Effect of an NGR Peptide on the Efficacy of the Doxorubicin Phospholipid Delivery System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Cell Line
2.2.2. Preparation of Doxorubicin Compositions
2.2.3. Stability in NaCl and Glucose Solutions
2.2.4. Release of Doxorubicin from Phospholipid Nanoparticles
2.2.5. Stability at Different Values of pH
2.2.6. In Vitro Cytotoxicity Assay
2.2.7. Cell Death Assay
2.2.8. Electrochemical Study of Dox Interaction with DNA
2.2.9. Statistical Analysis
3. Results
3.1. Physical Properties of Phospholipid Compositions NPh-Dox and NPh-Dox-NGR
3.2. Stability of Dox Compositions in NaCl and Glucose Solutions
3.3. Release of Doxorubicin from Nanoparticles Depending on pH
3.4. Stability of Dox Compositions at Different Values of pH
3.5. In Vitro Cytotoxicity
3.6. Apoptosis Induction in the HT-1080 Cell Line
3.7. Effect of Doxorubicin Forms on DNA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Yan, M.; Cao, Y.; Wang, Q.; Xu, K.; Dou, L.; Huang, X.; Chen, B.; Tang, W.; Lan, M.; Liu, B.; et al. miR-488-3p protects cardiomyocytes against doxorubicin-induced cardiotoxicity by inhibiting cyclinG1. Oxid. Med. Cell. Longev. 2022, 5, 5184135. [Google Scholar] [CrossRef] [PubMed]
- Rivankar, S. An overview of doxorubicin formulations in cancer therapy. J. Cancer Res. Ther. 2014, 10, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Ting, B.P.; Zhang, J.; Gao, Z.; Ying, J.Y. A DNA biosensor based on the detection of doxorubicin-conjugated Ag nanoparticle labels using solid-state voltammetry. Biosens. Bioelectron. 2009, 25, 282–287. [Google Scholar] [CrossRef]
- Yang, M.; Yau, H.C.; Chan, H.L. Adsorption kinetics and ligand-binding properties of thiol-modified double-stranded DNA on a gold surface. Langmuir 1998, 14, 6121–6129. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, L.; Ma, J.; Lu, L.; Wang, X.; Ren, J.; Yang, J. Rutin attenuates doxorubicin-induced cardiotoxicity via regulating autophagy and apoptosis. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1904–1911. [Google Scholar] [CrossRef] [PubMed]
- Shafei, A.; El-Bakly, W.; Sobhy, A.; Wagdy, O.; Reda, A.; Aboelenin, O.; Marzouk, A.; Habak, K.; Mostafa, R.; Ali, M.; et al. A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed. Pharmacother. 2017, 95, 1209–1218. [Google Scholar] [CrossRef]
- Lin, W.; Goldberg, R.; Klein, J. Poly-phosphocholination of liposomes leads to highly-extended retention time in mice joints. J. Mater. Chem. B 2022, 10, 2820–2827. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 2016, 1, 10–29. [Google Scholar] [CrossRef]
- Krishna, R.; Mayer, L.D. The use of liposomal anticancer agents to determine the roles of drug pharmacodistribution and P-glycoprotein (PGP) blockade in overcoming multidrug resistance (MDR). Anticancer Res. 1999, 19, 2885–2891. [Google Scholar] [PubMed]
- Tereshkina, Y.A.; Torkhovskaya, T.I.; Tikhonova, E.G.; Kostryukova, L.V.; Sanzhakov, M.A.; Korotkevich, E.I.; Khudoklinova, Y.Y.; Orlova, N.A.; Kolesanova, E.F. Nanoliposomes as drug delivery systems: Safety concerns. J. Drug Target. 2022, 30, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Tikhonova, E.G.; Sanzhakov, M.A.; Tereshkina, Y.A.; Kostryukova, L.V.; Khudoklinova, Y.Y.; Orlova, N.A.; Bobrova, D.V.; Ipatova, O.M. Drug Transport System Based on Phospholipid Nanoparticles: Production Technology and Characteristics. Pharmaceutics 2022, 14, 2522. [Google Scholar] [CrossRef] [PubMed]
- Gallo, E.; Diaferia, C.; Rosa, E.; Smaldone, G.; Morelli, G.; Accardo, A. Peptide-based hydrogels and nanogels for delivery of doxorubicin. Int. J. Nanomed. 2021, 16, 1617–1630. [Google Scholar] [CrossRef]
- Sun, Y.; Kang, C.; Liu, F.; Zhou, Y.; Luo, L.; Qiao, H. RGD Peptide-Based Target Drug Delivery of Doxorubicin Nanomedicine. Drug Dev. Res. 2017, 78, 283–291. [Google Scholar] [CrossRef]
- Zhang, Z.; Guan, J.; Jiang, Z.; Yang, Y.; Liu, J.; Hua, W.; Mao, Y.; Li, C.; Lu, W.; Qian, J.; et al. Brain-targeted drug delivery by manipulating protein corona functions. Nat. Commun. 2019, 10, 3561. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Hu, Y.; Zheng, X.; Cao, X.; Li, Q.; Wei, Z.; Zhu, Z.; Zhang, S. Self-assembled peptide nanoparticles with endosome escaping permits for co-drug delivery. Talanta 2021, 221, 121572. [Google Scholar] [CrossRef]
- Zhou, G.; Bae, S.D.W.; Nguyen, R.; Huo, X.; Han, S.; Zhang, Z.; Hebbard, L.; Duan, W.; Eslam, M.; Liddle, C.; et al. An aptamer-based drug delivery agent (CD133-apt-Dox) selectively and effectively kills liver cancer stem-like cells. Cancer Lett. 2021, 501, 124–132. [Google Scholar] [CrossRef]
- Natesh, J.; Chandola, C.; Meeran, S.M.; Neerathilingam, M. Targeted delivery of doxorubicin through CD44 aptamer to cancer cells. Ther. Deliv. 2021, 12, 693–703. [Google Scholar] [CrossRef]
- Liao, T.T.; Han, J.F.; Zhang, F.Y.; Na, R.; Ye, W.L. Enhanced anti-tumor effect of folate-targeted FA-AMA-hyd-DOX conjugate in a xenograft model of human breast cancer. Molecules 2021, 26, 7110. [Google Scholar] [CrossRef]
- Huang, H.; Yang, D.P.; Liu, M.; Wang, X.; Zhang, Z.; Zhou, G.; Liu, W.; Cao, Y.; Zhang, W.J.; Wang, X. pH-sensitive Au–BSA–DOX–FA nanocomposites for combined CT imaging and targeted drug delivery. Int. J. Nanomed. 2017, 12, 2829–2843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Y.; Xing, H.; Song, F.; Yang, Y.; Qiu, Z.; Lu, X.; Liu, Q.; Ren, S.; Chen, X.; Li, N. Biotin-conjugated multilayer poly [D, L-lactide-co-glycolide]-lecithin-polyethylene glycol nanoparticles for targeted delivery of doxorubicin. J. Pharm. Sci. 2016, 105, 2949–2958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Liu, W.; Zhang, Y.; Dang, M.; Zhang, Y.; Tao, J.; Chen, K.; Peng, X.; Teng, Z. Intercellular adhesion molecule 1 antibody-mediated mesoporous drug delivery system for targeted treatment of triple-negative breast cancer. J. Colloid Interface Sci. 2019, 538, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Wang, X.; Zhang, Z.; Sun, L.; Pu, Y.; Yao, H.; Li, J.; Liu, Y.; Zhang, Y.; Zhang, W. CD20 monoclonal antibody targeted nanoscale drug delivery system for doxorubicin chemotherapy: An in vitro study of cell lysis of CD20-positive Raji cells. Int. J. Nanomed. 2016, 11, 5505. [Google Scholar] [CrossRef] [Green Version]
- Strebhardt, K.; Ulltich, A. Paul Ehrlichs magic bullet concept. Nat. Rev. Cancer 2008, 8, 473–480. [Google Scholar] [CrossRef]
- Chang, D.K.; Chiu, C.Y.; Kuo, S.Y.; Lin, W.C.; Lo, A.; Wang, Y.P.; Li, P.C.; Wu, H.C. Antiangiogenic targeting liposomes increase therapeutic efficacy for solid tumors. J. Biol. Chem. 2009, 284, 12905–12916. [Google Scholar] [CrossRef] [Green Version]
- Barnieh, F.M.; Loadman, P.M.; Falconer, R.A. Is tumour-expressed aminopeptidase N (APN/CD13) structurally and functionally unique? Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188641. [Google Scholar] [CrossRef]
- Dunne, M.; Zheng, J.; Rosenblat, J.; Jaffray, D.A.; Allen, C. APN/CD13-targeting as a strategy to alter the tumor accumulation of liposomes. J. Control. Release 2011, 154, 298–305. [Google Scholar] [CrossRef]
- Pasqualini, R.; Koivunen, E.; Kain, R.; Lahdenranta, J.; Sakamoto, M.; Stryhn, A.; Ashmun, R.A.; Shapiro, L.H.; Arap, W.; Ruoslahti, E. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 2000, 60, 722–727. [Google Scholar]
- Medvedeva, N.V.; Torkhovskaya, T.I.; Kostryukova, L.V.; Zakharova, T.S.; Kudinov, V.A.; Kasatkina, E.O.; Prozorovskiy, V.N.; Ipatova, O.M. Influence of doxorubicin inclusion into phospholipid nanoparticles on tumor accumulation and specific activity. Biomed. Khim. 2017, 63, 56–61. [Google Scholar] [CrossRef]
- Nemtsova, E.R.; Tikhonova, E.G.; Bezborodova, O.A.; Pankratov, A.A.; Venediktova, J.B.; Korotkevich, E.I.; Kostryukova, L.V.; Tereshkina, J.A. Preclinical study of pharmacological properties of doxorubicin-NPh. Bull. Exp. Biol. Med. 2020, 169, 778–782. [Google Scholar] [CrossRef]
- Kostryukova, L.V.; Plyutinskay, A.D.; Pankratov, A.A.; Korotkevich, E.I.; Prozorovskiy, V.N.; Tikhonova, E.G.; Torkhovskaya, T.I.; Teryoshkina, Y.A. Targeted drug delivery system for doxorubicin based on a specific peptide and phospholipid nanoparticles. Biomed. Khim. 2020, 66, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Prozorovskiy, V.N.; Kostryukova, L.V.; Korotkevich, E.I.; Torkhovskaya, T.I.; Morozevich, G.E.; Tikhonova, E.G.; Ipatova, O.M. Photosensitizer chlorin e6 internalization into tumor tells in phospholipid nanoparticles conjugated with peptide containing the NGR sequence. Biomed. Chem. Res. Methods 2018, 1, e00063. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Yuan, L.; Hu, Y.; Xu, Z.; Qin, J.J.; Cheng, X.D. Synthesis, characterization, cellular uptake, and in vitro anticancer activity of fullerenol-doxorubicin conjugates. Front. Pharmacol. 2021, 11, 598155. [Google Scholar] [CrossRef] [PubMed]
- Hasanzadeh, M.; Shadjou, N. Pharmacogenomic study using bio-and nanobioelectrochemistry: Drug–DNA interaction. Mater. Sci. Eng. C 2016, 61, 1002–1017. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Zhong, Y.; Cheng, R.; Deng, C.; Zhong, Z. pH-sensitive polymeric nanoparticles for tumor-targeting doxorubicin delivery: Concept and recent advances. Nanomedicine 2014, 9, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Torkhovskaya, T.I.; Kostryukova, L.V.; Tereshkina, Y.A.; Tikhonova, E.G.; Morozevich, G.E.; Plutinskaya, A.D.; Lupatov, A.Y.; Pankratov, A.A. Chlorin e6 embedded in phospholipid nanoparticles equipped with specific peptides: Interaction with tumor cells with different aminopeptidase N expression. Biomed. Pharmacother. 2021, 134, 111154. [Google Scholar] [CrossRef] [PubMed]
- Kostryukova, L.V.; Tereshkina, Y.A.; Tikhonova, E.G.; Sanzhakov, M.A.; Bobrova, D.V.; Khudoklinova, Y.Y. Study of the efficiency of cellular accumulation of doxorubicin supplied with a targeted delivery system based on phospholipid nanoparticles with integrin-directed peptide. Biomed. Khim. 2022, 68, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Agafonova, L.; Tikhonova, E.; Sanzhakov, M.; Kostryukova, L.; Shumyantseva, V. Electrochemical Studies of the Interaction of Phospholipid Nanoparticles with dsDNA. Processes 2022, 10, 2324. [Google Scholar] [CrossRef]
- Ramotowska, S.; Ciesielska, A.; Makowski, M. What Can Electrochemical Methods Offer in Determining DNA–Drug Interactions? Molecules 2021, 26, 3478. [Google Scholar] [CrossRef]
- Pronina, V.V.; Kostryukova, L.V.; Bulko, T.V.; Shumyantseva, V.V. Interaction of Doxorubicin Embedded into Phospholipid Nanoparticles and Targeted Peptide-Modified Phospholipid Nanoparticles with DNA. Molecules 2023, 28, 5317. [Google Scholar] [CrossRef]
- Zykova, M.G.; Ipatova, O.M.; Prozorovskii, V.N.; Medvedeva, N.V.; Voskresenskaya, A.A.; Zakharova, T.S.; Torkhovskaya, T.I. Changes of doxorubicin distribution in blood and plasma after its inclusion into nanophospholipid formulations. Biochem. (Mosc.) Suppl. Ser. B Biomed. Chem. 2012, 6, 39–41. [Google Scholar] [CrossRef]
- Zykova, M.G.; Medvedeva, N.V.; Torkhovskava, T.I.; Tikhonova, E.G.; Prozorovskii, V.N.; Zakharova, T.S.; Ipatova, O.M. Influence of doxorubicin inclusion into phospholipid nanoformulation on its antitumor activity in mice: Increased efficiency for resistant tumor model. Exp. Oncol. 2012, 34, 323–326. [Google Scholar]
- Enyedi, K.N.; Tóth, S.; Szakács, G.; Mező, G. NGR-peptide− drug conjugates with dual targeting properties. PLoS ONE 2017, 12, e0178632. [Google Scholar] [CrossRef] [Green Version]
- Soudy, R.; Ahmed, S.; Kaur, K. NGR peptide ligands for targeting CD13/APN identified through peptide array screening resemble fibronectin sequences. ACS Comb. Sci. 2012, 14, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Merino, M.; Zalba, S.; Garrido, M.J. Immunoliposomes in clinical oncology: State of the art and future perspectives. J. Control. Release 2018, 275, 162–176. [Google Scholar] [CrossRef]
- Tikhonova, E.G.; Tereshkina, Y.A.; Kostryukova, L.V.; Khudoklinova, Y.Y.; Sanzhakov, M.A.; Tamarovskaya, A.O.; Ivankov, O.I.; Kiselev, M.A. Study of physico-phemical properties and morphology of phospholipid composition of indomethacin. Nanomaterials 2022, 12, 2553. [Google Scholar] [CrossRef]
- Tereshkina, Y.A.; Kostryukova, L.V.; Tikhonova, E.G.; Khudoklinova, Y.Y.; Orlova, N.A.; Gisina, A.M.; Morozevich, G.E.; Melnikova, P.A.; Pokrovsky, V.S. Chlorin e6 phospholipid delivery system featuring APN/CD13 targeting peptides: Cell death pathways, cell localization, in vivo biodistribution. Pharmaceutics 2022, 14, 2224. [Google Scholar] [CrossRef] [PubMed]
- Bi, D.; Zhao, L.; Yu, R.; Li, H.; Guo, Y.; Wang, X.; Han, M. Surface modification of doxorubicin-loaded nanoparticles based on polydopamine with pH-sensitive property for tumor targeting therapy. Drug Deliv. 2018, 25, 564–575. [Google Scholar] [CrossRef] [Green Version]
- Shang, X.; Liu, Q.; Qin, T.; Xu, X.; Sun, H.; Liu, M.; Zhu, H. Fabrication of cRGD-modified reduction-sensitive nanocapsule via Pickering emulsion route to facilitate tumor-targeted delivery. Int. J. Nanomed. 2019, 14, 3361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zong, W.; Hu, Y.; Su, Y.; Luo, N.; Zhang, X.; Li, Q.; Han, X. Polydopamine-coated liposomes as pH-sensitive anticancer drug carriers. J. Microencapsul. 2016, 33, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Hakeem, A.; Zahid, F.; Zhan, G.; Yi, P.; Yang, H.; Gan, L.; Yang, X. Polyaspartic acid-anchored mesoporous silica nanoparticles for pH-responsive doxorubicin release. Int. J. Nanomed. 2018, 13, 1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Ma, W.; Guo, Q.; Li, Y.; Hu, Z.; Zhu, Z.; Wang, X.; Zhao, Y.; Chai, X.; Tu, P. The effect of dual-functional hyaluronic acid-vitamin E succinate micelles on targeting delivery of doxorubicin. Int. J. Nanomed. 2016, 11, 5851. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Lionberger, R.; Yu, L.X. In vitro and in vivo characterizations of PEGylated liposomal doxorubicin. Bioanalysis 2011, 3, 333–344. [Google Scholar] [CrossRef]
- Kostryukova, L.V.; Plyutinskaya, A.D.; Pankratov, A.A.; Korotkevich, E.I.; Prozorovskiy, V.N.; Tikhonova, E.G.; Torkhovskaya, T.I.; Teryoshkina, Y.A. Chlorine e6 in phospholipid nanoparticles with specific targeting and penetrating peptides as prospective composition for photodynamic therapy of malignant neoplasms. Biomed. Khim. 2019, 65, 507–512. [Google Scholar] [CrossRef]
- Eom, Y.W.; Kim, M.I.; Park, S.S.; Goo, M.J.; Kwon, H.J.; Sohn, S.; Kim, W.H.; Yoon, G.; Choi, K.S. Two distinct modes of cell death induced by doxorubicin: Apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype. Oncogene 2005, 24, 4765–4777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Han, M.; Li, Y.; Jin, Y.; Gao, J.Q. Chemosensitization of doxorubicin in multidrug-resistant cells by unimolecular micelles via increased cellular accumulation and apoptosis. J. Pharm. Pharmacol. 2016, 68, 333–341. [Google Scholar] [CrossRef]
- Movafegh, B.; Jalal, R.; Mohammadi, Z.; Aldaghi, S.A. Poly-L-arginine: Enhancing cytotoxicity and cellular uptake of doxorubicin and necrotic cell death. Anti-Cancer Agents Med. Chem. 2018, 18, 1448–1456. [Google Scholar] [CrossRef]
Samples | Incubation Time, h | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 | 0.25 | 0.5 | 1 | 3 | 24 | 48 | 72 | ||
0.9% NaCl | |||||||||
NPh-Dox | nm | 33.73 ± 1 | 27.92 ± 2.2 | 28.22 ± 1.9 | 28.67 ± 1.4 | 28.87 ± 1 | 30.18 ± 2.2 | 31.9 ± 1.1 | 29.94 ± 1.7 |
% | 99.9 ± 0.1 | 99.67 ± 0.2 | 99.73 ± 0.1 | 99.7 ± 0.2 | 99.7 ± 0 | 96.9 ± 0.8 | 97.47 ± 0.4 | 96.57 ± 0.7 | |
NPh-Dox-NGR | nm | 36.95 ± 5.2 | 35.39 ± 3.2 | 36.41 ± 0.5 | 34.21 ± 0.3 | 35.17 ± 0.7 | 36.47 ± 1.6 | 37.12 ± 0.8 | 36.92 ± 2 |
% | 99.7 ± 0.5 | 100 ± 0 | 95.23 ± 8.3 | 99.87 ± 0.2 | 100 ± 0 | 100 ± 0 | 99.77 ± 0.2 | 92.47 ± 12.7 | |
5% Glucose | |||||||||
NPh-Dox | nm | 18.07 ± 0.9 | 15.99 ± 0.8 | 15.8 ± 0.9 | 15.34 ± 2.1 | 16.26 ± 2 | 16.24 ± 0.3 | 18.81 ± 1.2 | 18.29 ± 1.6 |
% | 99.97 ± 0.1 | 99.9 ± 0 | 100 ± 0 | 100 ± 0 | 99.97 ± 0.1 | 100 ± 0 | 100 ± 0 | 100 ± 0 | |
NPh-Dox-NGR | nm | 33.28 ± 3.8 | 34.76 ± 2.2 | 33.64 ± 4.7 | 34.82 ± 0.7 | 34.88 ± 3.9 | 33.9 ± 4.6 | 34.05 ± 3.1 | 34.74 ± 3.2 |
% | 91 ± 15.6 | 100 ± 0 | 100 ± 0 | 99.9 ± 0.2 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 95.77 ± 7.3 |
Drug-DNA Complex | G | A | T |
---|---|---|---|
Dox | 0.88 | 0.81 | 0.77 |
NPh-Dox | 0.77 | 0.84 | 0.78 |
NPh-Dox-NGR | 0.85 | 0.84 | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostryukova, L.V.; Tereshkina, Y.A.; Tikhonova, E.G.; Khudoklinova, Y.Y.; Bobrova, D.V.; Gisina, A.M.; Morozevich, G.E.; Pronina, V.V.; Bulko, T.V.; Shumyantseva, V.V. Effect of an NGR Peptide on the Efficacy of the Doxorubicin Phospholipid Delivery System. Nanomaterials 2023, 13, 2229. https://doi.org/10.3390/nano13152229
Kostryukova LV, Tereshkina YA, Tikhonova EG, Khudoklinova YY, Bobrova DV, Gisina AM, Morozevich GE, Pronina VV, Bulko TV, Shumyantseva VV. Effect of an NGR Peptide on the Efficacy of the Doxorubicin Phospholipid Delivery System. Nanomaterials. 2023; 13(15):2229. https://doi.org/10.3390/nano13152229
Chicago/Turabian StyleKostryukova, Lyubov V., Yulia A. Tereshkina, Elena G. Tikhonova, Yulia Yu. Khudoklinova, Daria V. Bobrova, Alisa M. Gisina, Galina E. Morozevich, Veronica V. Pronina, Tatiana V. Bulko, and Victoria V. Shumyantseva. 2023. "Effect of an NGR Peptide on the Efficacy of the Doxorubicin Phospholipid Delivery System" Nanomaterials 13, no. 15: 2229. https://doi.org/10.3390/nano13152229
APA StyleKostryukova, L. V., Tereshkina, Y. A., Tikhonova, E. G., Khudoklinova, Y. Y., Bobrova, D. V., Gisina, A. M., Morozevich, G. E., Pronina, V. V., Bulko, T. V., & Shumyantseva, V. V. (2023). Effect of an NGR Peptide on the Efficacy of the Doxorubicin Phospholipid Delivery System. Nanomaterials, 13(15), 2229. https://doi.org/10.3390/nano13152229