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Abstract: SiO2@TiO2 core-shell nanoparticles were successfully synthesized via a simple, repro-
ducible, and low-cost method and tested for methylene blue adsorption and UV photodegradation,
with a view to their application in wastewater treatment. The monodisperse SiO2 core was obtained
by the classical Stöber method and then coated with a thin layer of TiO2, followed by calcination
or hydrothermal treatments. The properties of SiO2@TiO2 core-shell NPs resulted from the synergy
between the photocatalytic properties of TiO2 and the adsorptive properties of SiO2. The synthe-
sized NPs were characterized using FT-IR spectroscopy, HR-TEM, FE–SEM, and EDS. Zeta potential,
specific surface area, and porosity were also determined. The results show that the synthesized
SiO2@TiO2 NPs that are hydrothermally treated have similar behaviors and properties regardless
of the hydrothermal treatment type and synthesis scale and better performance compared to the
SiO2@TiO2 calcined and TiO2 reference samples. The generation of reactive species was determined
by EPR, and the photocatalytic activity was evaluated by the methylene blue (MB) removal in aque-
ous solution under UV light. Hydrothermally treated SiO2@TiO2 showed the highest adsorption
capacity and photocatalytic removal of almost 100% of MB after 15 min in UV light, 55 and 89% higher
compared to SiO2 and TiO2 reference samples, respectively, while the SiO2@TiO2 calcined sample
showed 80%. It was also observed that the SiO2-containing samples showed a considerable adsorp-
tion capacity compared to the TiO2 reference sample, which improved the MB removal. These results
demonstrate the efficient synergy effect between SiO2 and TiO2, which enhances both the adsorption
and photocatalytic properties of the nanomaterial. A possible photocatalytic mechanism was also
proposed. Also noteworthy is that the performance of the upscaled HT1 sample was similar to one of
the lab-scale synthesized samples, demonstrating the potentiality of this synthesis methodology in
producing candidate nanomaterials for the removal of contaminants from wastewater.

Keywords: SiO2@TiO2; core-shell; upscaling; photocatalysis; dye removal; dye adsorption;
water treatments

1. Introduction

A major challenge society will be facing during the twenty-first century is to supply
and ensure safe water for the entire ecosystem. Rapid industrialization and population
growth are the major causes of water pollution, introducing harmful organic pollutants
into the environment, such as organic dyes, phenolic compounds, bacteria, viruses, and
pharmaceutical products, among others [1].

To minimize the significant and serious impact of these wastewater pollutants on
human life, it is crucial to develop sustainable technologies focused on their degradation
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through photocatalytic processes, due to the ability to generate reactive oxygen species. In
this context, metal oxide nanomaterials appear as promising candidates [2].

Metal oxide nanomaterials (i.e., Fe3O4, TiO2, Al2O3, CuO, ZnO, and MgO) possess
different physical, chemical, and morphological properties that can be tailored for a specific
application, by strictly controlling the synthesis conditions and thus the surface-to-volume
ratio, the particle size, and the defect [3]. In particular, TiO2 has been widely employed
and extensively investigated due to its advantageous properties such as nontoxicity, high
photocatalytic activity, low cost, and excellent oxidation resistance [4,5]. The photocatalytic
properties of TiO2 result from the generation of charge upon exposure to UV rays with
a wavelength corresponding to the bandgap of TiO2 [6,7]. Despite all these convenient
features, the application of nanometric TiO2 is limited by the easy agglomeration of its
NPs [8,9], the transformation of its crystalline phases [10,11], a reduction in the surface area
after heat treatment [8,11,12], and the easy recombination of photogenerated electron–hole
pairs [11]. Additionally, some risks are associated with the application of this nanomaterial
due to the possible presence of residual nanoparticles in treated waters and their difficult
separation, which involves additional purification steps, such as chemical and physical
filtration, distillation, and reverse osmosis [13–16].

To maintain the photocatalytic properties of the powders and to prevent issues related
to their release and recovery necessity, TiO2 and other functional metals oxides can be
immobilized on the surface of a massive support, as beads, membranes, fibers, 3D porous
structures, and organic or inorganic supports [17,18] can be deposited as a layer on the
surface of ZrO2, SiO2, CeO2, Al2O3, CaO, Au, Ag, Cu, or Fe [7,19]. For example, silicon
dioxide (SiO2) has been widely used due to its well-known surface chemistry, high thermal
and mechanical stability, high adsorption capacity, low cost, and easy synthesis using
the Stöber method [11]. It also exhibits high transparency in the UV/Vis region and is
easily leached from core-shell structures with an alkaline solution [11]. It has been found
that the addition of SiO2 shifts the polymorphic transformation of the anatase phase into
rutile to higher temperatures and increases the surface area, resulting in a decrease in the
particle size. Silica-titania photocatalytic nanocomposites have been also prepared in the
form of nanopowder mixtures [20], nanofiber membranes [21], nanocoatings [22], colloidal
nanocomposites [23], or in core-shell configurations [24].

The properties of the core-shell structures result from the integration of the unique
properties of the two original materials. They can combine the properties of both the core
and the shell, or they can show synergistic properties. Furthermore, particle stability and
dispersion increase, and the shell material can provide easier surface modification and func-
tionalization of the nanoparticles [24]. Additionally, they can be also employed to reduce
the cost of an expensive material as only a small amount is needed to cover the shell [24].
An important example is the use of a titanium monolayer on a SiO2 surface that modifies its
overall electronic structure, inducing a significant increase in photocatalytic activity [11]. In
this sense, the system TiO2 anatase/SiO2 combines the superhydrophilic properties of SiO2
and the photocatalytic property of TiO2 anatase. The core@shell configuration corresponds
to the combination of the enhanced properties of the core (SiO2) and of the shell (TiO2).

Despite the promising performance of TiO2-SiO2 nanomaterial combinations, the
scalability of their fabrication procedure is still limited. One of the major barriers is the
technology transfer to industry [25,26]. Regarding SiO2@TiO2 NPs, there are still poor solu-
tions for their large-scale synthesis toward industrial production, and emerging strategies
to improve the reproducible synthesis of large batches are needed to satisfy the future
demand [26,27]. The hydrothermal method is regarded as a suitable synthetic approach and
is one of the strategies adopted during the nanoparticle crystallization process. Typically,
hydrothermal processes are extremely attractive for large-scale production, as they are
environmentally friendly, allow the easy recovery of the photocatalyst after the synthesis,
and do not require any post-calcination treatment, which allows access to photocatalytically
active crystalline phases at much lower temperatures than those required for air calcination.
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Since the process occurs in an aqueous solution medium, the hydrophilicity of the material
is improved due to the increase in surface hydroxyl groups [28].

In this paper, core (SiO2) and SiO2@TiO2 core@shell NPs were synthesized, charac-
terized, and tested for methylene blue adsorption and UV photodegradation, evaluating
the nanomaterials from the perspective of wastewater treatment applications, where the
reactive species generation and dye removal via adsorption and photocatalytic processes
are among the most important processes.

A comparison between calcination and hydrothermal methods was performed. One of
the main objectives of the present work was to assess the viability of the synthesis scalability
of the core@shell nanomaterial and its comparison with laboratory-scale synthesis. The
synthesized SiO2@TiO2 core@shell NPs were characterized by complementary techniques
such as powder X-ray diffraction (XRD), high-resolution transmission electron microscopy
(HR-TEM), field emission scanning electron microscopy (FE–SEM), energy dispersive
X-ray spectroscopy (EDS), dynamic light scattering (DLS), attenuated total reflectance
Fourier transform infrared spectroscopy (ATR–FTIR), and N2 gas-volumetric adsorption–
desorption at 77 K.

2. Materials and Methods
2.1. Reagents

Commercial reagents tetraethyl orthosilicate (TEOS) (98%, Sigma–Aldrich, Lisbon,
Portugal), tetrabutyl orthotitanate (TBOT) (97%, Sigma–Aldrich, Portugal), ammonium
hydroxide (30%, Labkem, Catalonia, Spain), and 2–isopropanol (99.8%, VRW Chemicals,
Carnaxide, Portugal) were used as received. TiO2 P25 (>99.5%, 25 nm) was purchased from
Evonik and ultrapure water (Milli-Q®, Darmstadt, Germany) and ethanol (EtOH) (99.8%,
AGA, Prior Velho, Portugal) were used as solvents. Methylene blue powder (MB) was
purchased from Sigma-Aldrich.

2.2. Synthesis of SiO2 and SiO2@TiO2 Core-Shell Nanoparticles

The synthesis process can be divided into the following steps: monodisperse SiO2
cores were synthesized via the classical Stöber method, and then the synthesized SiO2
cores were coated with a thin layer of TiO2, followed by calcination [28] or hydrothermal
treatments [29,30]

For the synthesis of the SiO2 core, first, 64 mL of water, 320 mL of 2–isopropanol, and
16 mL of ammonium hydroxide were mixed. Then, 16 mL of TEOS was added dropwise
with a peristaltic pump. The solution was kept at 60 ◦C under constant magnetic stirring.
After reacting for 2 h, the solution was centrifuged (9000 rpm for 10 min) and washed twice
with EtOH.

For the synthesis of SiO2@TiO2 core-shell nanoparticles, the synthesized SiO2 particles
were dispersed in 200 mL of EtOH and in 2 mL of water, under continuous stirring until
total dissolution. This mixture was kept in an ultrasonic bath at 40 ◦C for 15 min. Then,
the mixture was heated to 85 ◦C and, when reached, 10 mL of TBOT was added dropwise
with a peristaltic pump to 30 mL of EtOH and kept under reflux for 90 min. The particles
were centrifuged (9000 rpm for 10 min) and washed with EtOH. After that, the particles
were centrifuged and washed with water. The synthesized SiO2@TiO2 core-shell was dried
at 60 ◦C for 1 h in the oven. The particles were subjected to different processes such as
calcination or hydrothermal treatments for titanium crystallization to achieve the anatase
and rutile phases.

The calcination treatment was carried out in an open crucible at 650 ◦C for 2 h with a
heating ramp for 50 min (12 ◦C/min.). For the hydrothermal treatment, the synthesized
SiO2@TiO2 NPs were dispersed in a 150 mL EtOH: water (molar ratio 1:1) solution (HT1)
or in 150 mL of water (HT2). The process was carried out in a 200 mL Teflon-coated
stainless-steel autoclave at 140 ◦C for 6 h, with a heating ramp for 30 min (5 ◦C/min.). The
core-shell NPs obtained for HT2 were previously recovered by centrifugation (9000 rpm for
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10 min) and washed twice with water. Figure S1 shows a schematic of the main steps for
the synthesis of core-shell NPs.

Additionally, a ten times upscale of the hydrothermal method 1 (SiO2@TiO2 HT1
upscaled) synthesis process was evaluated, following the procedure described previously.
This represents a novelty concerning the applicability of this type of material for upscaling
process applications like wastewater treatment.

All the samples were compared to pure SiO2 and TiO2 P25 during the characterization procedure.

2.3. Physical Chemical Characterization of SiO2 and SiO2@TiO2 Core-Shell Nanoparticles

Attenuated total reflectance Fourier Transform Infrared (FT-IR ATR) spectra were
recorded in transmittance mode on a Perkin Elmer Spectrum 100 FT-IR ATR. Spectra were
obtained with SPECTRUM software in the 4000–650 cm−1 range at a maximum resolution
of 4 cm−1.

Zeta potential measurements were determined via DLS analysis with a Zetasizer Nano
ZS90 (Malvern Panalytical) and a disposable capillary cell (DTS1070) at 25 ◦C. Zetasizer
Software v7.13 was used for data acquisition. Nanoparticles were diluted in water to a
concentration of 1 g/L, with pH values ranging from 4.9 to 6.9. All the measurements were
performed in triplicate.

The morphology of the materials was examined using high-resolution transmission
electron microscopy (HR-TEM) and field emission electron microscopy (FE–SEM).

HR-TEM micrographs were obtained using a JEOL JEM 3010 instrument (300 kV of
acceleration potential) equipped with a LaB6 filament. For the specimen preparation, a
few drops of powder water suspensions were supported on a 200-mesh carbon-coated
copper grid and left to dry before analysis. The as-obtained images were analyzed with
ImageJ software to measure interplanar distances of crystalline regions, particle sizes, and
morphological features of the samples.

FE–SEM images were recorded by means of an FIB-FESEM/EBSD/TOF-SIMS Tescan
S9000G microscope. The preliminary metallization of the samples was performed via the
deposition of 5 nm of Cr using an Emitech K575X sputter coater equipped with a film
thickness monitor.

The energy-dispersive X-ray spectroscopy (EDS) measurements were performed with
AZtecLive and an ULTIM Max EDS System: DETECTOR OXFORD EDS Ultim Max—
Software AZTEC.

The crystalline structures and phase identification of the synthesized NPs were eval-
uated using XRD analysis, carried out on a Bruker-Siemens D5000 X-ray powder diffrac-
tometer equipped with a Kristalloflex 760 X-ray generator and with a curved graphite
monochromator and an X’Pert PRO MPD from PANalytical in Bragg−Brentano geometry
diffractometers, both using Cu Kα radiation (40 kV/30 mA) and a flat sample-holder. The
XRD pattern acquisition was performed in the 2θ range of 10−80◦ with 0.02◦ interval steps,
70 s step−1 to improve the signal-to-noise ratio.

The specific surface area (SSA) and porous properties of the materials were determined
by N2 gas-volumetric adsorption at 77 K by means of ASAP2020 (Micromeritics). In prior
analyses, all samples were outgassed in a vacuum (residual pressure < 10−2 mbar) to
remove atmospheric contaminants adsorbed at the surface or inside the pores.

To determine the capacity of the materials for probe-molecule adsorption, the powders
were crushed in an agate mortar, pressed in the form of self-supporting pellets (around
10 mg/cm2), protected in a holed gold frame, and put in a particular sample holder for
pretreating the sample in a vacuum, contacting the materials with the probe molecules in
the gas phase and recording the spectra. FT-IR spectra were obtained by using a Bruker
Vector 22 spectrophotometer equipped with a Globar source and a DTGS detector. The
spectra were recorded both in ATR (diamond cell) and transmission mode with 128 scans
at a 4 cm−1 resolution in the 4000−400 cm−1 range.
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2.4. Reactive Species Generation

The obtained nanomaterials were characterized for the generation of reactive species,
one of the steps present during dye removal.

Electron paramagnetic resonance (EPR)-spin trapping measurements were performed
to evaluate the hydroxyl radical generation to evaluate the potential of the NPs as an an-
tibacterial material. A 210 ppm ultra-pure water suspension of a photocatalyst (SiO2@TiO2,
SiO2@TiO2 HT1, SiO2@TiO2 HT2 or SiO2@TiO2 HT1 upscaled) was irradiated under
simulated solar light (SOL2 honle UV technology, 380 nm filter) for 30 min, and then
5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was added to reach a final concentration of
0.017 mM and left under irradiation for an additional 7 min. Finally, the samples were trans-
ferred in capillary quartz tubes, and the EPR spectra were recorded in an X-band Bruker
EMX spectrometer using the following experimental parameters: microwave frequency
9.86 GHz, microwave power 5 mW, and modulation amplitude 1 Gauss.

2.5. Photocatalytic Removal of Dye

The adsorption capacity and photocatalytic properties of the synthesized nanomateri-
als were evaluated using methylene blue (MB) in aqueous solution as a model dye.

A stock solution of 10 mg/L MB was prepared by dissolving MB in water, and a
particle catalyst suspension was prepared at 20 g/L by dissolving in MB aqueous solutions
to be tested for the degradation of MB solution under UV light (VDL15UV 365 nm from
EHQ POWER).

The samples were collected in appropriate time intervals (up to 8 h) and were filtered
with a syringe filter (CHROMAFIL® RC-45/25, regenerated cellulose, 0.45 µm) to remove
the catalyst. In addition to visual analysis, the removal of MB was determined based on
the absorption at 663 nm by using a UV/Vis spectrophotometer (Lambda35 from Perkin
Elmer). The absorbance of samples was used to calculate the concentration using the
calibration curve constructed based on the Beer–Lambert law. The removal efficiency was
calculated from the following Equation (1) where C is the MB concentration for each sample
(SiO2, TiO2, and SiO2@TiO2 NPs) for each analysis time and C0 is the MB reference sample
concentration for each time [31]. The adsorption capability (qe

)
was calculated following

Equation (2), where V is the volume of MB solution in contact with the catalyst and W is
the catalyst mass [32].

%Removal efficiency =

(
1 − C

C0

)
× 100 (1)

qe =
(C0 − C)× V

W
(2)

3. Results and Discussion
3.1. Physical Chemical Characterization of SiO2 and SiO2@TiO2 Core-Shell Nanoparticles

The prepared SiO2@TiO2 NPs were analyzed using FT-IR ATR. The spectra of the
synthesized NPs are reported in Figure 1 together with those of the reference samples (pure
SiO2 and TiO2 P25). According to the results obtained, the symmetric and asymmetric
stretching modes of the Si-O-Si bond are visible around 790 and 1110 cm−1. These two
peaks are observed for SiO2 and all SiO2@TiO2 samples, indicating that the TiO2 coating
thickness is thin enough to detect the IR absorption signal from the core SiO2 [33–35].
However, it is also possible to observe the intensity of the Si-O-Si bond as being higher
than calcined SiO2@TiO2 compared to the hydrothermal samples, which can be explained
by the thickness of the TiO2 shell being lower for the calcined sample compared to the
hydrothermal samples, according to the previous conclusion.
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Figure 1. Normalized FT–IR ATR spectra of the synthesized SiO2@TiO2 NPs compared with pure
SiO2 and TiO2.

The peak present around 970 cm−1 is attributed to the Ti-O-Si bond structure, as it
is present in all core-shell NPs and is not present in the reference samples. Additionally,
the band around 1400 cm−1 was attributed to Ti-O-Ti vibration, observed for TiO2 and all
SiO2@TiO2 samples, confirming the formation of the titanium shell bonded to the silica
core [36,37]. Their intensity is higher for hydrothermal samples compared to calcined and
reference samples, a feature that could be related to the thickness of the TiO2 shell [34].

Regarding the SiO2@TiO2 (HT1) upscaled sample, when compared with the one
synthesized at the lab scale, it is possible to verify the same peaks relative to the bands
identified above, showing that the NPs developed in the upscaled process present the
expected composition when analyzed by this technique.

Table 1 shows the zeta potential of the synthesized SiO2 and SiO2@TiO2 core-shell NPs
subjected to different treatments obtained by the DLS analyses.

Table 1. Zeta potential for the synthesized NPs.

Samples Zeta Potential (mV) pH T (◦C)

SiO2 −20.5 ± 0.4 5.6

25
SiO2@TiO2 −21.4 ± 0.9 4.9

SiO2@TiO2 (HT1) −33.9 ± 0.4 6.9
SiO2@TiO2 (HT2) −37.3 ± 0.5 6.6

SiO2@TiO2 (HT1) upscaled −28.1 ± 0.7 5.9
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The values indicated an overall negative surface charge of −20.5 ± 0.4 mV for the
SiO2 particles. On the other hand, the calcined SiO2@TiO2 particles exhibit a small in-
crease in the zeta potential of −21.4 ± 0.9 mV. The SiO2@TiO2 particles subjected to the
different hydrothermal treatments show significant differences. Indeed, both SiO2@TiO2
HT1 and HT2 particles show a significant increase in zeta potential (−33.9 ± 0.4 mV and
37.3 ± 0.4 mV, respectively). These values are negative and high, indicating the high stabil-
ity of the suspension in water and the low agglomeration of the SiO2@TiO2 HT1 and HT2
particles [38–40].

The difference between the zeta potential values for the SiO2 and all core-shell NP
samples could be explained by the increase in hydroxyl groups on the surface, which also
increases, negatively or positively, the zeta potential values, as reported in [41]. These
results are also supported by the FT-IR analysis presented in Figure 1, where it is possible to
observe one peak around 1600 cm−1 and another one at 3400 cm−1 representative of the O-
H vibration band, which indicates the presence of the hydroxyl groups on the NPs’ surface.
On the other hand, TiO2 is negatively charged [42], and a higher amount of size-controlled
TiO2 NPs on the surface of the SiO2 core could be related to the differences observed [40].

In fact, it is possible to verify a higher negative zeta potential value for hydrothermal
samples HT1 and HT2 compared to calcined, consistent with the increase in shell thickness,
as represented by HR-TEM images.

Even though the SiO2@TiO2 HT1 upscaled sample has a value below that obtained at
the lab scale, the result obtained is consistent with what was expected, in which the value
is more negative when compared with the SiO2 core and SiO2@TiO2 calcined material.

Figure 2 shows the HR-TEM images. It is possible to observe that SiO2 particles (Figure 2a)
show a spherical and smooth morphology with an average diameter of 184.9 ± 10.6 nm. The
surface of the SiO2 particles is uniform, without any visible defects. However, the smooth
surface of the SiO2 particles becomes slightly rough for the core-shell particles, suggesting
that the formation of the TiO2 layer was successful (Figure 2b–d). It should be noted that
the detected impurity surrounding the NPs could probably be due to some organic residues
deriving from the synthesis or TEM preparation.

As can be observed in Figure 2b, the SiO2@TiO2 NPs prepared via the calcination
method show a small increased average diameter (210.7 ± 33 nm) compared to SiO2
particles, which may be related to the crystalline TiO2 shell.

Figure 2c,d show the surface of the SiO2@TiO2 core-shell NPs after different hydrother-
mal treatments (HT1 and HT2, respectively), and the spherical surface of the SiO2 core
is clearly visible, as well as the thin layer of the TiO2 shell around it. This result was
also evidenced by the EDS map reported in Figure S2a. For hydrothermal samples (HT1
and HT2), the average diameters of the SiO2@TiO2 for both samples are 332.5 ± 3.5 nm.
The TiO2 shell has an average size of 35 nm. Figure S2b shows the presence of a fringe
pattern, within which a distance of 0.356 nm is ascribable to the anatase phase of TiO2 [43].
Furthermore, it is possible to verify that the shell formed in the hydrothermal treatment is
larger than that formed by the calcination process, as evidenced by the images below.

The FE-SEM images below prove the results obtained by HR-TEM and described
above. It is possible to observe the spherical well-formed particles for SiO2 (Figure 3a)
with a smooth surface without any evident defects. In contrast, the synthesized SiO2@TiO2
core-shell NPs, both calcined (Figure 3b) and HT (Figure 3c,d), show a rough and textured
surface, which suggests that the TiO2 was successfully coated on the silica particles, as
also confirmed by the presence of Si and Ti elements evidenced by the EDS analyses
(Table 2). Most of the detected impurity is made of C that can be associated with unreacted
precursors but also with the adhesive conductive carbon tape used for fixing the materials
to the sample holder. It is worth evidencing that the upscaled sample presents a higher
amount of Ti with respect to the Si amount (Ti 11.2 vs. Si 8.1), suggesting a more efficient
coverage of the SiO2 cores.
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Figure 3e,f show the obtained images for SiO2@TiO2 core-shell NPs (HT1) upscaled.
Analyzing the images, it is possible to verify that the morphology of the obtained NPs is
similar to that obtained at the lab scale (Figure 3c). These results suggest that the upscaling
process was successful, proving it is feasible and reproducible, as these aspects are known
to be the main identified challenges in nanoparticle synthesis development. It is worth
evidencing that the upscaled sample presents a very high amount of Ti with respect to the
Si amount (Ti 11.2 vs. Si 8.1), suggesting a more efficient coverage of the SiO2 cores.
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The synthesized SiO2 and SiO2@TiO2 NPs show broad XRD peaks typical of amor-
phous and/or nanometric powders [44,45], while commercial TiO2 is a fully crystalline
powder composed of the anatase and rutile phases [46]. XRD patterns of commercial
titania show diffraction peaks attributed to the anatase (2θ ≈ 25◦), rutile (2θ ≈ 28◦), and
mixed phases of TiO2, as reported by El-Desoky et al. [47]. In Figure 4, both the SiO2 (red
pattern) and TiO2 (light blue pattern) phases are clearly recognizable in the green pattern of
SiO2@TiO2. In particular, the XRD pattern of SiO2@TiO2 shows an evident diffraction peak
(2θ ≈ 25◦), which corresponds to the anatase phase. The very different microstructure and
morphology of the TiO2 in the shell compared to the commercial TiO2 powder indicates
that titania in the core-shell material is highly nanocrystalline.

Table 2. EDS analysis median elements in each sample.

Samples Si %wt Ti %wt O %wt C+ Impurities

SiO2 9.9 ± 0.1 - 68.0 ± 0.2 21.2 ± 0.2

SiO2@TiO2 0.7 ± 0.0 0.5 ± 0.1 72.1 ± 0.5 26.7 ± 0.3

SiO2@TiO2 (HT1) 3.9 ± 0.1 1.9 ± 0.1 26.1 ± 0.4 67.5 ± 0.4

SiO2@TiO2 (HT2) 5.0 ± 0.1 0.9 ± 0.0 34.9 ± 0.4 59.1 ± 0.4

SiO2@TiO2 (HT1) upscaled 8.1 ± 0.2 11.2 ± 2.4 29.5 ± 0.8 51.0 ± 1.4
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The mixed anatase–rutile phases are also evident in the 2θ = 60–80◦ range of hy-
drothermally treated SiO2@TiO2 core-shell materials (HT1 and HT2). The XRD pattern of
the SiO2@TiO2 HT1 upscaled sample indicates diffraction peaks at 2θ ≈ 25◦ and 2θ ≈ 47.5◦

corresponding to the anatase phase, just like the correspondent lab-scale HT1 sample,
suggesting that the upscaling process was successful.

The main miller indexes (101), (200), and (200), corresponding to the anatase and rutile
phases of TiO2 (JCPDS 75-1537 reference), respectively, are indicated by vertical dashed
lines in the XRD results in Figure 4.

N2 gas-volumetric 77 K adsorption/desorption analyses were performed for SiO2,
TiO2, and SiO2@TiO2 core-shell NPs to evaluate their textural properties (specific surface
area (SSA) and porosity). The main results are reported in Table 3 and Figures 5 and 6.
SiO2 shows an SSA of 18 m2/g. In contrast, the TiO2 and the calcined SiO2@TiO2 particles
show an SSA with higher values (52 m2/g in both cases). The increase in SSA suggests
the presence of nanocrystalline TiO2 particles, since they have a larger surface area due to
their small size, as already evidenced by TEM images reported in Figure 2. In addition, the
presence of small aggregated TiO2 nanoparticles causes the formation of pores, essentially
in the range of large meso- and macropores, as depicted in Figure 5b.

Table 3. Textural parameters of the synthesized NPs obtained via BET analyses.

Samples BET SSA (m2/g) V Micropore (cm3/g) V Meso/Macropore (cm3/g) V Total (cm3/g)

SiO2 18 - 0.04 0.04

TiO2 P25 52 0.01 0.10 0.11

SiO2@TiO2 52 0.01 0.07 0.08

SiO2@TiO2 (HT1) 304 0.05 0.20 0.25

SiO2@TiO2 (HT2) 394 0.07 0.23 0.30

SiO2@TiO2 (HT1) upscaled 280 0.04 0.14 0.18

The synthesized SiO2@TiO2 NPs (HT1 and HT2) show isotherms and pore size dis-
tribution curves reported in Figure 6. HT1 and HT2 show an SSA of 304 and 394 m2/g,
respectively. The significant increase in SSA may be directly associated with the type
of treatment (hydrothermal treatment vs. calcination), thus it seems the hydrothermal
treatment contributes to the formation of smaller TiO2 particles in the shell of the compos-
ite materials with the consequent increase in SSA. The nitrogen adsorption–desorption
isotherms are of the IV type [28]. According to the DFT analysis of the pore size, and with
respect to the SiO2@TiO2 sample, it is possible to confirm an increase in the micropores and
meso/macropores, as indicated by the results reported in Table 3 and Figure 6. According
to the DFT analysis of the pore size, and with respect to the SiO2@TiO2 sample, it is possible
to confirm an increase in the micropores and meso/macropores, as indicated by the results
reported in Table 3 and Figure 6.

Figure 7a reports the transmittance spectra of SiO2@TiO2 in the form of self-supporting
pellets in the presence of air and outgassed from RT up to 400 ◦C. The spectra can be
described by dividing them into two regions [37,48]: (a) in the range between 4000 and
2500 cm−1, the surface OH groups, interacting via hydrogen bonding with each other
and with adsorbed water molecules, are responsible for the huge absorption observed.
Additionally, in the same range, CH groups of unreacted organic precursors or deriving
from atmospheric contamination vibrate at around 3000 cm−1; (b) below 2100 cm−1, the
vibrational signals of Si-O-Si of the bulk (about 800 and 1100 cm−1) and the correlated
harmonic and combination modes (about 1600, 1900, and 2000 cm−1) absorb the main
part of the radiation. In this range, signals of adsorbed water molecules at 1630 cm−1

(δHOH) and carbonate-like groups derived from the interaction of atmospheric CO2 with
basic O2− sites at 1900 and 1400 cm−1 appear. Another prominent but not useful signal is
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present at 2345 cm−1 due to the roto vibrational profile of some gaseous CO2 present in the
spectrophotometer sample chamber.
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During the outgassing process, physisorbed and chemisorbed molecules derived
from the interaction of the material with gaseous molecules present in the atmosphere
(mainly water and carbon dioxide) desorb from the surface, increasing the transparency of
the sample (arrow in Figure 7a). In the high-frequency region, the decrease in hydrogen
bonding interactions makes visible the signals of free SiOH groups at 3750 cm−1. The
presence of this absorption suggests TiO2 NPs do not completely cover the surface of SiO2,
and this could be beneficial for the photocatalytic activity of TiO2 because silanols can
promote oxygen adsorption [49]. Moreover, the dehydration of the sample continues up
to 400 ◦C of vacuum outgassing temperature, as witnessed by the change in the optical
transparency of the material, and this indicates that the material is extremely hydrophilic,
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as expected for the presence of highly dispersed TiO2 NPs and for the presence of the polar
interface where Si-O-Ti groups are formed. This feature surely enhances the capacity of the
composite materials in interacting with polar substrates, i.e., methylene blue molecules.

To better evidence the behaviors of the SiO2/TiO2 interface, NH3 was used as a probe
to investigate the material Lewis acidity (due to coordinatively unsaturated Ti4+ surface
sites) and Brønsted acidity (due to Si-OH-Ti groups, i.e., OH groups present at the interface
of SiO2/TiO2) [50]. The sample chosen for this investigation, SiO2@TiO2, was preliminarily
outgassed at 120, 250, and 400 ◦C to almost completely remove the adsorbed atmospheric
contaminants and create a surface that is reactive towards the interaction with the probe.
Only the results obtained for the sample outgassed at 400 ◦C are reported for the sake of
brevity, as they are not so different from the other results. The main spectra, registered in
transmittance after the admission of the increasing pressure of NH3 in the cell, are reported
in Figure 7b.

The presence of NH3 causes an important decrease in the optical transparency (arrow
in Figure 7b) of the sample with the formation of signals related to NH4+ species (1450 cm−1)
and NH3 interacting with Lewis acidic sites of material (1630 cm−1), both confirmed by the
presence of the signal at 3300 cm−1. Moreover, the isosbestic point at 3520 cm−1 indicates
that free OH groups progressively interact with increasing doses of NH3 molecules forming
H-bonds. All these interactions depend on the NH3 pressure; therefore, a decrease in the
amount of NH3 in the cell causes a partial recovery of the original profile of the spectrum,
indicating a partially irreversible interaction of the molecule with the surface of the sample.

3.2. Reactive Species Generation

EPR spectra after irradiation under simulated solar light were recorded for all the
samples in the presence of the spin-trap DMPO. In all cases (Figure 8) the typical spectral
pattern of the DMPO-OH adduct with aN = aH ∼= 15.1 Gauss was observed, confirming the
generation of strongly oxidizing hydroxyl radicals after the irradiation already observed
in TiO2/SiO2 composite coatings and in many other hybrid materials containing TiO2
particles [51,52]. EPR experiments showed the production of a similar number of radical
species for all the SiO2@TiO2 samples, indicating that the generation of hydroxyl radicals
under irradiation is not dependent on the different preparation methodologies used in this
work. This result shows that the hydrothermal treatment can produce a crystalline material
under more ecofriendly conditions and is able to generate similar types and concentrations
of reactive species compared to the nanomaterial obtained via calcination. Additionally, the
upscaled material also presented results that confirm the feasibility of the scale-up process,
since it was able to generate the same type and concentration of reactive species as the
material synthesized at the laboratory scale.

3.3. Photocatalytic Removal of Dye

The photocatalytic removal efficiency of the prepared NPs was examined through
the ability of the particles to remove MB under UV light irradiation. In this photocatalytic
study, the pure SiO2, TiO2 nanoparticles, and an MB solution were used as references
for comparison. After the UV light exposure, the samples were filtered and the total
concentration of the MB was determined from the maximum absorption measurements
using UV/Vis spectroscopy, as the characteristic peak of the MB dye at 663 nm is typically
used to study its catalytic degradation [53].

Typically, when the dye solution is added into the mixture, the dye molecules start to
adsorb on the surface of the solid catalyst particles, which decreases at a certain level of
MB concentration [54].
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The photocatalytic process through TiO2 typically involves the electrons in the conduc-
tion band, which participate in the reduction process and induce the reaction of molecular
oxygen present in the atmosphere with the superoxide radical anion formation. The hy-
droxyl radicals, generated between the TiO2 surface and the adsorbed water molecules, and
the superoxide ions, highly reactive, degrade the organic compounds through oxidative
reactions [7,36,55]. In the case of MB, the degradation occurs through the oxidative process
upon UV light irradiation [7]. Several authors have reported the development of different
nanomaterials for the degradation of MB in aqueous solution [56–59].

As shown in Table 4, the MB reference sample did not exhibit significant differences in
MB tonality and degradation over exposure time to UV radiation.

Table 4. Images of the vials containing the powdered sample and the MB solution prior to filtration,
before (0 min), and after 480 min of exposure to UV radiation.

SiO2@TiO2

SiO2 TiO2 Calcined HT1 HT2 HT1 US 1 MB

0 min
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To perform a quantitative assessment of the removal efficiency, the suspensions were 
filtered to remove the catalyst; then, the supernatants were analyzed via UV/Vis 
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1 US—upscaled.

Visually comparing the samples prior to filtration, in the case of core-shell NPs, the
samples prepared with hydrothermal treatment showed an initial difference in MB tone
(0 min) when compared to the calcined sample, exhibiting a slightly dark blue-purple color,
becoming more pronounced after exposure to UV light.

To perform a quantitative assessment of the removal efficiency, the suspensions were
filtered to remove the catalyst; then, the supernatants were analyzed via UV/Vis spec-
troscopy to determine the MB removal. The obtained values were used to determine the
MB concentration through a standard calibration curve (Equation (3)).

y = 0.145x + 0.015 (3)

The different samples were compared to the MB reference sample with the respective
time of exposure to UV radiation. It must be highlighted that the filtration of methylene blue
did not decrease its concentration in solution; thus, the decrease in the dye concentration
(i.e., the dye removal) was the result of the adsorbent and/or photocatalytic effects of the
materials and not the effect of dye filtration. Figure 9a shows the MB removal efficiency,
the MB mass removed from the solution during the exposure time, and Table S1 shows the
images of the different sample solutions, for the same representative times, after UV light
exposure and filtration.

For bare SiO2, the calculated removal efficiency demonstrates a constant MB decrease
during the first 60 min with an efficiency removal of 45%. After 180 min of exposure, a
significant increase in MB removal is observed and stabilizes over time, with a removal
efficiency of between 69 and 74% after 480 min. These values can be explained by the
adsorption capacity of this material type. Indeed, the capacity to remove organic dyes
utilizing adsorbents and adsorption through physical methods has been investigated
recently and this is a reported characteristic of SiO2 particles due to their porosity [60].

It is already known that to increase the organic dyes’ removal, the surface of porous
materials like SiO2 can be modified with metal or metal oxide materials to improve the
adsorption capacity and add photocatalytic activity to increase the degradation of organic
compounds [60]. This behavior can be observed on the SiO2@TiO2 core-shell NPs’ results.
After 15 min of exposure, the MB removal capacity is 80% in the case of the SiO2@TiO2
prepared using the calcination method, and almost complete for the samples prepared
using hydrothermal methods, indicating a synergetic effect between the adsorption at the
SiO2 core and the photocatalytic MB degradation by the TiO2 shell. Porous structured
materials with a high surface area and photocatalytic capacity have been often commonly
chosen for wastewater purification [7,60].

According to the obtained results, the possible MB degradation mechanism for these
materials involves, in the first step, dye adsorption on the catalyst surface and its respec-
tive photodegradation after exposure to UV radiation [54,61]. Although a considerable
removal of the dye is observed in the dark conditions, it should be noted that this only
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becomes possible after a separation/filtration process, as can be seen in the images in
Table 4 and Table S1. Before UV exposure (0 min) and filtration, all the solutions show
turbidity and a more pronounced MB tonality, which decreases after the filtration step.
Additionally, after the 8 h UV exposure, the samples become clearer and less turbid, indi-
cating the photodegradation of the dye. It should also be noted that after filtration, only
the hydrothermally treated samples show an almost complete removal of MB at 0 min,
compared to the sample treated by calcination and the TiO2 reference sample. This may
be due to the thickest TiO2 shell of the HT1 and HT2 samples compared to the calcined
sample [62].

Based on the results represented in Figure 9b, it is possible to observe that the degra-
dation rate of the SiO2@TiO2 NPs with hydrothermal treatment is considerably higher
compared to the SiO2 and TiO2 reference samples (55 and 82%, respectively). This means
that a considerable part of the MB was degraded at the initial exposure with only 15 min;
this rate decreases over time, demonstrating that prolonged exposure produces the same
results. The behavior of the TiO2 reference sample should be highlighted, in which the
degradation rate is lower than all the samples under study, even the reference SiO2 sample,
presenting the same degradation rate after 30 min. These results prove once again the
synergistic and efficient adsorbent effect of SiO2 on MB degradation.

It is also to be noted that even in the dark, high percentages of MB removal are
observed, being higher for SiO2@TiO2 samples prepared via the hydrothermal treatment,
followed by the SiO2@TiO2 sample prepared using the calcination method, and then the
bare SiO2. The same behavior was observed in the study of Urbashi Mahanta et al. (2022)
where SiO2-TiO2 nanoparticles with a mole ratio of 5:1 showed the highest adsorption
capacity of 88.6% after 30 min under dark conditions [7]. It is described in the literature that
the combination of SiO2 and TiO2 is to enhance the photocatalytic performance of TiO2 by
reducing the particle size of TiO2, improving the surface area, and increasing the thermal
stability [7]. It was found that the prime factor enhancing the efficiency of the photocatalyst
is its surface properties such as surface charge, porosity, and surface area [7].

For bare SiO2, the calculated removal efficiency demonstrates a constant MB decrease
during the first 60 min with an efficiency removal of 45%. After 180 min of exposure, a
significant increase in MB removal was observed and stabilizing over time, with a removal
efficiency of between 69 and 74% after 480 min. These values can be explained by the
adsorption capacity of this material type. Indeed, the capacity to remove organic dyes
utilizing adsorbents and adsorption through physical methods has been investigated
recently and this is a reported characteristic of SiO2 particles due to their porosity [60].

It is already known that to increase the organic dyes’ removal, the surface of porous
materials like SiO2 can be modified with metal or metal oxide materials to improve the
adsorption capacity and add photocatalytic activity to increase the degradation of organic
compounds [60]. This behavior can be observed on the SiO2@TiO2 core-shell NP results.
After 15 min of exposure, the MB removal capacity is 80% in the case of the SiO2@TiO2
prepared by the calcination method, and almost complete for the samples prepared by the
hydrothermal methods, indicating a synergetic effect between the adsorption at the SiO2
core and the photocatalytic MB degradation by the TiO2 shell. Porous structured materials
with a high surface area and photocatalytic capacity have been often commonly chosen for
wastewater purification [7,60].

According to the obtained results, the possible MB degradation mechanism for these
materials involves, in the first step, dye adsorption on the catalyst surface and its respective
photodegradation after exposure to UV radiation [54,61]. Although a considerable removal
of the dye is observed in dark conditions, it should be noted that this only becomes possible
after a separation/filtration process. As can be seen in the images in Table 4, before UV
exposure (0 min), all the solutions show turbidity and a more pronounced MB tonality.
After 8 h of UV exposure, the samples become clearer and less turbid, indicating the
photodegradation of the dye.
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It is well known that the specific surface area has an important role in increasing
photocatalytic activity [7]. The high surface area provides a number of active centers
that can adsorb a large number of pollutant molecules [63]. According to the SSA results
(Table 3), the surface area of the SiO2@TiO2 HT1 and HT2 samples are 94–95% higher
than SiO2 and 83–87% higher than calcined SiO2@TiO2 and the TiO2 reference sample.
These results confirm the effect of SiO2 on the improvement of specific surface area that
directly impacts the MB degradation and removal. The high photocatalytic activities and
high adsorption ability for organic contaminants demonstrate that the nanocomposite of
SiO2-TiO2 is a promising candidate material for the future treatment of contaminated water
to remove the contaminants effectively even without illumination.

Table 5 shows the initial adsorption capability of the samples in dark conditions. It
is possible to observe once again the highest adsorption for the samples obtained via the
hydrothermal method, followed by the calcined method and SiO2 reference sample. The
TiO2 is the sample with the lowest MB adsorption performance, which agrees with the
results demonstrated so far.

Table 5. Adsorption capability of the samples in dark conditions.

Samples Adsorption (µg/g)

SiO2 328

TiO2 79

SiO2@TiO2 502

SiO2@TiO2 (HT1) 714

SiO2@TiO2 (HT2) 718

SiO2@TiO2 (HT1) upscaled 718

On the other hand, the TiO2 P25 reference material did not exhibit the same efficiency,
starting with 11% in the dark, showing only an 18% removal efficiency after 15 min,
stabilizing around 28–34% until 180 min, and increasing to 82% after 480 min. Typically,
TiO2 reported in the literature presents lower MB degradation efficiency [36]. However,
a comparison of the results with the literature is difficult. Even if the same catalyst is
used, the parameters of the photocatalytic testing can be very different [64]. The values of
the maximum degradation and removal efficiency of MB are listed in Table 6 with some
experimental information to be compared with the obtained results of the present work.

Although TiO2 is the most used semiconductor material for photocatalysis due to
its chemical stability [64], this work demonstrates that a SiO2@TiO2 core-shell structure
improves the dye degradation by taking leverage of the adsorption capacity of SiO2.

It should be highlighted that in the present study, the photocatalytic degradation of MB
occurred at a much lower power (15 W), in contrast to those found in most literature studies
which used higher UV light power, as the MB removal is potentiated by the hydrothermally
treated NPs.

In addition, once again, the viability of the SiO2@TiO2 (HT1) upscaled material syn-
thesis and use was confirmed by the obtained results, where the removal and degradation
of the MB behavior were the same when compared with the laboratorial scale material.
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Table 6. Comparison of MB degradation with SiO2-TiO2 samples under different conditions.

# Material Exposure
Time (min) Conditions Efficiency (%) Ref.

1
SiO2-TiO2

nanoparticles
30

Dark 88.6

[7]
Sunlight 90

UV light 85

120 Sunlight 98

2 SiO2-TiO2
composite 360 UV light 90

[65]

3 TiO2-SiO2
hollow nanospheres 120 UV light >90

4

TiO2
prior calcination

300 UV light

7

[36]

TiO2
after calcination 30

SiO2-TiO2
prior calcination 43

SiO2-TiO2
after calcination 76

5

SiO2

30 UV light

45.8

This work
TiO2 30.0

SiO2@TiO2 calcined 77.8

SiO2@TiO2 HT1 upscaled 97.2

4. Conclusions

SiO2@TiO2 core-shell nanoparticles were obtained through the synthesis of a monodis-
persed SiO2 synthesized by the classical Stöber method, which was coated with a thin layer
of TiO2, followed by calcination or hydrothermal treatment. The nanoparticles were tested
for methylene blue removal and photocatalytic degradation under low-power UV light.
The low temperature (140 ◦C) of the hydrothermal treatments (HT1 and HT2) was sufficient
for the transformation of the titania amorphous phase into the anatase phase, allowing
good crystallinity of the shell. The high negative value obtained for the zeta potential
indicates that both the calcined SiO2@TiO2 and the hydrothermally treated SiO2@TiO2
(HT1 and HT2) are highly stable in water and exhibit low agglomeration.

EPR experiments showed that the generation of hydroxyl radicals under sunlight
irradiation is not dependent on the type of treatment (calcination or hydrothermal) used
for the TiO2 crystallization step. These results demonstrated that nanomaterials prepared
via a hydrothermal treatment, a more ecofriendly condition, show the same performance
as nanomaterials synthesized via the calcination method or even the commercial titania
used as a reference.

The NPs prepared using hydrothermal methods showed the highest MB degradation
capacity of almost 100% after 15 min when compared to the SiO2@TiO2 and TiO2 with
80 and 18%, respectively. Even under dark conditions, high percentages of MB removal
were observed. This may be due to the thickest TiO2 shell of the HT1 and HT2 samples
compared to the calcined sample and the higher SSA obtained via the hydrothermal
method associated with the adsorption capacity of SiO2, which positively influences the
photocatalysis capacity. The SiO2@TiO2 HT1, laboratory and upscaled samples, and HT2
presented the highest adsorption capacity, followed by SiO2@TiO2 calcined samples, the
SiO2 reference sample, and, finally, the TiO2 reference sample.
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The standout performance of the upscaled sample (SiO2@TiO2 (HT1) upscaled) in-
dicates the viability of this solution for large-scale applications, where larger amounts of
materials are needed.

The results obtained in this work have shown the potential of the SiO2@TiO2 core-shell
particles as putative candidates for the removal of organic dyes from wastewaters, even
without illumination.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13162276/s1, Figure S1: Main steps involved in the synthesis
of the SiO2@TiO2 core-shell NPs.; Figure S2: HR-TEM images of a) SiO2@TiO2 core-shell NPs HT1 and
EDS Si (green) and Ti (red) element map of sample HT1. The detail in section b) is the high-resolution
image of the HT1 shell with the evidence of the 0.356 nm fringe pattern; Table S1: Images of the vials
containing the powdered sample and the MB solution with different times of exposure to UV light
and after filtration.
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