawi et al. showed the effect of doping of
alkali metal (Na) in the Ni-based catalysis towards methane suppression during HTS reac-
tion. The pyrolysis of PSs at different temperatures produced a Ni/SiO2 composite material
with extraordinary catalytic activity towards HTS [105]. Bi-metallic (Ni-Mg) PS nanotubes
were also reported for the high-temperature (650 ◦C) WGS reaction [106]. Cho et al. also
reported the HDO reaction of m-cresol in atmospheric hydrogen pressure catalyzed by
Ni/silica and Nickel silicate (Ni-MCM-41) [107]. Sintering of the Ni particles was observed
with the traditional Ni/SiO2 catalysts at high Ni loadings. To circumvent this, Liu et al.
synthesized a series of Ni-PS materials via hydrothermal treatment of mesoporous silica
nanorods and a Ni(II) salt and impregnation of the CeO2 promoter into the framework. This
CeO2-modified Ni-PS exhibited excellent catalytic activity for the methanation of CO and
CO2 above 350 and 600 ◦C, respectively, for 6 h [108]. Cu-PS has recently been developed
for the hydrogenation of dimethyl oxalate (DMO) because of its superior stability, catalytic
activity, and selectivity [109]. On the other hand, Gong et al. developed a Cu/SiO2 catalyst
that hydrogenated DMO to ethanol using Cu PS as a catalyst [110]. CO2 improved the
activation achieved by Cu, making it an excellent hydrogenation catalyst for the production
of methanol from CO2. Wang et al. also developed a Cu-PS porous silica material for
the same catalytic process [111]. Syngas (CO+H2) can be converted into sulfur-free liquid
hydrocarbon fuels via the Fischer–Tropsch reaction, a process that uses Co-based catalysts.
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However, the lower dispersion with increasing Cobalt percentage (20%) limits its
application. In 2017, Park et al. synthesized a Co/SiO2 catalyst from a Co-PS framework
for high-temperature Fischer–Tropsch reactions [112].

3.2. Metal-Oxide- and Phosphate-Based Catalysts

Although porous oxide and phosphate nanostructures have smaller surface areas than
silica, they provide a great platform for heterogeneous catalytic transformations because of
their high crystallinity, thermal stability, and number of active sites [113–119]. Akbari et al.
reviewed the applications of metal-oxide NPs from groups 4 to 9 and 11 for the selective
oxidation of alkenes, alcohols, and aldehydes [120].

Ren et al. reported highly crystalline 3D mesoporous oxides such as Cr2O3, Co3O4,
Fe2O3, CuO, and β-MnO2 for catalytic CO oxidation reactions [118]. Self-assembled TiO2
NPs also proved to be highly efficient heterogeneous catalyst supports for various organic
reactions. De et al. reported a straightforward sol–gel synthesis of a well-defined spherical
TiO2 nanocatalyst using aspartic acid and its use in the dehydration of D-fructose and
D-glucose to HMF under microwave heating [121]. The high density of acid sites in the
TiO2 nanospheres and high NP surface area led to a high catalytic yield of HMF.

Sarkar et al. recently prepared boat-, dumbbell-, and cuboid-shaped cerium hydroxi-
dophosphate materials via sol–gel-mediated hydrothermal synthesis and employed them
for the oxidative coupling of thiols to disulfides in the presence of H2O2 and air [113].
Bifunctional Zn-Ti-based nanocatalysts exhibited catalytic activities in oxidation and ben-
zylation reactions, demonstrating the high efficiency and stability of this heterogeneous
support for organic transformations [122]. Pramanik et al. have demonstrated the crucial
role of organic–inorganic iron–phosphate NPs in transesterification reactions for biofuel
synthesis under mild reaction conditions [123]. The reusable catalyst was prepared from
benzene-1,3,5-triphosphonic acid and FeCl3 via hydrothermal synthesis. Mixed-oxide NPs
are superior heterogeneous catalysts to single oxide NPs because of their higher densities
of catalytic acidic or basic sites [124]. In 2010, Paul et al. employed newly designed meso-
porous nickel aluminate mixed-oxide NPs for the liquid-phase catalytic reduction of an
aromatic nitro compound [125]. Compared to single-oxide alumina (0.6% yield), the binary
Ni-Al oxide system exhibited improved conversion efficiency (approximately 50% yield)
under similar reaction conditions (Figure 9). A similar phenomenon was observed for a
Mg-Al mixed oxide, where the presence of Lewis basic sites catalyzed the formation of
lactones and esters from cyclic and acyclic ketones via Baeyer–Villiger oxidation [126].
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Abdelrahman et al. reported various stoichiometric oxides with excellent efficiency
and reusability for the photocatalytic degradation of organic dyes using UV irradia-
tion [127].

3.3. Pure Organic and Organic–Inorganic Hybrid Nanocatalysts

Pure organic NMs solely composed of covalent bonds (C-C, C-N, C-O, and B-O) are
known as covalent organic frameworks (COF) or porous organic polymers (POP). These
materials exhibit distinct synthesis and structural properties [128–130]. Generally, COFs are
(semi-) crystalline NMs produced through reversible condensation reactions. In contrast,
POPs are amorphous materials with a clear-cut porous architecture produced by irreversible
condensation reactions such as C-C coupling [131]. In the year 2023, Banerjee et al. reported
three metal-free porous imine-based COFs with remarkable stability (Figure 10) in the
year 2023, enabling C-H borylation at ambient temperature and nitrogen pressure under
blue-light-emitting diodes [132]. Different functional groups, e.g., -CH3, -Ph, -Cl, -OH,
are compatible with this catalytic process. They demonstrated photocatalytic activity as
a function of several physical and photophysical properties, such as BET surface areas,
optical property, and band gaps of three separate COFs with different building blocks
employed.

They have shown 12 different substrate scopes, including quinolines, pyridines, and
pyrimidines with moderate yields (up to 96%). Among all three COFs, TpAzo-COF shows
the best catalytic performance due to its high surface area and low bandgap compared
to the others. The most important analytical tool for investigating the photo-activity of a
material is charge separation efficiency, which is also investigated thoroughly in this article
by performing fluorescence and electrochemical techniques. This finding points global
scientists in a new approach toward sustainable and environmentally friendly societal
growth.

Chowdhury et al. recently reported an N-rich porous organic polymer (POP) syn-
thesized from three different olefin monomers, with excellent catalytic activities for the
synthesis of cyclic carbonates from epoxides, using CO2 as the carbon source [133].
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Figure 10. (a) Three different COF material structures have been synthesized by varying the amine
linker. (b) Substrate scope for the photocatalytic metal-free C-H borylation reaction by utilizing the
aforementioned COF structure (2 mg) under blue LEDs. Reprinted with permission from Banerjee
et al. [132]. Borylation of quinoline (1) produced a mix of C2 and C4 (*) products, with a clear
preference for the more active C2 site (C2/C4 = 2.7:1).

Porous coordination polymers, metal–organic frameworks (MOFs), PMOs, and metal
phosphonate homoleptic open frameworks are emerging hybrid organic–inorganic porous
NMs. Among these, MOFs have been explored for heterogeneous organocatalytic applica-
tions, owing to the presence of “molecular scaffolds” in the periodic architecture [134–138].

MOFs are constructed from metal-ion nodes and organic compound bridging link-
ers. Over 90,000 MOFs have been reported in the literature, with 500,000 characterized
structures [139–141]. This includes different organic ligands such as thiolates, carboxy-
lates, phosphonates, imidazolates, and oxalates. There are three main active sites in the
MOFs responsible for catalytic activity: open metal sites, defect metal sites, and organic
linkers [142]. A Cu3BTC (BTC = 1,3,5 benzene tricarboxylic acid) framework was synthe-
sized by Nikseresht et al. and used to produce tacrine analogs using ultrasonication. The
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study revealed that the Cu metal sites play a crucial role in catalysis instead of the ligand,
providing an example of the open metal site as an active catalytic site [143].

In 2020, Park et al. reported a CO2 fixation reaction using a Cu(II)-based MOF as the
catalyst. The role of Cu was investigated using theoretical studies [144]. An example of
an MOF containing defect metal active sites was reported by Caratelli et al. in 2017 using
two different hydrated- and dehydrated-linker-deficient UIO-66 and UIO-66-NH2. This
MOF was applied in Fischer esterification reactions using carboxylic acids and methanol
as substrates. The intermediate of this catalytic reaction is stabilized by H-bonding with
extra Brønsted acid sites in the hydrated framework [145]. An overview of the differ-
ent functionalities integrated into MOFs and the role of the linker in catalytic selectivity
(for Baylis–Hillman, click, acetal, alcohol oxidation, and other reactions) was recently
demonstrated by Cao et al. represented in Figure 11 [146].
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Figure 11. Multivariate MOF catalysts produced from proto-LIFM-28 using the dynamic spacer
installation (DSI) method demonstrating their interconversion for various catalytic applications.
Reprinted with permission from Su et al. [146].

In conjunction with metal binding and covalent postfunctionalization, the authors
displayed an all-round multifaceted MOF synthesizing procedure for creating multivariate
heterogeneous organocatalysts. They have successfully integrated secondary and ternary
ligands into the pristine LIFM-28 and then dynamically disintegrated also. Two or more cat-
alytic sites have also been accurately and quantitatively formed into the MOF co-ordination
spheres for sequential reaction. These findings suggest that MOFs are suitable as multifunc-
tional catalysts, which are potential techniques to enhance the efficiency and environmental
friendliness of heterogeneous catalysis. Chakraborty et al. reported a Ni-W mixed metal
phosphonate open framework material for the photoelectrochemical oxygen evolution
reaction (PEC-OER) in 1 M KOH, achieving an O2 evolution rate of 275 µmol·g−1 [147]. The
same group developed a tetradentate phosphonate ligand-based Co-MOF for the electro-
chemical hydrogen evolution reaction in different solvents, including seawater. DFT-VASP
studies were performed to establish the structure–catalytic property relationship during
hydrogen evolution. H2 production rates of 4.5, 2.3, 1.8, and 1.5 µmol·g−1 were obtained in
0.5 M H2SO4, pH = 4, pH = 6, and seawater media, respectively [148].
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3.4. Composite-Nanomaterials-Based Catalyst

Composite nanoporous materials possess properties that are distinct from those of
their individual components [52]. Thus, oxide–oxide and oxide–silica composites are
commonly used, industrially important, and ecofriendly heterogeneous catalysts. Zhang
et al. prepared various morphology-oriented porous composites of CuO/Cu2O oxides
using lauric acid as the capping agent [149]. The catalytic oxidation of CO to CO2 over these
composites significantly depended on their morphologies, and a significant improvement
was observed when the morphology changed from cubic to octahedral and from rod-
like to wire. The oxidation of CO over porous oxide composites has also been reported
by another group of scientists [150]. Well-dispersed hollow microspheres of CeO2-ZnO
oxide composites were synthesized by Xie et al. and loaded with Au NPs for the catalytic
oxidation of CO at lower temperatures [151].

In 2012, Xu et al. synthesized an ordered porous NiO-CaO-Al2O3 composite using
sol-gel-mediated EISA, which showed excellent catalytic performance in the CO2 reforming
of methane gas [152]. Mesoporous oxide–silica composites, also known as silica/ceria–
silica composites, are active catalysts for heterogeneous liquid-phase catalytic reactions
and have been applied in the solvent-free oxidation of benzyl alcohol to benzaldehyde at
room temperature with 50% conversion (Figure 12) [80].
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MOF-based composite materials have lately gained popularity due to their high
porosity, which allows for the production of host–guest composite materials. Unlike the
MOF-based catalysts described above, which use metal MOFs as catalysts or catalyst
components that remain intact throughout the reaction time, MOFs can serve as self-
sacrificing templates for fabricating highly porous carbon-based materials by pyrolyzing
at different temperatures (most commonly between 700 and 1000 ◦C), and these materials
have been explored for a variety of catalysis applications [153–156]. In 2018, Huo et al.
reported the efficient and site-selective oxidation of diols and hydrogenates using Pt/ZIF-8
by restricting the physical space within MOF pores [157]. Furthermore, Kennedy et al.
developed a Ru-immobilized Zr-based MOF, which is a highly active and stable CO2
methanation catalyst [158].

3.5. Porous Carbon-Based Nanocatalyst

Porous carbon-based NMs are superior catalyst beds for heterogeneous catalysis be-
cause of their high surface areas, large pore volumes, and controllable pore sizes [159,160].
Porous carbon nanostructures loaded with various metal NPs can catalyze multiple in-
dustrially important organic transformations. Recently, Zhang et al. reported a novel
Ni-embedded porous carbon catalyst, synthesized via hydrothermal synthesis, for the
catalytic cracking of biomass tar [161]. Moreover, Gogoi et al. described the ability of Cu
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and Co nanoparticle-decorated porous carbon materials to reduce nitroaromatics to aniline
derivatives using NaBH4 [160]. The high efficiency of the catalyst, as well as its reusability,
eco-friendliness, easy separation using a strong magnet, and the ability to provide an
environmentally friendly reaction pathway were also demonstrated. De et al. previously
reviewed the synthesis of porous carbon NMs from biomass and explored their applications
in emerging catalytic reactions [161].

3.6. Porous Metal-Based Catalyst

In recent years, nanoporous metals have been considered as one of the most unique
members in the nanoporous family due to their high BET surface area, uncommon porosity,
and excellent electrical conductivity. These properties also make them extremely promising
candidate for a broad range of important applications (e.g., energy storage, sensing, and
catalysis) [162–164]. This material is highly efficient for electrocatalyst for the oxidation of
small molecules, e.g., methanol, ethanol, and formic acid, and it is also used for oxygen
reduction reaction. All of those reactions play critical roles in fuel cell applications [165].
Porous platinum metal electrode has been used mostly for this purpose [165]. To decrease
the cost of this Pt-based electrode, researchers used transition metals (e.g., Fe, Cu, Ni, and
Co) containing porous bimetallic electrode materials. More notably, bimetallic Pt-based
catalysts are appealing for the following reasons: (1) Due to the synergistic actions of both
components, bimetallic catalysts can considerably improve resistance to carbon monoxide
poisoning for the oxidation of tiny organic molecules. (2) Due to electrical, alloying, or
strain effects, the addition of a second metal can increase catalytic activity [163]. An
electrospinning process combined with chemical alloying was used by Shui et al. to create
nanoporous Pt-Fe bimetallic alloy nanowires with overall wire diameters of 10–20 nm
and a ligament diameter of 2–3 nm [166]. Due to the presence of chemically active metal
surfaces on those, core–shell-like composite materials have also been prepared by using
alloyed nanoporous metals for better catalytic applications. For example, Li and Ding
demonstrated that the one-step oxidation of np-Ag by hydrogen peroxide (H2O2) within
the addition of HCl could yield AgCl-coated np-Ag (AgCl/np-Ag) composite catalysts,
showing excellent photocatalytic degradation activity towards the methyl orange dye [167].
The most interesting thing is that this material could show plasmonic properties, and this
property was helpful to absorb the light from the UV to infrared regions. That is why this
material is considered as highly capable for photocatalysis [168].

4. Applications of Porous NMs in Biosensing

The biosensing or sensing of biological agents and toxic chemicals in physiological
systems is an important part of biomedicine [169–171]. NMs have recently been explored
in the biosensing field because of their unique physicochemical properties, including a
high surface area, tunable pore diameter, and variable oxidation state of metal-based
NPs [172,173]. NPs mainly sense biomolecules through colorimetric, fluorescence, and
electrochemical sensing.

4.1. Colorimetric Biosensing

The colorimetric detection of biomolecules, such as H2O2, glucose, and antioxidants, is
vital for the diagnosis of diseases and analysis of food safety. Porous metal-based and metal
NPs supported on porous silica or carbon matrices can act as artificial nanozymes (NMs
that mimic enzymes). In 2011, Kim et al. reported the synthesis of a porous silica-based
nanocomposite embedded with Fe3O4 magnetic NPs that mimicked peroxidase activ-
ity [174]. When loaded with any oxidative enzyme, the composite generated H2O2 from
the target molecule. The generated H2O2 reacts with Fe3O4 to form a colored compound
that could be detected colorimetrically (Figure 13). A similar principle was applied to the
detection of other target molecules by changing the enzyme used. Wang et al. recently
investigated the detection of glutathione, H2O2, glucose, and other components using Fe
NP incorporated into 2D carbon nanosheets [175]. The Fe@CNs behaved like a dual enzy-



Nanomaterials 2023, 13, 2184 16 of 30

matic system, mimicking the re-activity of oxidase and peroxidase to calorimetrically detect
the substrate 3,3′,5,5′-tetramethylbenzidin. The colorimetric sensing of dopamine in beef
can also be achieved using CuS-modified bovine-serum-albumin-functionalized copper
phosphate NPs [176]. Au and Pt NPs can also be used as nanozymes for the colorimetric
sensing of biomolecules [177,178].
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4.2. Porous NMs in Fluorescence Biosensing

The advanced optoelectrical properties of NPs have prompted their widespread ap-
plications as fluorescent biosensors for detecting wastewater pollutants [179,180]. In this
process, NMs are conjugated with biomolecules, such as enzymes and antibodies, for
the selective detection of target species. Gaviria-Arroyave et al. previously reviewed
the fluorescence biosensing of environmental pollutants [179]. Furthermore, Yaraki et al.
recently examined the utilization of metal NPs on supported porous matrices as improved
fluorescence biosensors [173]. NPs have also been widely used to fabricate FRET-based
biosensors to monitor and detect the behaviors of DNA and RNA in biological systems [181].
The chemical immobilization of porous silica is straightforward because of the presence
of surface -OH functional groups. Varma et al. employed this concept to develop a
sol–gel nanoporous silica substrate with a high surface area for biosensing cardiac mark-
ers [182]. Chakraborty et al. developed a tetratopic phosphonate linker (1,1,2,2-Tetrakis(4-
phosphonophenyl)ethylene)-based Mn-MOF single crystal for the remediation of sepsis by
selectively sensing arginine over lysine and other biofluids in aqueous media [183]. Simple,
rapid, and highly sensitive DNA detection methods are required for early clinical diagnos-
tics and screening of genetic disorders. Through non-covalent (Π-Π) interactions between
POP nanospheres and DNA, Liu et al. developed a simple and efficient fluorescent biosens-
ing platform capable of detecting multiplex DNA [184]. A covalent organic framework
(COF) is a crystalline organic porous architecture comprising reversible condensations of
building materials that have a highly ordered structure and regulated porosity [185]. COFs
have been employed for biosensing applications since 2014 [186–188]. Pharmaceutical
enterprises, hospitals, nursing homes, and families are the primary sources of antibiotic
discharges into water bodies as a result of COVID-19 and the current pandemic. Detecting
and removing them from bodies of water is vital, but it can be difficult. Zhong et al. created
triazine-based COF nanosheets that functioned as a fluorescence-induced biosensor to
detect nitrofurans (effective antibiotics). There was a LOD of 4.97 ppb for nitrofurazone,
8.08 ppb for nitrofurantoin, and 13.35 ppb for furazolidone [189]. An immunoassay based
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on fluorescent sensors was developed by Liu et al. to detect various malignancies with a
GOx@ZIF-8 composite signal-transduction tag in 2017 [190].

4.3. Electrochemical Biosensing Using Porous NMs

Transition metals and metal oxides exhibit a wide range of catalytic properties, owing
to their multiple possible oxidation states. Porous metal oxides, metal composites, and
metal–silica mixed oxides are thus extensively used for the electrochemical sensing of
biomolecules such as glucose, H2O2, uric acid, ascorbic acid, and dopamine [191].

Electrochemical biosensors transduce biochemical information into electrical signals
via current, voltage, or impedance modulation. The electrodes, which are the main com-
ponents of these analytical devices, are modified with NMs, whereas the solid support is
functionalized with biomolecules. The performance and sensitivity of biosensors depend
on their nature, functionalization, surface area, and biocompatibility, as well as the im-
mobilization of the biomolecules [192]. Nanostructured materials employed in biosensor
preparation can be divided into two groups: carbon-based and non-carbon-based (silica
and other metal oxides) biosensors.

4.4. Carbon-Based NMs for Biosensors

Porous silicon electrochemical biosensors offer practical, simple, low-power, cost-
efficient, and low-maintenance alternatives to optical biosensors. However, despite their
potential, they remain underdeveloped and underused. Several novel approaches for the
functionalization of porous NMs are currently under development, including the derivati-
zation, oxidation, and preparation of porous NMs nanocomposites. These nanocomposites
exhibit high BET surface area, tunable porous architectures, and high biocompatibility. The
Hong group employed modified gold electrodes based on nanoporous silicon as novel
urea detection biosensors [193]. Glucose sensing is vital for diabetes diagnosis. Despite
their high sensitivities and selectivities, natural enzymes are not ideal for glucose detection,
owing to their high cost, poor long-term stability, and difficult immobilization processes.
Alternative glucose sensors that combine light and acoustic wave technologies with elec-
trochemical sensors are currently being developed. Simple, low-cost, highly sensitive,
and rapid electrochemical glucose sensors are highly appealing. In 2019, Yamauchi et al.
described the application of hierarchical Ni-BDC nanosheets for electrochemical glucose
sensing (Figure 14) at very low concentrations (LOD = 6.68 µm) [194]. Porous carbon NPs
are widely used as solid supports for enzymatic and non-enzymatic biosensors owing to
their high surface area. Single-walled CNTs, multi-walled CNTs, graphene, and graphene
oxide have been used in biosensors [195]. In 2021, Gupta et al. employed CNT-based
microelectrodes for the enzyme-free biosensing of glucose with very high sensitivity. The
loading of copper NPs into CNTs improved glucose electrooxidation, leading to CV and
amperometry responses at very low LODs [196]. Kang et al. reported the importance
of enzyme glucose oxidase (GOD) and the high biocompatibility of chitosan in GOD–
graphene–chitosan-modified electrodes for glucose detection [197]. The electrochemical
detection of H2O2 was also successfully performed by Shin et al. who modified reduced
graphene oxide (rGO) with Au NPs and horseradish-peroxidase-encapsulated protein NPs
to prepare highly sensitive electrodes for the selective detection of H2O2 in the presence
of interfering agents such as glucose and uric acid [198]. The albumin protein used in this
study can retain a significant amount of HRP. Furthermore, rGO significantly improved
electron transfer, and the Au NPs increased the surface area and electrical properties. The
HEPNP/rGO/Au working electrodes exhibited high sensitivity, high selectivity, and a low
LOD for H2O2 biosensing in human blood serum. The detection of uric acid in urine and
other biological fluids has important practical healthcare implications. Carbon nanofibers
synthesized using phosphate lignin can be used as wearable and flexible biosensing plat-
forms to selectively identify uric acid in artificial urine. Baig et al. recently reported the
fabrication of graphene-based electrodes as disposable sensing platforms to detect uric acid
with high selectivity and sensitivity [199].
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Covalent organic framework (COF) topologies and unique designs will be influenced
by the next generation of electrochemical sensors and biosensors [200–202]. In 2019, Du
et al. synthesized a novel COF (TBAPy-MA-COF-COOH) via a polycondensation method
using 1,3,6,8-tetra(4-carboxylphenyl)pyrene and melamine as substrates. After several
surface modifications, they introduced Cu2O@AuNPs and AgNCs@AuNP into the COF’s
architecture, and this has been used as an electrochemical biomarker for miRNA 155 and
miRNA 122 [203]. The COF material was easily exfoliated into 2D nanosheets with 2–4 nm
thickness values. Using these features, Wang et al. reported a bimetallic-incorporated,
COF-based composite nanosheet for electrochemical detection of levodopa, which is used
to treat Parkinson’s disease [204]. Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) remains a leading cause of severe health problems worldwide. In 2021, Zhang
et al. developed a bifunctional electrochemical biosensor that could detect the SARS-CoV-2
N-gene with high sensitivity using porphyrin-based POPs [205]. Recently, MOF/COF are
widely used for biosensing through enzyme immobilization than the others because they
show excellent biocompatibility, tunability, and well-known crystallinity [206]. The high
surface areas of those materials are also helpful for the loading of the enzyme in a different
weight ratio. The enzyme immobilization procedure has become easier for those materials,
as they have structural and functional varieties. To best of our knowledge there are some
review paper on this topic [207–209]. An electrochemical biosensor platform based on
GDH and ZIFs was attempted by Mao et al. to monitor glucose levels. In this study, they
showed the sensing limit 0.1 to 2.0 mM, which is very high due to the low conductivity
and less affinity of MOFs [210]. In later studies, many methods have been proposed by
researchers to increase affinities as well as electronic conduction [211]. High sensitivities
and low background noise have made the photoelectrochemistry biosensors attractive [212].
Yb-MOFs created by Li and colleagues with ionic liquids with large conjugate systems
and coordinations with Yb demonstrated a strong near-infrared PEC response. When Au
NPs were reduced on the Yb-MOF surface, incoming light was absorbed by Yb-MOF, and
electron–hole pairs were separated more quickly. Upon recognition of its target by the
CEA antibody on the surface of Yb-MOF@Au-NPs, CEA is adsorbed after the photocurrent
density is gradually decreased due to restrictions of electron–hole pair separations in the
composite materials [213]. As a result of poor science or technology, bacterial contamination
has become one of the most important issues in many nations [214]. In 2017, Ranjbar et al.
developed a novel electrochemical biosensor using EDC-NHS chemistry and aptamers
immobilized in modified ZIFs-8, and, after that, it was modified by ferrocene–graphene
oxide heterojunction through Π-Π interaction. The final composite materials have been
used as an electroactive indicator for the detection of Pseudomonas aeruginosa (P. aeruginosa)
bacteria [215]. The electrochemical characterization was monitored using cyclic voltamme-
try and electrochemical impedance spectroscopy methods. In this study, the authors used
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differential plus voltammetry techniques to detect the corresponding bacteria (Figure 15)
with a low detection limit of 1.2 × 101–1.2 × 107 CFU mL−1.
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4.5. Non Carbon-Based NMs for Biosensors

Various porous metal, metal-oxide, and metal-doped silica and oxide–silica nanocom-
posites have been successfully employed as electrochemical biosensing platforms for the
detection of biomolecules [191,216]. For example, nanostructured composites of self-
assembled NiTiO3/NiO particles have been used as sensitive enzyme-free platforms for the
electrochemical detection of glucose. The high surface area of the nanocomposites and the
enhanced redox properties of the metal ions facilitated the immobilization and electrooxida-
tion of the glucose analyte, leading to a low LOD in the presence of interfering agents [217].
Similarly, a metal-incorporated silica (Cu-SBA-15)-modified electrode with 5% Cu loading
(Si/Cu = 20) exhibited a good and selective response for glucose in CV and amperomet-
ric analysis, with a linear behavior in the 10–20 µM range and an LOD of 10 µM [218].
The high sensitivity of the material was attributed to the synergistic effect between the
metal ion and the high surface area porous silica, which ensured an optimal platform for
metal ion-analyte interaction. A Ni-doped silica with nickel hydrosilicate (Ni3Si2O5(OH)4),
presenting a yolk-shell morphology, also exhibited excellent performance for the non-
enzymatic electrochemical detection of glucose at room temperature (Figure 16) [219].
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Metal oxides and hydroxides are also good electrochemical glucose sensors, as re-
ported by Bhaumik et al. Although both Ni(OH)2 and NiO nanostructures have been used
for enzyme-free glucose sensing, NiO exhibits a comparatively higher sensitivity than its
hydroxide analog [191]. Lu et al. developed porous ZnO-nanosheet-based microspheres
and employed them in an electrochemical H2O2 biosensor with linearity in 1–410 and
10–2700 µM ranges [220]. Furthermore, few reviews have highlighted the importance of
graphene oxide, silica, and others in biosensing [221–223]. Nanoporous gold (NPG) could
be a practical contender as an enzyme-free biosensor for electrochemical location with great
affectability and selectivity since gold has excellent catalytic activity towards oxidation or
reduction of some tiny organic molecules, e.g., glucose, H2O2, and others. The deployed
NPG thin films showed outstanding electrical current activity for glucose oxidation [224].
In this, they have also shown the effect of pore size on non-enzymatic glucose sensing very
nicely. The materials with the smallest pore size (18 nm) achieved the greatest enhancement.
An NPG-electrode-based electrochemical DNA biosensor was developed by Lin et al. for
the identification of the promyelocytic leukemia/retinoic acid receptor α (PML/RARα)
fusion gene in acute promyelocytic leukemia (APL), where methylene blue was used as elec-
troactive indicator. Here, they applied differential plus voltammetry techniques for sensing,
achieved a very low detection limit, e.g., 6.7 pM [225]. Nanoporous non-noble metals are
more alluring as an electrode material for chemical sensor applications in terms of cost-
effectiveness. Nanoporous cupper (NPC), having pore sizes in between 100 and 200 nm, has
been synthesized from the Al60Cu40 alloy by using a conventional dealloying process in the
presence of 5 wt% HCl. With the help of an adsorption technique, Horseradish peroxidase
(HRP) has been immobilized into the porous architecture of that Cu metal. Due to its high
electric conductivity, along with its activity it has been deployed as an electrochemical
biosensor for O-phenylenediamine (OPD) with 0.37 µA µM−1 sensitivity [226].

5. Summary and Future Prospect

Nanoporous materials (NMs) can be divided into zeolites, mesoporous materials,
metal–organic frameworks (MOFs), covalent organic frameworks (COFs), and porous or-
ganic polymers (POPs). In this review, we present versatile applications using nanoporous
materials, especially for catalysts and biosensors. In addition, there are so many commercial
ones for industrial applications. Especially, MOFs have been growing very rapidly for
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various applications due to their high surface areas, up to 3000 m2/g, and large number of
species using versatile combination in the synthesis routes. However, except for a few types
of zeolites (e.g., MFI type ZSM-5), it is still difficult to use the other types of nanoporous
materials as catalysts through mass production because they do not have structural stability
in wet conditions at high temperatures to be used as catalysts [227–229]. Mesoporous
materials were invented in an effort to convert hydrocarbon compounds into other useful
compounds through chemical treatment in oil refineries and were predicted to be more
efficient catalysts than zeolites in treating large hydrocarbon compounds. Therefore, since
1992, many studies have been conducted for about 30 years to secure various reactions and
efficiencies as catalysts for mesoporous materials, but a material whose practicality has
been verified for structural stability that guarantees economic feasibility has not yet been
secured. The hydrophobic periodic mesoporous organosilica (PMO) structure may be a
suitable material for a catalytic reaction at a low temperature of about 100–200 ◦C; however,
stability at high-pressures and high-temperatures over 400 ◦C is not guaranteed because
of the low thermal stability of the organic components. This review article provided an
overview of the catalytic applications of porous nanomaterials as well as the impact of
porosity and the presence of metal species on their catalytic performance. Furthermore,
it provides information on the role of metals, composites, silica, and carbon-based nanos-
tructures in biosensing applications, including the effects of the specific properties of the
transition metals and NM morphologies on their catalytic and sensing properties. In partic-
ular, recently introduced mesoporous phyllosilicate structures have been confirmed to have
higher structural stabilities than other crystalline mesoporous materials, and their efficacies
as catalysts have also been demonstrated in several other papers [98–108]. In this review
paper, we would like to draw attention to researchers in this field by introducing recent
papers related to the synthesis and application of mesoporous phyllosilicate structures. It
is thought that a new crystalline structure such as phyllosilicate can be an alternative that
can be a breakthrough in practical aspects, even if the mesoporous material does not have a
uniform pore structure. In addition, MOF structures are materials that have already secured
efficiency and practicality, and, among the structures currently being studied, relatively
interesting materials are collected and presented in this review.

Finally, this work serves as a guide for those interested in studying the catalytic and
sensing properties of newly designed porous NMs.
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carboxylic acid; CNT, carbon nanotube; CTAB, cetyltrimethylammonium bromide; HER, hydrogen
evolution reaction; OER, oxygen evolution reaction; RHE, reference hydrogen electrode; CV, cyclic
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resonance energy transfer; GOD, glucose oxidase; HDO, hydrodeoxygenation; HEPNP, Horseradish
peroxidase-encapsulated protein nanoparticle; HMF, 5-hydroxymethylfurfural; HRP, Horseradish
peroxidase; HTS, high temperature shift catalyst; LOD, limit of detection; MOF, metal–organic frame-
work; MSNs, mesoporous silica nanoparticle; NM, nanomaterial; NP, nanoparticle; PMO, periodic
mesoporous organosilica; POM, partial oxidation of methane; COF, covalent-organic framework;
POP, porous organic polymer; PS, phyllosilicate; ZIF, Zeolitic imidazolate framework; CEA, carci-
noma embryonic antigen; PXRD, powder X-ray diffraction; GO, graphene oxide; SHN, silica hollow
nanosphere; SO, styrene oxide; SRM, steam reforming of methane; TEM, transmission electron mi-
croscopy; WGS, water-gas shift reaction; NPG, Nanoporous gold; Nanoporous cupper, NPC; APL,
acute promyelocytic leukemia; O-phenylenediamine, OPD.
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