Approaching High-Performance TS-1 Zeolites in the Presence of Alkali Metal Ions via Combination of Adjusting pH Value and Modulating Crystal Size
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Syntheses of TS-1 Catalysts
2.3. Characterization
2.4. Catalytic Reaction
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 2009, 461, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, D.; Xu, D.; Asahina, S.; Cychosz, K.A.; Agrawal, K.V.; Al Wahedi, Y.; Bhan, A.; Al Hashimi, S.; Terasaki, O.; et al. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science 2012, 336, 1684–1687. [Google Scholar] [CrossRef] [Green Version]
- Vogt, E.T.C.; Weckhuysen, B.M. Fluid catalytic cracking: Recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 2015, 44, 7342–7370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, G.; Cheng, P.; Yan, W.; Boronat, M.; Li, X.; Su, J.H.; Wang, J.; Li, Y.; Corma, A.; Xu, R.; et al. Accelerated crystallization of zeolites via hydroxyl free radicals. Science 2016, 351, 1188–1191. [Google Scholar] [CrossRef]
- Jeon, M.Y.; Kim, D.; Kumar, P.; Lee, P.S.; Rangnekar, N.; Bai, P.; Shete, M.; Elyassi, B.; Lee, H.S.; Narasimharao, K.; et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 2017, 543, 690–694. [Google Scholar] [CrossRef]
- Snyder, B.E.R.; Vanelderen, P.; Bols, M.L.; Hallaert, S.D.; Bottger, L.H.; Ungur, L.; Pierloot, K.; Schoonheydt, R.A.; Sels, B.F.; Solomon, E.I. The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature 2016, 536, 317–321. [Google Scholar] [CrossRef]
- Sushkevich, V.L.; Palagin, D.; Ranocchiari, M.; van Bokhoven, J.A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 2017, 356, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.E. Clicking zeolites together A new mechanism to synthesize catalytic zeolites gives a previously unknown topology. Science 2023, 379, 236–237. [Google Scholar] [CrossRef]
- Li, J.; Gao, Z.R.; Lin, Q.F.; Liu, C.X.; Gao, F.X.; Lin, C.; Zhang, S.Y.; Deng, H.; Mayoral, A.; Fan, W.; et al. A 3D extra-large-pore zeolite enabled by 1D-to-3D topotactic condensation of a chain silicate. Science 2023, 379, 283–287. [Google Scholar] [CrossRef]
- Tan, X.Y.; Robijns, S.; Thuer, R.; Ke, Q.L.; De Witte, N.; Lamaire, A.; Li, Y.; Aslam, I.; Van Havere, D.; Donckels, T.; et al. Truly combining the advantages of polymeric and zeolite membranes for gas separations. Science 2022, 378, 1189–1194. [Google Scholar] [CrossRef]
- Peng, H.G.; Dong, T.; Yang, S.Y.; Chen, H.; Yang, Z.Z.; Liu, W.M.; He, C.; Wu, P.; Tian, J.S.; Peng, Y.; et al. Intra-crystalline mesoporous zeolite encapsulation-derived thermally robust metal nanocatalyst in deep oxidation of light alkanes. Nat. Commun. 2022, 13, 295. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Parmentier, T.E.; de Jong, K.P.; Zecevic, J. Tailoring and visualizing the pore architecture of hierarchical zeolites. Chem. Soc. Rev. 2015, 44, 7234–7261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weckhuysen, B.M.; Yu, J. Recent advances in zeolite chemistry and catalysis. Chem. Soc. Rev. 2015, 44, 7022–7024. [Google Scholar] [CrossRef] [PubMed]
- Korde, A.; Min, B.; Kapaca, E.; Knio, O.; Nezam, I.; Wang, Z.Y.; Leisen, J.; Yin, X.Y.; Zhang, X.Y.; Sholl, D.S.; et al. Single-walled zeolitic nanotubes. Science 2022, 375, 62–66. [Google Scholar] [CrossRef]
- Van der Graaff, W.N.P.; Li, G.; Mezari, B.; Pidko, E.A.; Hensen, E.J.M. Synthesis of Sn-Beta with Exclusive and High Framework Sn Content. ChemCatChem 2015, 7, 1152–1160. [Google Scholar] [CrossRef]
- Van de Vyver, S.; Odermatt, C.; Romero, K.; Prasomsri, T.; Román-Leshkov, Y. Solid Lewis Acids Catalyze the Carbon–Carbon Coupling between Carbohydrates and Formaldehyde. ACS Catal. 2015, 5, 972–977. [Google Scholar] [CrossRef]
- Guo, Q.; Fan, F.; Pidko, E.A.; van der Graaff, W.N.; Feng, Z.; Li, C.; Hensen, E.J. Highly active and recyclable Sn-MWW zeolite catalyst for sugar conversion to methyl lactate and lactic acid. ChemSusChem 2013, 6, 1352–1356. [Google Scholar] [CrossRef]
- Hammond, C.; Conrad, S.; Hermans, I. Simple and scalable preparation of highly active Lewis acidic Sn-beta. Angew. Chem. Int. Ed. 2012, 51, 11736–11739. [Google Scholar] [CrossRef]
- Gunther, W.R.; Wang, Y.; Ji, Y.; Michaelis, V.K.; Hunt, S.T.; Griffin, R.G.; Roman-Leshkov, Y. Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift. Nat. Commun. 2012, 3, 1109. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Duan, R.-G.; Yokoi, T.; Wu, P.; Kubota, Y.; Tatsumi, T. Synthesis, Crystallization Mechanism, and Catalytic Properties of Titanium-Rich TS-1 Free of Extraframework Titanium Species. J. Am. Chem. Soc. 2008, 9, 10150–10164. [Google Scholar] [CrossRef]
- Reichinger, M.; Schmidt, W.; Berg, M.W.E.V.D.; Aerts, A.; Martens, J.A.; Kirschhock, C.E.A.; Gies, H.; Grünert, W. Alkene epoxidation with mesoporous materials assembled from TS-1 seeds—Is there a hierarchical pore system? J. Catal. 2010, 269, 367–375. [Google Scholar] [CrossRef]
- Chen, L.H.; Li, X.Y.; Tian, G.; Li, Y.; Rooke, J.C.; Zhu, G.-S.; Qiu, S.L.; Yang, X.Y.; Su, B.L. Highly Stable and Reusable Multimodal Zeolite TS-1 Based Catalysts with Hierarchically Interconnected Three-Level Micro-Meso-Macroporous Structure. Angew. Chem. Int. Ed. 2011, 50, 11156–11161. [Google Scholar] [CrossRef]
- Na, K.; Jo, C.; Kim, J.; Ahn, W.-S.; Ryoo, R. MFI Titanosilicate Nanosheets with Single-Unit-Cell Thickness as an Oxidation Catalyst Using Peroxides. ACS Catal. 2011, 1, 901–907. [Google Scholar] [CrossRef]
- Deng, X.Z.; Huang, G.; Liu, T.-W.; Huang, C.; Chen, B.-H.; Luo, C.-W.; Ruckenstein, E.; Chao, Z.-S. Synthesis of High-Performanced Titanium Silicalite-1 Zeolite at Very Low Usage of Tetrapropyl Ammonium Hydroxide. Ind. Eng. Chem. Res. 2013, 52, 3762–3772. [Google Scholar]
- Liu, M.; Wei, H.J.; Li, B.J.; Song, L.Y.; Zhao, S.Z.; Niu, C.C.; Jia, C.F.; Wang, X.Y.; Wen, Y.Q. Green and efficient preparation of hollow titanium silicalite-1 by using recycled mother liquid. Chem. Eng. J. 2018, 331, 194–202. [Google Scholar] [CrossRef]
- Xu, H.; Wu, P. Recent Progresses in Titanosilicates. Chin. J. Chem. 2017, 35, 836–844. [Google Scholar] [CrossRef] [Green Version]
- Li, M.Y.; Zhai, Y.; Zhang, X.B.; Wang, F.M.; Lv, G.J.; Rosine, A.; Li, M.Y.; Zhang, Q.; Liu, Y.K. (NH4)(2)SO4-assisted synthesis of thin-walled Ti-rich hollow titanium silicalite-1 zeolite for 1-hexene epoxidation. Microporous Mesoporous Mater. 2022, 331, 111655. [Google Scholar] [CrossRef]
- Pan, D.; Kong, L.T.; Zhang, H.B.; Zhang, Y.H.; Tang, Y. TS-1 Synthesis via Subcrystal Aggregation: Construction of Highly Active Hydrogen-Bonded Titanium Species for Alkene Epoxidation. ACS Appl. Mater. Interfaces 2023, 15, 28125–28134. [Google Scholar] [CrossRef]
- Li, C.G.; Lu, Y.; Wu, H.; Wu, P.; He, M. A hierarchically core/shell-structured titanosilicate with multiple mesopore systems for highly efficient epoxidation of alkenes. Chem. Commun. 2015, 51, 14905–14908. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhang, T.; Meng, C.; Guo, X.; Song, C. Enhanced Catalytic Performance of Titanium Silicalite-1 in Tuning the Crystal Size in the Range 1200–200 nm in a Tetrapropylammonium Bromide System. ChemCatChem 2015, 7, 2660–2668. [Google Scholar] [CrossRef]
- Zhou, J.H.; Cui, Z.; Ye, X.; Cui, Z.; Shi, J.F. Hierarchical mesoporous TS-1 zeolite: A highly active and extraordinarily stable catalyst for the selective oxidation of 2,3,6-trimethylphenol. Chem. Commun. 2010, 46, 4994–4996. [Google Scholar] [CrossRef]
- Clerici, M.G.; Bellussi, G.; Romano, U. Synthesis of Propylene Oxide from Propylene and Hydrogen Peroxide Catalyzed by Titanium Silicalite. J. Catal. 1991, 129, 159–167. [Google Scholar] [CrossRef]
- Thangaraj, A.; Ratnasamy, P. Catalytic properties of crystalline titanium silicalites III Ammoximation of cyclohexanone. J. Catal. 1991, 131, 394–400. [Google Scholar] [CrossRef]
- Lin, M.; Xia, C.; Zhu, B.; Li, H.; Shu, X. Green and efficient epoxidation of propylene with hydrogen peroxide (HPPO process) catalyzed by hollow TS-1 zeolite: A 1.0 kt/a pilot-scale study. Chem. Eng. J. 2016, 295, 370–375. [Google Scholar] [CrossRef]
- Du, S.; Chen, X.; Sun, Q.; Wang, N.; Jia, M.; Valtchev, V.; Yu, J. A non-chemically selective top-down approach towards the preparation of hierarchical TS-1 zeolites with improved oxidative desulfurization catalytic performance. Chem. Commun. 2016, 52, 3580–3583. [Google Scholar] [CrossRef]
- Luan, H.M.; Xu, C.; Wu, Q.M.; Xiao, F.S. Recent advances in the synthesis of TS-1 zeolite. Front. Chem. 2022, 10, 1080554. [Google Scholar] [CrossRef] [PubMed]
- Khouw, C.B.; Davis, M.E. Catalytic Activity of Titanium Silicates Synthesized in the Presence of Alkali-Metal and Alkaline-Earth Ions. J. Catal. 1995, 151, 77–86. [Google Scholar] [CrossRef]
- Fu, K.; Li, G.; Xu, F.; Dai, T.; Su, W.; Wang, H.; Li, T.; Wang, Y.; Wang, J. Nano-Cavities within Nano-Zeolites: The Influencing Factors of the Fabricating Process on Their Catalytic Activities. Nanomaterials 2023, 13, 1923. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Song, W.C.; Dai, C.Y.; He, Y.P.; Wang, M.L.; Wang, X.S.; Guo, X.W. Modification of small-crystal titanium silicalite-1 with organic bases: Recrystallization and catalytic properties in the hydroxylation of phenol. Appl. Catal. A Gen. 2013, 453, 272–279. [Google Scholar] [CrossRef]
- Wang, X.S.; Guo, X.W.; Li, G. Synthesis of titanium silicalite (TS-1) from the TPABr system and its catalytic properties for epoxidation of propylene. Catal. Today 2002, 74, 65–75. [Google Scholar] [CrossRef]
- Zhao, Q.; Bao, X.H.; Han, X.W.; Liu, X.M.; Tan, D.L.; Lin, L.W.; Guo, X.W.; Li, G.; Wang, X.S. Studies on the crystallization process of titanium silicalite-1 (TS-1) synthesized using tetrapropylammonium bromide as a template. Mater. Chem. Phys. 2000, 66, 41–50. [Google Scholar] [CrossRef]
- Wang, X.S.; Guo, X.W. Synthesis, characterization and catalytic properties of low cost titanium silicalite. Catal. Today 1999, 51, 177–186. [Google Scholar] [CrossRef]
- Li, G.; Guo, X.W.; Wang, X.S.; Zhao, Q.; Bao, X.H.; Han, X.W.; Lin, L.W. Synthesis of titanium silicalites in different template systems and their catalytic performance. Appl. Catal. A Gen. 1999, 185, 11–18. [Google Scholar]
- Millini, R.; Massara, E.P.; Bellussi, P.G.G. Framework composition of titanium silicalite. J. Catal. 1992, 137, 497–503. [Google Scholar] [CrossRef]
- Wang, J.G.; Wang, Y.B.; Tatsumi, T.; Zhao, Y.L. Anionic polymer as a quasi-neutral medium for low-cost synthesis of titanosilicate molecular sieves in the presence of high-concentration alkali metal ions. J. Catal. 2016, 338, 321–328. [Google Scholar] [CrossRef]
- Wang, J.G.; Zhao, Y.L.; Yokoi, T.; Kondo, J.N.; Tatsumi, T. High-Performance Titanosilicate Catalyst Obtained through Combination of Liquid-Phase and Solid-Phase Transformation Mechanisms. ChemCatChem 2014, 6, 2719–2726. [Google Scholar] [CrossRef]
- Ricchiardi, G.; Damin, A.; Bordiga, S.; Lamberti, C.; Spano, G.; Rivetti, F.; Zecchina, A. Vibrational Structure of Titanium Silicate Catalysts. A Spectroscopic and Theoretical Study. J. Am. Chem. Soc. 2001, 123, 11409–11419. [Google Scholar] [CrossRef]
Sample | pH Value 1 | pH Value 2 | Si/Ti (mol/mol) | Na (wt.%) | SBET 3 /m2 g−1 | VMicro. 4 /cm3 g−1 |
---|---|---|---|---|---|---|
TS-1-a | 8.9 | 8.4 | 25 | 0.412 | 204.5 | 0.07 |
TS-1-b | 9.3 | 7.6 | 31 | 0.392 | 388.4 | 0.17 |
TS-1-c | 9.4 | 7.0 | 35 | 0.560 | 393.9 | 0.17 |
TS-1-d | 10.2 | 7.8 | 45 | 0.567 | 385.3 | 0.16 |
Sample | Si/Ti (mol/mol) | Na (wt.%) | Conversion (%) | SEpoxide 1 (%) | SH2O2 2 (%) |
---|---|---|---|---|---|
TS-1-a | 25 | 0.412 | 7.8 | 99.0 | 63 |
TS-1-b | 31 | 0.392 | 9.3 | 98.7 | 58 |
TS-1-c | 35 | 0.560 | 4.4 | 99.0 | 47 |
TS-1-d | 45 | 0.567 | 3.0 | 99.0 | 53 |
TS-1-small 3 | 35 | 0.278 | 23.0 | 95.0 | 74 |
TS-1-co 4 | 45 | - | 24.4 | 90.8 | 80 |
TS-1-Na0.02 5 | 71 | 0.180 | 1.2 | 77.0 | 99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Fu, K.; Xu, F.; Li, T.; Wang, Y.; Wang, J. Approaching High-Performance TS-1 Zeolites in the Presence of Alkali Metal Ions via Combination of Adjusting pH Value and Modulating Crystal Size. Nanomaterials 2023, 13, 2296. https://doi.org/10.3390/nano13162296
Li G, Fu K, Xu F, Li T, Wang Y, Wang J. Approaching High-Performance TS-1 Zeolites in the Presence of Alkali Metal Ions via Combination of Adjusting pH Value and Modulating Crystal Size. Nanomaterials. 2023; 13(16):2296. https://doi.org/10.3390/nano13162296
Chicago/Turabian StyleLi, Geng, Kairui Fu, Fulin Xu, Tianduo Li, Yunan Wang, and Jingui Wang. 2023. "Approaching High-Performance TS-1 Zeolites in the Presence of Alkali Metal Ions via Combination of Adjusting pH Value and Modulating Crystal Size" Nanomaterials 13, no. 16: 2296. https://doi.org/10.3390/nano13162296
APA StyleLi, G., Fu, K., Xu, F., Li, T., Wang, Y., & Wang, J. (2023). Approaching High-Performance TS-1 Zeolites in the Presence of Alkali Metal Ions via Combination of Adjusting pH Value and Modulating Crystal Size. Nanomaterials, 13(16), 2296. https://doi.org/10.3390/nano13162296