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Abstract: We reported the photoconduction properties of tungsten disulfide (WS2) nanoflakes ob-
tained by the mechanical exfoliation method. The photocurrent measurements were carried out using
a 532 nm laser source with different illumination powers. The results reveal a linear dependence of
photocurrent on the excitation power, and the photoresponsivity shows an independent behavior at
higher light intensities (400–4000 Wm−2). The WS2 photodetector exhibits superior performance with
responsivity in the range of 36–73 AW−1 and a normalized gain in the range of 3.5–7.3 10−6 cm2V−1

at a lower bias voltage of 1 V. The admirable photoresponse at different light intensities suggests that
WS2 nanostructures are of potential as a building block for novel optoelectronic device applications.

Keywords: tungsten disulfide; nanoflake; photoconductivity; photodetector; responsivity;
normalized gain

1. Introduction

In the modern technology era, optoelectronic devices have been established as one
of the most ambitious fields of study. Photodetectors are the sub-class of optoelectronic
devices that can convert incident light into electrical signals precisely. Photodetectors
are vital components to achieve devices with multi-functionality, and hence gained more
attention in many applications such as imaging, optical communications, light sensing, and
biomedical instruments [1–3]. Photodetectors can be divided into two categories based
on detection mechanism, namely, photon or quantum detectors and thermal detectors.
The photon detectors that include photoconductors, photodiodes, and photo-field effect
transistors (photo-FETs) are widely studied due to the existence of band gaps and fast
inter-band optical transition. The thermal detectors are either bolometers or thermopiles.
Due to their indirect photoelectric conversion, thermal detectors have a relatively slow
photoresponse speed [4]. A photoconductor is a fundamental photodetector that is simply a
semiconductor channel with ohmic contacts on both ends that works on a photoconductive
effect. The photoconductive effect is a process in which the conductivity of a semiconductor
material increases due to photon absorption when illuminated by light energy larger than
the bandgap of the semiconductor. A photoconductor possesses a gain that can be greater
than unity. The high gain will reduce the response speed of the photoconductor. In order
to achieve a photoconductor’s desired overall performance, a trade-off between gain and
response speed must be made [5].

The advent of nanomaterials leads to improving the performance and shrinking the
size of novel devices due to their exceptional properties governed by high surface-to-
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volume ratio and quantum effects at a nanoscale regime [3]. Recently, the transition metal
dichalcogenides (TMDs) belonging to the two-dimensional (2D) family have been promoted
as novel candidates for fabricating miniature electronic and optoelectronic devices for next-
generation devices due to their excellent electrical and optical properties [6–11]. The 2D
TMDs have a honeycomb molecular structure of MX2, where M is a transition metal atom
and X is a chalcogen atom. In 2D TMDs, the strong covalent bonded layers are stacked
via weak van der Wall interactions. Among the TMDs, the most extensive research has
been done on molybdenum disulfide (MoS2). The first mono-layered MoS2 phototransistor
exhibits a fast response time of 50 ms, but shows a low responsivity of 7 mAW−1 due
to its poor carrier mobility and low optical absorbance [12]. The multi-layered MoS2
photodetectors show a responsivity in the range of 100–570 mAW−1 due to the increase of
optical absorbance of multilayers [13,14].

The versatile compound tungsten disulfide (WS2), another promising member of the
TMDs group, has been widely investigated in the field of optoelectronic device applica-
tions due to its high mobility and environmental stability [15–19]. The WS2 possesses an
indirect bandgap (1.4 eV) in its bulk form, and it converts to a direct bandgap (2.1 eV) for a
monolayer [20,21]. Moreover, WS2 has strong optical absorption, high spin-orbit coupling,
and high photoluminescence and can be operated over wide temperatures [22–24]. The
theoretical calculations suggest WS2 has a smaller electron-effective mass and thus has
higher carrier mobility [25,26]. Each layer in the WS2 compound is composed of tungsten
(W) atoms sandwiched between the sulfur (S) atoms (S-W-S). Hence, the WS2 bulk crystal
consists of stacks of three atom sheets. It can be easily exfoliated into thin nanoflakes or
nanosheets with strong in-plane covalent bonding and transferred onto an arbitrary sub-
strate due to the weak van der Waals force between various sheets [27,28]. The exfoliated
WS2 monolayers or multilayers attained exceptional significance in various applications
such as photodetectors [22], field effect transistors [29], gas sensors [30], energy storage
devices [31], light emitting diode elements [32], and catalysts [33]. The light absorption
in monolayer TMDs is approximately 5–10% in the visible regime [34]. This is relatively
higher than the conventional photodetector materials such as Si and GaAs in a compa-
rable thickness [35]. However, the practical applications of monolayer TMDs have been
restricted due to their thickness-limited absorption, bandgap-limited spectral response,
and high Schottky barrier-limited charge collection efficiency [36]. In the WS2 monolayer,
the conduction band (CB) edge is located at a higher energy than that of a MoS2 monolayer.
This results in more severe issues in electrical contact as it forms higher Schottky barriers
between WS2 and metal electrodes as compared to MoS2 [15]. Unlike monolayer TMDs,
the thicker multilayer TMDs possess better electrical transport and higher light absorption
coefficients [37,38]. Hence, the photodetectors based on multilayer TMDs can be achieved
with high responsivity and a wide spectral regime [13,26].

The 2D WS2 material can be synthesized by both top-down and bottom-up approaches.
The widely used top-down techniques are mechanical exfoliation, chemical/liquid exfoli-
ation, and laser or electron irradiation. The bottom-up techniques that include chemical
vapor deposition (CVD), atomic layer deposition (ALD), hydrothermal or electrochemical
process, and molecular beam epitaxy (MBE) have been extensively studied [39]. In general,
the synthesis technique should be simple, affordable, and scalable without the need for
expensive machinery for low-cost production. Among the above-mentioned techniques,
the mechanical exfoliation method is simple and does not require any sophisticated in-
struments. The exfoliation also produces nanoflakes with high crystalline quality [38]. In
the exfoliation technique, the nanoflakes were peeled from the bulk crystals using scotch
tape. A few reports are available on the photoresponse behavior of mechanically exfoli-
ated 2D WS2 [3]. Lee et al. reported FET based on multi-layer WS2 with a thickness of
~20 nm and a photoresponsivity of ~0.27 A/W [40]. Huo et al. reported multilayered WS2
nanoflakes-based FET with a photoresponsivity of 5.7 A/W [30]. Huo et al. also reported a
transistor based on a multi-layer MoS2–WS2 heterostructure. The planar device exhibits a
photoresponsivity of 1.42 A/W [41].
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In this work, the WS2 nanoflakes are exfoliated from the chemical vapor transport
(CVT) grown crystals using a conventional mechanical exfoliation technique. For the fabri-
cation of a photoconductor-type photodetector, the platinum (Pt) electrodes were deposited
on a WS2 nanoflake using the focused ion beam (FIB) technique. The photoconduction
properties of the device were investigated under the laser wavelength of 532 nm with
different powers. The fabricated device shows good performance at a lower bias voltage of
1 V. The photodetector parameters such as responsivity, gain, and normalized gain were
estimated and discussed.

2. Materials and Methods
2.1. WS2 Crystal Growth

Single crystals of WS2 were grown by the CVT method using the fine powders of
sulfur (99.99%) and tungsten (99.99%) with the help of iodine (I2) as a transporting agent.
At first, sulfur and tungsten powders were mixed with I2 and transferred into the quartz
ampoule with a length of 30 cm. The inner and outer diameter of the quartz ampoule
is 1.3 and 1.6 cm, respectively. Later, the quartz ampoule was evacuated to 10−5 Torr
and sealed at one end. Next, the sealed ampoule was kept in the two-zone horizontal
furnace maintained at temperatures of 1020 and 960 ◦C. The precursor powder was kept
at the higher temperature of 1020 ◦C zone; once the powder started to melt and vaporize,
the I2 transported the vaporized precursor to the other end of the tube; the temperature
was maintained at 960 ◦C. After ten days of the process, the vaporized precursors were
deposited as single crystals of 1–2 cm in length.

2.2. Fabrication of WS2 Photodetector

The WS2 nanoflakes were exfoliated from the bulk crystal using a conventional me-
chanical exfoliation technique using dicing tape. For the fabrication of a photoconductor-
type photodetector, the WS2 nanoflakes were transferred onto a SiO2 (300 nm)/n+-Si
substrate with pre-patterned Ti/Au electrodes. Next, two Pt metal contacts with a thickness
of 100 nm were deposited on WS2 nanoflakes using the FIB technique. Finally, the electrical
wires were connected to the Ti/Au electrodes using a silver paste to characterize the fabri-
cated device. The Ti/Au electrodes are the interconnection between the Pt microelectrode
and the millimeter-sized bonded wire.

2.3. Measurements and Characterization

The X-ray diffraction (XRD) pattern was measured using a D2 Phaser X-ray diffrac-
tometer, and the Raman spectroscopy was measured with an excitation wavelength of
532 nm using a Raman microscope (Renishaw InVia, Wotton-under-Edge, UK); these mea-
surements were used to confirm the crystal structure of CVT-grown WS2 crystals. The
height profiles were carried out to find the thickness of nanoflakes using atomic force
microscopy (AFM, Bruker-ICON2-SYS, Billerica, MA, USA). Scanning electron microscopy
(SEM, Hitachi S3000H, Tokyo, Japan) was used to capture the image of the nanoflake device
to obtain the dimensions of the conduction channel. Focused ion beam (FIB, FEI Quanta 3D
FEG) was utilized for the deposition of Pt contacts. The dark current-voltage (id-V) curves
and photoconductive measurements of the photodetector were carried out in a four-point
probe electrical measurement system using Keithly 4200-SCS. A 532 nm laser source was
used for illumination and the incident laser power was measured using a calibrated power
meter (Ophir Nova II) with a silicon photodiode head (Ohir PD300-UV). A holographic
diffuser was utilized to minimize the error in the power density calculation by broadening
the laser beam size (~20 mm2).

3. Results and Discussion
3.1. WS2 Crystal Characterization

The XRD pattern of CVT-grown WS2 crystal is shown in Figure 1a. The observed
diffraction peaks at 2θ values of 14.3, 28.9, 43.9, and 59.8◦ are assigned to the (002), (004),
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(006), and (008) planes, respectively. The positions of sharp Bragg reflections confirm the
2H phase of WS2 crystals according to JCPDS card no. 08-0237 [42,43]. The 2H WS2 crystal
lattice belongs to the P63/mmc (D4

6h) hexagonal space group that has space inversion
symmetry [44]. The observed sharp and narrow peaks are an indication of the high crystal
quality of WS2 crystals grown by the CVT technique. All diffraction peaks along the (00l)
direction denote that the crystal growth is along the c-axis and the major preferential
orientation is along the (002) plane. The absence of any binary or impurity phases in the
XRD pattern demonstrates the exceptional quality of the CVT-grown crystals.
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Figure 1. Structural characterization of CVT-grown WS2 bulk crystal. (a) X-ray diffraction pattern
and (b) Raman spectrum.

Figure 1b depicts the Raman spectrum of CVT-grown WS2 layered crystal. The
multi-peak Lorentzian fitting is used for the individual peaks fitting and also for the
deconvolution of a broad peak obtained at around 350 cm−1, which clearly separates the
individual peaks from the overlapping. The observed Raman peaks at 319.9, 349.3, 355.1,
and 420.2 cm−1 are attributed to E1

2g (M), 2LA (M), E1
2g (Γ), and A1g (Γ) modes of WS2

crystal, respectively [45–47]. The first-ordered dominant modes E1
2g (Γ) and A1g (Γ) are

most commonly observed for 2H WS2 crystals [43,44,48]. The E1
2g mode is due to the

in-plane vibrations of tungsten and sulfur atoms in the opposite direction, and the A1g
mode is due to the out-of-plane vibrations in sulfur atoms. The separation between these
two modes is 65.1 cm−1, which is consistent with the bulk WS2, and the separation reduces
gradually with the decrease of the number of layers [48,49]. The second-order longitudinal
acoustic mode 2LA (M) is very close to the E1

2g (Γ) and sometimes it overlaps the E1
2g

(Γ) mode [45]. The full-width half maxima of 2LA, E1
2g, and A1g modes are 8.3, 3.4, and

3.7 cm−1, respectively, and it denotes the high crystallinity of WS2 crystals grown by the
CVT technique.

3.2. WS2 Nanoflake Device Characterization

The thickness of the WS2 nanoflakes was calculated using the AFM height profile
measurement as shown in Figure 2a. The thickness of a typical nanoflake is 155 ± 5 nm. The
inset of Figure 2a shows the AFM picture of the WS2 nanoflake device with Pt contacts. The
blue dotted line across the device denotes the position of the height profile measurement.
Figure 2b depicts the id-V characteristics of a typical WS2 nanoflake device in the range of
−0.1 to +0.1 V. The linear id-V curve confirms the ohmic contact between the WS2 nanoflake
and FIB-deposited Pt contacts. The inset of Figure 2b represents the SEM image of the WS2
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nanoflake device that is used to calculate the dimensions of the device. The conductivity (σ)
of the WS2 nanoflake with a thickness of 230 nm was calculated using the relation [50,51]

σ = G
l
A

= G
l

wt
(1)

where G is the electrical conductance and l, w, and t are the length, width, and thickness
of the conduction channel. G is given by I/V, which is obtained from the slope of id-V
curve, and the value is 1.69 × 10−4 Ω−1. The l and w are 4.22 µm and 2.65 µm, respectively,
obtained from the SEM image of the nanoflake device with a thickness of 230 nm. The
calculated conductivity of a typical nanoflake is 12 Ω−1cm−1.
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Figure 2. (a) AFM height profile of a WS2 nanoflake with a thickness of 155 nm; inset shows the AFM
image of the respective device. (b) id−V curve of a typical WS2 nanoflake with a thickness of 230 nm;
inset shows SEM image of the WS2 nanoflake device of thickness 155 nm.

3.3. Photoconduction Properties of WS2 Nanoflake

Figure 3 depicts the photoresponse of a WS2 nanoflake with a thickness of 25 nm
modulated by light power at an excitation wavelength of 532 nm. The photocurrent was
measured for different light powers varying from 2 to 100 mW. A constant biasing voltage
of 1 V was applied for the measurement of photocurrent as a function of time. First, we
have recorded one cycle of photocurrent response for each light power separately. Next,
the photocurrent measurements of different powers were combined to clearly present
the change in photocurrent with respect to different powers. The ON and OFF states
denote the laser light conditions for single light power. When the laser was turned on,
the photocurrent increased quickly, and we waited until it saturated. Once it reached
saturation, the laser was turned off, and the photocurrent was dropped immediately and
then reached saturation. The background dark current was subtracted from photoresponse
curves to represent the photocurrent curves. It is clear from the photoresponse curves that
the photocurrent increases with the increase of light power. Generally, a large number of
photons of high light intensity create a higher number of electron-hole pairs, and thus the
photocurrent increases. The periodic nature of the photoresponse curve under different
light powers is an indication of good stability and reproducibility of fabricated WS2 devices.
With the increase of light power up to 100 mW, we did not observe any photocurrent
saturation in the WS2 nanoflake, and hence the WS2 photodetectors can be suitable for
operation in the linear region.
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Figure 3. Photocurrent response of a WS2 nanoflake under laser illumination of a wavelength of
532 nm. The photocurrent is measured as a function of time under various powers at a fixed bias
voltage of 1 V. The ON/OFF denotes the laser light condition.

To interpret the significant dependence of the photocurrent on the illumination in-
tensity, the plot drawn between the photocurrent and light intensity in the range of
80–4000 Wm−2 is shown in Figure 4a. The photocurrent strongly depends on the light
intensity, and the experimental data can be fitted using a power law given by ip = aPβ,
where ip is the photocurrent, a is the scaling constant, P is the light power, and β is an expo-
nent [52]. The power law is well-fitted to the experimental data with β = 0.99. Generally,
β values are in the range of 0 to 1. The deviation of the β value from unity is the indication
of the presence of complex processes such as generation, trapping, and recombination of
electron-hole within the semiconductor [53]. In our case, the β value is near unity, which
indicates that the exfoliated WS2 nanoflake was of high quality with very few defects [54].
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The photodetectors were characterized by several crucial parameters such as respon-
sivity (R), gain (Γ), and normalized gain (Γn) to evaluate their performance. The R is one of
the most important figure-of-merits, which is a measure of the photodetector’s electrical
response to the incident light and is obtained from the formula [7]

R =
ip

P
(2)

where, ip is the photocurrent and P is the laser power incident on the projected area (A)
of a photodetector, and it is given by P = IA = Iwl, where I is the light intensity and w
and l are the width and length of the conducting channel, respectively [55]. The R values
as a function of light intensity are shown in Figure 4b. We noted that R is sensitive to
the lower light intensity (80–320 Wm−2) and insensitive to the higher light intensities
(400–4000 Wm−2). R decreases with the increase of light intensity from 80 to 400 Wm−2,
and a further increase of light intensity up to 4000 Wm−2 results in an almost constant R
value. A similar dependency of R on light intensity was observed in WS2 monolayer [56]
and SnS/rGO [57] photodetectors. The calculated R values are in the range of 36–73 AW−1,
and this high responsivity may be due to the efficient absorption and optimized WS2
nanoflake device configuration. These values are higher than the other photodetectors
based on 2D materials such as NbSe2 nanoflakes (R~2.3–3.8 AW−1) [50], MoS2 nanoflakes
(R~20–30 AW−1) [58], and NbS2 nanoflakes (R~0.6 AW−1) [59]. The largest R value
(73 AW−1) at lower light intensity (80 Wm−2) is owed to the weak recombination of
photo-excited carriers [60].

Gain (Γ) is another figure-of-merit of photodetectors that determine the circulating
number of photo carriers moving through a photoconductor per unit time before recombi-
nation. It is given by the ratio of the carrier lifetime (τ) to the transit time (τt) between the
electrodes [50,61].

Γ =
τ

τt
=

V
l2 τµ (3)

where, l is the electrodes inter distance, µ is the mobility, and V is the applied voltage.
Γ linearly depends on R and it can be calculated using the formula [62,63]

Γ =
R
η

hν

q
(4)

where, η is the external quantum efficiency, q is the charge of an electron, h is Planck’s
constant, and ν is the frequency of the photon. The η value was calculated using the
formula η = 1 − e−αt, where α is the absorption coefficient at the wavelength of 532 nm
(2.33 eV) and t is the thickness of the nanoflake [50,58]. The reflection loss was eliminated
to simply the η calculation. The α value of WS2 bulk is ~2 × 105 cm−1 at a photon energy
of 2.33 eV [64,65]. By considering the nanoflake thickness of 25 nm, the calculated η value
is 0.39 (39%).

The determined Γ values as a function of light intensity are shown in Figure 5a. The
Γ values follow a similar trend to R. The obtained Γ values are in the range of 215–436, with
variation of light intensity from 80 to 4000 Wm−2. The Γ decreases with the increase of light
intensity up to 400 Wm−2, and a further increase of light intensity up to 4000 Wm−2 leads
to saturation in the Γ values. This may be attributed to the continuous filling of trap states
upon illumination. Suppose the trap states are filled completely at a certain intensity of
light, the excess electrons created by the higher light intensity cannot be trapped and thus
decrease the average carrier lifetime. Hence, the photoconductive gain was reduced [4]. The
Γ values (215–436) of our photodetector are superior to the reported photodetectors based
on the MoS2 nanoflake (Γ~66–103) [58], WS2/Au NPs (Γ~30) [66], and the phototransistors
based on MoS2 (Γ~0.2) and MoSe2 (Γ~5 × 10−4) [67].
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variation of light intensity from 80 to 4000 Wm−2.

Normalized gain (Γn) is independent of device geometry and can be considered a fair
figure-of-merit to compare the performance of other devices. The photoconduction process
is mainly involving the light absorption and movement of carriers between the electrodes.
Numerous factors including carrier mobility, lifetime, applied bias, distance between
electrodes, and efficiency of light absorption may affect the performance of photodetectors.
Γn is a measure of the intrinsic photoconductivity of the device and is given by the product
of η, τ, and µ [61,68].

Γn = ητµ = η
Γ

(V/l2)
=

E
q

l2

V
R (5)

Figure 5b depicts the Γn values as a function of light intensity. The Γn values follow the
Γ trend and the calculated values are in the range of 3.5–7.3 × 10−6 cm2V−1. The obtained
values are higher than the AuNRs/MoS2/graphene device (Γn~8.63 × 10−7 cm2V−1) [68]
but lower than the MoS2-UCNP nanocomposite (Γn~1.48 × 10−4 cm2V−1) [61] and InSe
(Γn~3.2 cm2V−1) [55] based photodetectors. The moderate Γn values of our device required
further investigation of other parameters such as carrier lifetime and mobility.

The photodetector parameters Γ and Γn were rarely investigated for the 2D material
photodetectors. Hence, the comparison of devices based on Γ and Γn becomes tough. We
have compared our device performance with other reported WS2 photodetectors fabricated
by different methods based on their operation region of wavelength, biasing voltage, and
responsivity as summarized in Table 1. It is noticed that the WS2 nanoflake device obtained
in the present work shows better responsivity at a lower bias voltage of 1 V. The high
responsivity of our device also outperformed some CVD-grown WS2 monolayer-based
photodetectors, and hence the WS2 nanoflakes can be a potential candidate for fabricating
novel optoelectronic devices.

Table 1. Comparison of WS2 photodetectors based on responsivity, fabrication method, and their
operational wavelength with bias voltage.

Material Fabrication
Method

Wavelength
(nm)

Bias Voltage
(V)

Responsivity
(AW−1) Reference

WS2 nanoflake Exfoliation 532 1 73 Present work

WS2 nanosheets Hydrothermal
intercalation 532 5 4 × 10−3 [19]

WS2 films PLD 635 9 0.51 [26]
WS2 nanofilm Sputtering 365 5 53.3 [52]

WS2 monolayer CVD 532 10 0.52 × 10−3 [56]
WS2 monolayer CVD 500 1 7.3 [69]
WS2 multilayer CVD 458–647 5 92 × 10−6 [70]
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4. Conclusions

We successfully fabricated a visible photodetector using exfoliated WS2 nanoflakes
and explored its photoconduction properties. The photocurrent increases with the increase
of light intensity from 80 to 4000 Wm−2 and is well-fitted to the power law with an exponent
value of 0.99. The photoresponsivity decreases with the increase of light intensity from
80 to 400 Wm−2, and a further increase of light intensity up to 4000 Wm−2 results in
an almost constant R value. The fabricated device showed a stable photoresponse with
some reproducible characteristics. The device exhibited good responsivity in the range
of 36–73 AW−1, and the normalized gain was in the range of 3.5–7.3 × 10−6 cm2V−1 at a
lower biasing voltage of 1 V. The obtained excellent photodetector parameters suggest a
promising application of WS2 nanoflakes in future novel optoelectronic devices.

Author Contributions: Conceptualization, R.-S.C.; methodology, H.K.B. and W.-C.S.; validation,
R.-S.C. and H.K.B.; formal analysis, H.K.B.; investigation, W.-C.S., Y.-C.L., R.K.U., R.S. and H.-Y.D.;
resources, R.-S.C.; writing—original draft preparation, H.K.B.; writing—review and editing, R.-S.C.
and H.-Y.D.; supervision, R.-S.C. and H.-Y.D.; project administration, R.-S.C.; funding acquisition,
R.-S.C. and H.-Y.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Ministry of Science and Technology (MOST) of Taiwan grant
number MOST 111-2112-M-011-004-MY3, MOST 108-2628-M-011-001-MY3, MOST 109-2622-E-011-034,
MOST 110-2622-E-011-017, MOST 112-2112-M-131-003, and MOST 111-2112-M-131-003. And the APC
was funded by Ministry of Science and Technology (MOST) of Taiwan.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: Authors H.-Y.D. and R.-S.C. thanks the support of the Ministry of Science and
Technology (MOST) of Taiwan.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, W.; Hu, K.; Teng, F.; Weng, J.; Zhang, Y.; Fang, X. High-Performance Silicon-Compatible Large-Area UV-to-Visible

Broadband Photodetector Based on Integrated Lattice-Matched Type II Se/n-Si Heterojunctions. Nano Lett. 2018, 18, 4697–4703.
[CrossRef] [PubMed]

2. Basyooni, M.A.; Zaki, S.E.; Alfryyan, N.; Tihtih, M.; Eker, Y.R.; Attia, G.F.; Yılmaz, M.; Ateş, Ş.; Shaban, M. Nanostructured MoS2
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