Color Centers in Hexagonal Boron Nitride
Abstract
:1. Introduction
2. Color Centers in Ultrawide-Bandgap Semiconductors
3. Fabrication Process of Color Centers in hBN
3.1. Thermal Annealing Method
3.2. UV Ozone Treatment Method
3.3. Laser Writing Method
3.4. Local Strain Method Using Micropillars
3.5. Solution Exfoliation Method
4. Wavelength of Color Centers in hBN
5. Atomic Configuration of Color Centers in hBN
5.1. Nitrogen Vacancy
5.2. Boron Vacancy
5.3. Oxygen Impurities
5.4. Carbon Impurities
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015, 73, 44–126. [Google Scholar] [CrossRef]
- Cui, X.; Lee, G.-H.; Kim, Y.D.; Arefe, G.; Huang, P.Y.; Lee, C.-H.; Chenet, D.A.; Zhang, X.; Wang, L.; Ye, F.; et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2015, 10, 534–540. [Google Scholar] [CrossRef]
- Wang, L.; Meric, I.; Huang, P.Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L.M.; Muller, D.A.; et al. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science 2013, 342, 614–617. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Malik, G.; Chandra, R.; Mulik, R.S. Bluish emission of economical phosphor h-BN nanoparticle fabricated via mixing annealing route using non-toxic precursor. J. Solid State Chem. 2020, 288, 121430. [Google Scholar] [CrossRef]
- Wickramaratne, D.; Weston, L.; Van de Walle, C.G. Monolayer to Bulk Properties of Hexagonal Boron Nitride. J. Phys. Chem. C 2018, 122, 25524–25529. [Google Scholar] [CrossRef]
- Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409. [Google Scholar] [CrossRef]
- Cassabois, G.; Valvin, P.; Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photonics 2016, 10, 262–266. [Google Scholar] [CrossRef] [Green Version]
- Elias, C.; Valvin, P.; Pelini, T.; Summerfield, A.; Mellor, C.J.; Cheng, T.S.; Eaves, L.; Foxon, C.T.; Beton, P.H.; Novikov, S.V.; et al. Direct band-gap crossover in epitaxial monolayer boron nitride. Nat. Commun. 2019, 10, 2639. [Google Scholar] [CrossRef] [Green Version]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L.; et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef]
- Kim, K.K.; Lee, H.S.; Lee, Y.H. Synthesis of hexagonal boron nitride heterostructures for 2D van der waals electronics. Chem. Soc. Rev. 2018, 47, 6342–6369. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.X.; Lin, J.Y. Hexagonal boron nitride for deep ultraviolet photonic devices. Semicond. Sci. Technol. 2014, 29, 084003. [Google Scholar] [CrossRef]
- Lu, Q.; Gong, H.; Guo, Q.; Huang, X.; Cai, J. Gemological Characteristic Difference between Colorless CVD Synthetic Diamonds and Natural Diamonds. Materials 2021, 14, 6225. [Google Scholar] [CrossRef]
- Ahmed, S. Value addition in diamonds and other gemstones by nuclear radiation: The phobias and safety considerations. At. Peace: Int. J. 2009, 2, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Franck, J.; Dymond, E.G. Elementary processes of photochemical reactions. Trans. Faraday Soc. 1926, 21, 536–542. [Google Scholar] [CrossRef]
- Ishii, S.; Saiki, S.; Onoda, S.; Masuyama, Y.; Abe, H.; Ohshima, T. Ensemble Negatively-Charged Nitrogen-Vacancy Centers in Type-Ib Diamond Created by High Fluence Electron Beam Irradiation. Quantum Beam Sci. 2022, 6, 2. [Google Scholar] [CrossRef]
- Alghannam, F.; Hemmer, P. Engineering of Shallow Layers of Nitrogen Vacancy Colour Centres in Diamond Using Plasma Immersion Ion Implantation. Sci. Rep. 2019, 9, 5870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruber, A.; Dräbenstedt, A.; Tietz, C.; Fleury, L.; Wrachtrup, J.; von Borczyskowski, C. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 1997, 276, 2012–2014. [Google Scholar] [CrossRef] [Green Version]
- Haque, A.; Sumaiya, S. An Overview on the Formation and Processing of Nitrogen-Vacancy Photonic Centers in Diamond by Ion Implantation. J. Manuf. Mater. Process. 2017, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Seo, H.; Galli, G. Spin coherence in two-dimensional materials. Npj Comput. Mater. 2019, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Gottscholl, A.; Kianinia, M.; Soltamov, V.; Orlinskii, S.; Mamin, G.; Bradac, C.; Kasper, C.; Krambrock, K.; Sperlich, A.; Toth, M.; et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 2020, 19, 540–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottscholl, A.; Diez, M.; Soltamov, V.; Kasper, C.; Sperlich, A.; Kianinia, M.; Bradac, C.; Aharonovich, I.; Dyakonov, V. Room temperature coherent control of spin defects in hexagonal boron nitride. Sci. Adv. 2021, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, H.; Seo, H. First-principles theory of extending the spin qubit coherence time in hexagonal boron nitride. npj 2D Mater. Appl. 2022, 6, 60. [Google Scholar] [CrossRef]
- Tran, T.T.; Bray, K.; Ford, M.J.; Toth, M.; Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotech 2016, 11, 37–41. [Google Scholar] [CrossRef]
- Li, C.; Xu, Z.-Q.; Mendelson, N.; Kianinia, M.; Toth, M.; Aharonovich, I. Purification of single-photon emission from hBN using post-processing treatments. Nanophotonics 2019, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Gan, L.; Zhang, D.; Zhang, R.; Zhang, Q.; Sun, H.; Li, Y.; Ning, C.-Z. Large-Scale, High-Yield Laser Fabrication of Bright and Pure Single-Photon Emitters at Room Temperature in Hexagonal Boron Nitride. ACS Nano 2022, 16, 14254–14261. [Google Scholar] [CrossRef]
- Palacios-Berraquero, C.; Kara, D.M.; Montblanch, A.R.-P.; Barbone, M.; Latawiec, P.; Yoon, D.; Ott, A.K.; Loncar, M.; Ferrari, A.C.; Atatüre, M. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 2017, 8, 15093. [Google Scholar] [CrossRef] [Green Version]
- Branny, A.; Kumar, S.; Proux, R.; Gerardot, B.D. Deterministic strain induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 2017, 8, 15053. [Google Scholar] [CrossRef] [Green Version]
- Proscia, N.V.; Shotan, Z.; Jayakumar, H.; Reddy, P.; Cohen, C.; Dollar, M.; Alkauskas, A.; Doherty, M.; Meriles, C.A.; Menon, V.M. Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride. Optica 2018, 5, 1128. [Google Scholar] [CrossRef]
- Li, C.; Mendelson, N.; Ritika, R.; Chen, Y.; Xu, Z.-Q.; Toth, M.; Aharonovich, I. Scalable and Deterministic Fabrication of Quantum Emitter Arrays from Hexagonal Boron Nitride. Nano Lett. 2021, 21, 3626–3632. [Google Scholar] [CrossRef]
- Chen, Y.; Westerhausen, M.T.; Li, C.; White, S.; Bradac, C.; Bendavid, A.; Toth, M.; Aharonovich, I.; Tran, T.T. Solvent-Exfoliated Hexagonal Boron Nitride Nanoflakes for Quantum Emitters. ACS Appl. Nano Mater. 2021, 4, 10449–10457. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, H.; Tan, Q.; Zhang, J.; Yu, T.; Ding, K.; Jiang, D.; Dou, X.; Shi, J.-J.; Sun, B.-Q. Anomalous Pressure Characteristics of Defects in Hexagonal Boron Nitride Flakes. ACS Nano 2018, 12, 7127–7133. [Google Scholar] [CrossRef]
- Vogl, T.; Doherty, M.W.; Buchler, B.C.; Lu, Y.; Lam, P.K. Atomic localization of quantum emitters in multilayer hexagonal boron nitride. Nanoscale 2019, 11, 14362–14371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourrellier, R.; Meuret, S.; Tararan, A.; Stéphan, O.; Kociak, M.; Tizei, L.H.G.; Zobelli, A. Bright UV Single Photon Emission at Point Defects in h-BN. Nano Lett. 2016, 16, 4317–4321. [Google Scholar] [CrossRef] [PubMed]
- Vogl, T.; Lecamwasam, R.; Buchler, B.C.; Lu, Y.; Lam, P.K. Compact Cavity-Enhanced Single-Photon Generation with Hexagonal Boron Nitride. ACS Photonics 2019, 6, 1955–1962. [Google Scholar] [CrossRef] [Green Version]
- Schell, A.W.; Takashima, H.; Tran, T.T.; Aharonovich, I.; Takeuchi, S. Coupling Quantum Emitters in 2D Materials with Tapered Fibers. ACS Photonics 2017, 4, 761–767. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, J.; Klaiss, R.; Blaikie, A.; Miller, D.J.; Horowitz, V.R.; Alemán, B.J. Deterministic Quantum Emitter Formation in Hexagonal Boron Nitride via Controlled Edge Creation. Nano Lett. 2019, 19, 2121–2127. [Google Scholar] [CrossRef] [PubMed]
- Duong, H.N.M.; Nguyen, M.A.P.; Kianinia, M.; Ohshima, T.; Abe, H.; Watanabe, K.; Taniguchi, T.; Edgar, J.H.; Aharonovich, I.; Toth, M. Effects of High-Energy Electron Irradiation on Quantum Emitters in Hexagonal Boron Nitride. ACS Appl. Mater. Interfaces 2018, 10, 24886–24891. [Google Scholar] [CrossRef] [Green Version]
- Mendelson, N.; Xu, Z.-Q.; Tran, T.T.; Kianinia, M.; Scott, J.; Bradac, C.; Aharonovich, I.; Toth, M. Engineering and Tuning of Quantum Emitters in Few-Layer Hexagonal Boron Nitride. ACS Nano 2019, 13, 3132–3140. [Google Scholar] [CrossRef]
- Vogl, T.; Campbell, G.; Buchler, B.C.; Lu, Y.; Lam, P.K. Fabrication and Deterministic Transfer of High-Quality Quantum Emitters in Hexagonal Boron Nitride. ACS Photonics 2018, 5, 2305–2312. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Duong, N.M.H.; Nguyen, M.; Lu, T.; Kianinia, M.; Mendelson, N.; Solntsev, A.; Bradac, C.; Englund, D.R.; Aharonovich, I. Integrated on Chip Platform with Quantum Emitters in Layered Materials. Adv. Opt. Mater. 2019, 7, 1901132. [Google Scholar] [CrossRef] [Green Version]
- Exarhos, A.L.; Hopper, D.A.; Patel, R.N.; Doherty, M.W.; Bassett, L.C. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat. Commun. 2019, 10, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, M.; Kim, S.; Tran, T.T.; Xu, Z.-Q.; Kianinia, M.; Toth, M.; Aharonovich, I. Nanoassembly of quantum emitters in hexagonal boron nitride and gold nanospheres. Nanoscale 2018, 10, 2267–2274. [Google Scholar] [CrossRef] [PubMed]
- Blascetta, N.P.; Liebel, M.; Lu, X.; Taniguchi, T.; Watanabe, K.; Efetov, D.K.; van Hulst, N.F. Nanoscale Imaging and Control of Hexagonal Boron Nitride Single Photon Emitters by a Resonant Nanoantenna. Nano Lett. 2020, 20, 1992–1999. [Google Scholar] [CrossRef]
- Bommer, A.; Becher, C. New insights into nonclassical light emission from defects in multi-layer hexagonal boron nitride. Nanophotonics 2019, 8, 2041–2048. [Google Scholar] [CrossRef]
- Li, X.; Shepard, G.D.; Cupo, A.; Camporeale, N.; Shayan, K.; Luo, Y.; Meunier, V.; Strauf, S. Nonmagnetic Quantum Emitters in Boron Nitride with Ultranarrow and Sideband-Free Emission Spectra. ACS Nano 2017, 11, 6652–6660. [Google Scholar] [CrossRef]
- Kim, S.; Fröch, J.E.; Christian, J.; Straw, M.; Bishop, J.; Totonjian, D.; Watanabe, K.; Taniguchi, T.; Toth, M.; Aharonovich, I. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun. 2018, 9, 2623. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.T.; Zachreson, C.; Berhane, A.M.; Bray, K.; Sandstrom, R.G.; Li, L.H.; Taniguchi, T.; Watanabe, K.; Aharonovich, I.; Toth, M. Quantum Emission from Defects in Single-Crystalline Hexagonal Boron Nitride. Phys. Rev. Appl. 2016, 5, 034005. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.T.; Kianinia, M.; Nguyen, M.; Kim, S.; Xu, Z.-Q.; Kubanek, A.; Toth, M.; Aharonovich, I. Resonant Excitation of Quantum Emitters in Hexagonal Boron Nitride. ACS Photonics 2018, 5, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Hayee, F.; Yu, L.; Zhang, J.L.; Ciccarino, C.J.; Nguyen, M.; Marshall, A.F.; Aharonovich, I.; Vučković, J.; Narang, P.; Heinz, T.F.; et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat. Mater. 2020, 19, 534–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, T.T.; Elbadawi, C.; Totonjian, D.; Lobo, C.J.; Grosso, G.; Moon, H.; Englund, D.R.; Ford, M.J.; Aharonovich, I.; Toth, M. Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride. ACS Nano 2016, 10, 7331–7338. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Ma, K.Y.; Park, M.; Kim, M.; Jeon, J.; Song, J.; Barrios-Vargas, J.E.; Sato, Y.; Lin, Y.-C.; Suenaga, K.; et al. Blue emission at atomically sharp 1D heterojunctions between graphene and h-BN. Nat. Commun. 2020, 11, 5359. [Google Scholar] [CrossRef] [PubMed]
- Fournier, C.; Plaud, A.; Roux, S.; Pierret, A.; Rosticher, M.; Watanabe, K.; Taniguchi, T.; Buil, S.; Quélin, X.; Barjon, J.; et al. Position-controlled quantum emitters with reproducible emission wavelength in hexagonal boron nitride. Nat. Commun. 2021, 12, 3779. [Google Scholar] [CrossRef]
- Preuß, J.A.; Rudi, E.; Kern, J.; Schmidt, R.; Bratschitsch, R.; de Vasconcellos, S.M. Assembly of large hBN nanocrystal arrays for quantum light emission. 2d Mater. 2021, 8, 035005. [Google Scholar] [CrossRef]
- Fischer, M.; Caridad, J.M.; Sajid, A.; Ghaderzadeh, S.; Ghorbani-Asl, M.; Gammelgaard, L.; Bøggild, P.; Thygesen, K.S.; Krasheninnikov, A.V.; Xiao, S.; et al. Controlled generation of luminescent centers in hexagonal boron nitride by irradiation engineering. Sci. Adv. 2021, 7, 7138. [Google Scholar] [CrossRef]
- Xu, X.; Martin, Z.O.; Sychev, D.; Lagutchev, A.S.; Chen, Y.P.; Taniguchi, T.; Watanabe, K.; Shalaev, V.M.; Boltasseva, A. Creating Quantum Emitters in Hexagonal Boron Nitride Deterministically on Chip-Compatible Substrates. Nano Lett. 2021, 21, 8182–8189. [Google Scholar] [CrossRef]
- Gale, A.; Li, C.; Chen, Y.; Watanabe, K.; Taniguchi, T.; Aharonovich, I.; Toth, M. Deterministic fabrication of blue quantum emitters in hexagonal boron nitride. arXiv 2021, arXiv:2111.13441. [Google Scholar]
- Elshaari, A.W.; Skalli, A.; Gyger, S.; Nurizzo, M.; Schweickert, L.; Esmaeil Zadeh, I.; Svedendahl, M.; Steinhauer, S.; Zwiller, V. Deterministic Integration of hBN Emitter in Silicon Nitride Photonic Waveguide. Adv. Quantum Technol. 2021, 4, 2100032. [Google Scholar] [CrossRef]
- Glushkov, E.; Mendelson, N.; Chernev, A.; Ritika, R.; Lihter, M.; Zamani, R.R.; Comtet, J.; Navikas, V.; Aharonovich, I.; Radenovic, A. Direct Growth of Hexagonal Boron Nitride on Photonic Chips for High-Throughput Characterization. ACS Photonics 2021, 8, 2033–2040. [Google Scholar] [CrossRef]
- Gu, R.; Wang, L.; Zhu, H.; Han, S.; Bai, Y.; Zhang, X.; Li, B.; Qin, C.; Liu, J.; Guo, G.; et al. Engineering and Microscopic Mechanism of Quantum Emitters Induced by Heavy Ions in hBN. ACS Photonics 2021, 8, 2912–2922. [Google Scholar] [CrossRef]
- Mendelson, N.; Morales-Inostroza, L.; Li, C.; Ritika, R.; Nguyen, M.A.P.; Loyola-Echeverria, J.; Kim, S.; Götzinger, S.; Toth, M.; Aharonovich, I. Grain Dependent Growth of Bright Quantum Emitters in Hexagonal Boron Nitride. Adv. Opt. Mater. 2021, 9, 2001271. [Google Scholar] [CrossRef]
- Mendelson, N.; Chugh, D.; Reimers, J.R.; Cheng, T.S.; Gottscholl, A.; Long, H.; Mellor, C.J.; Zettl, A.; Dyakonov, V.; Beton, P.H.; et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat. Mater. 2021, 20, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Froch, J.E.; Nonahal, M.; Tran, T.N.; Toth, M.; Kim, S.; Aharonovich, I. Integration of hBN Quantum Emitters in Monolithically Fabricated Waveguide. ACS Photonics 2021, 8, 2966–2972. [Google Scholar] [CrossRef]
- Fröch, J.E.; Li, C.; Chen, Y.; Toth, M.; Kianinia, M.; Kim, S.; Aharonovich, I. Purcell Enhancement of a Cavity-Coupled Emitter in Hexagonal Boron Nitride. Small 2022, 18, 2104805. [Google Scholar] [CrossRef]
- Stewart, J.C.; Fan, Y.; Danial, J.S.; Goetz, A.; Prasad, A.S.; Burton, O.J.; Alexander-Webber, J.A.; Lee, S.F.; Skoff, S.M.; Babenko, V.; et al. Quantum Emitter Localization in Layer Engineered Hexagonal Boron Nitride. ACS Nano 2021, 15, 13591–13603. [Google Scholar] [CrossRef]
- Stern, H.L.; Gu, Q.; Jarman, J.; Barker, S.E.; Mendelson, N.; Chugh, D.; Schott, S.; Tan, H.H.; Sirringhaus, H.; Aharonovich, I.; et al. Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nat. Commun. 2022, 13, 618. [Google Scholar] [CrossRef] [PubMed]
- Gale, A.; Li, C.; Chen, Y.; Watanabe, K.; Taniguchi, T.; Aharonovich, I.; Toth, M. Site-Specific Fabrication of Blue Quantum Emitters in Hexagonal Boron Nitride. ACS Photonics 2022, 9, 2170–2177. [Google Scholar] [CrossRef]
- Berzina, B.; Korsaks, V.; Trinkler, L.; Sarakovskis, A.; Grube, J.; Bellucci, S. Defect-induced blue luminescence of hexagonal boron nitride. Diam. Relat. Mater. 2016, 68, 131–137. [Google Scholar] [CrossRef]
- Lee, D.; Song, S.H. Ultra-thin ultraviolet cathodoluminescent device based on exfoliated hexagonal boron nitride. RSC Adv. 2017, 7, 7831–7835. [Google Scholar] [CrossRef] [Green Version]
- Koperski, M.; Nogajewski, K.; Potemski, M. Single photon emitters in boron nitride: More than a supplementary material. Opt. Commun. 2018, 411, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Lyu, C.; Zhu, Y.; Gu, P.; Qiao, J.; Watanabe, K.; Taniguchi, T.; Ye, Y. Single-photon emission from two-dimensional hexagonal boron nitride annealed in a carbon-rich environment. Appl. Phys. Lett. 2020, 117, 244002. [Google Scholar] [CrossRef]
- Tan, Q.; Lai, J.-M.; Liu, X.-L.; Guo, D.; Xue, Y.; Dou, X.; Sun, B.-Q.; Deng, H.-X.; Tan, P.-H.; Aharonovich, I.; et al. Donor–Acceptor Pair Quantum Emitters in Hexagonal Boron Nitride. Nano Lett. 2022, 22, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Curie, D.; Krogel, J.T.; Cavar, L.; Solanki, A.; Upadhyaya, P.; Li, T.; Pai, Y.-Y.; Chilcote, M.; Iyer, V.; Puretzky, A.; et al. Correlative Nanoscale Imaging of Strained hBN Spin Defects. ACS Appl. Mater. Interfaces 2022, 14, 41361–41368. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Sarkar, S.; Reidy, K.; Kumar, A.; Klein, J.; Watanabe, K.; Taniguchi, T.; LeBeau, J.M.; Ross, F.M.; Gradečak, S. Strong and Localized Luminescence from Interface Bubbles Between Stacked hBN Multilayers. Nat. Commun. 2022, 13, 5000. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Zhang, F.; Kahn, S.; Shevitski, B.; Jiang, J.; Dai, C.; Ungar, A.; Park, J.-H.; Watanabe, K.; Taniguchi, T.; et al. Tuning colour centres at a twisted hexagonal boron nitride interface. Nat. Mater. 2022, 21, 896–902. [Google Scholar] [CrossRef]
- Roux, S.; Fournier, C.; Watanabe, K.; Taniguchi, T.; Hermier, J.-P.; Barjon, J.; Delteil, A. Cathodoluminescence monitoring of quantum emitter activation in hexagonal boron nitride. Appl. Phys. Lett. 2022, 121, 184002. [Google Scholar] [CrossRef]
- Ciampalini, G.; Blaga, C.V.; Tappy, N.; Pezzini, S.; Watanabe, K.; Taniguchi, T.; Bianco, F.; Roddaro, S.; I Morral, A.F.; Fabbri, F. Light emission properties of mechanical exfoliation induced extended defects in hexagonal boron nitride flakes. 2D mater. 2022, 9, 035018. [Google Scholar] [CrossRef]
- Vuong, T.Q.P.; Cassabois, G.; Valvin, P.; Ouerghi, A.; Chassagneux, Y.; Voisin, C.; Gil, B. Phonon-Photon Mapping in a Color Center in Hexagonal Boron Nitride. Phys. Rev. Lett. 2016, 117, 097402. [Google Scholar] [CrossRef]
- Rousseau, A.; Valvin, P.; Elias, C.; Xue, L.; Li, J.; Edgar, J.H.; Gil, B.; Cassabois, G. Stacking-dependent deep level emission in boron nitride. Phys. Rev. Mater. 2022, 6, 094009. [Google Scholar] [CrossRef]
- White, S.J.; Yang, T.; Dontschuk, N.; Li, C.; Xu, Z.Q.; Kianinia, M.; Stacey, A.; Toth, M.; Aharonovich, I. Electrical control of quantum emitters in a Van der Waals heterostructure. Light Sci. Appl. 2022, 11, 186. [Google Scholar] [CrossRef]
- Shi, X.; Wang, S.; Yang, H.; Duan, X.; Dong, X. Fabrication and characterization of hexagonal boron nitride powder by spray drying and calcining– nitriding technology. J. Solid State Chem. 2008, 181, 2274–2278. [Google Scholar] [CrossRef]
- Lyu, X.; Tan, Q.; Wu, L.; Zhang, C.; Zhang, Z.; Mu, Z.; Zúñiga-Pérez, J.; Cai, H.; Gao, W. Strain Quantum Sensing with Spin Defects in Hexagonal Boron Nitride. Nano Lett. 2022, 22, 6553–6559. [Google Scholar] [CrossRef] [PubMed]
- FMurzakhanov, F.F.; Yavkin, B.V.; Mamin, G.V.; Orlinskii, S.B.; Mumdzhi, I.E.; Gracheva, I.N.; Gabbasov, B.F.; Smirnov, A.N.; Davydov, V.Y.; Soltamov, V.A. Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance Lines. Nanomaterials 2021, 11, 1373. [Google Scholar] [CrossRef] [PubMed]
- Gottscholl, A.; Diez, M.; Soltamov, V.; Kasper, C.; Krauße, D.; Sperlich, A.; Kianinia, M.; Bradac, C.; Aharonovich, I.; Dyakonov, V. Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors. Nat. Commun. 2021, 12, 4480. [Google Scholar] [CrossRef]
- Xu, Z.-Q.; Elbadawi, C.; Tran, T.T.; Kianinia, M.; Li, X.; Liu, D.; Hoffman, T.B.; Nguyen, M.; Kim, S.; Edgar, J.H.; et al. Single photon emission from plasma treated 2D hexagonal boron nitride. Nanoscale 2018, 10, 7957–7965. [Google Scholar] [CrossRef] [Green Version]
- Na, Y.S.; Kim, J.H.; Kang, S.; Jeong, J.H.; Park, S.; Kim, D.H.; Ihm, K.; Watanabe, K.; Taniguchi, T.; Kwon, Y.-K.; et al. Modulation of optical and electrical properties in hexagonal boron nitride by defects induced via oxygen plasma treatment. 2d Mater. 2021, 8, 045041. [Google Scholar] [CrossRef]
- Shaik, A.B.D.A.J.W.I.; Palla, P. Optical quantum technologies with hexagonal boron nitride single photon sources. Sci. Rep. 2021, 11, 12285. [Google Scholar] [CrossRef]
- Watanabe, K.; Taniguchi, T. Hexagonal Boron Nitride as a New Ultraviolet Luminescent Material and Its Application. Appl. Ceremi Technol. 2011, 8, 977–989. [Google Scholar] [CrossRef]
- Vokhmintsev, A.; Weinstein, I.; Zamyatin, D. Electron-phonon interactions in subband excited photoluminescence of hexagonal boron nitride. J. Lumin. 2019, 208, 363–370. [Google Scholar] [CrossRef]
- Li, S.; Pershin, A.; Thiering, G.; Udvarhelyi, P.; Gali, A. Ultraviolet Quantum Emitters in Hexagonal Boron Nitride from Carbon Clusters. J. Phys. Chem. Lett. 2022, 13, 3150–3157. [Google Scholar] [CrossRef] [PubMed]
- Mackoit-Sinkevičienė, M.; Maciaszek, M.; Van de Walle, C.G.; Alkauskas, A. Carbon defect as a source of the 4.1 eV luminescence in hexagonal boron nitride. Appl. Phys. Lett. 2019, 115, 212101. [Google Scholar] [CrossRef] [Green Version]
- Shevitski, B.; Gilbert, M.; Chen, C.T.; Kastl, C.; Barnard, E.S.; Wong, E.; Ogletree, F.; Watanabe, K.; Taniguchi, T.; Zettl, A.; et al. Blue-Light-Emitting Color Centers in High-Quality Hexagonal Boron Nitride. Phys. Rev. B 2019, 100, 155419. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Guo, N.-J.; Yu, S.; Meng, Y.; Li, Z.-P.; Yang, Y.-Z.; Wang, Z.-A.; Zeng, X.-D.; Xie, L.-K.; Li, Q.; et al. Spin-active defects in hexagonal boron nitride. Mater. Quantum. Technol. 2022, 2, 032002. [Google Scholar] [CrossRef]
- Park, H.; Wen, Y.; Li, S.X.; Choi, W.; Lee, G.; Strano, M.; Warner, J.H. Atomically Precise Control of Carbon Insertion into hBN Monolayer Point Vacancies using a Focused Electron Beam Guide. Small 2021, 2100693. [Google Scholar] [CrossRef]
- Román, R.J.P.; Costa, F.J.R.C.; Zobelli, A.; Elias, C.; Valvin, P.; Cassabois, G.; Gil, B.; Summerfield, A.; Cheng, T.S.; Mellor, C.J.; et al. Band gap measurements of monolayer h-BN and insights into carbon-related point defects. 2d Mater. 2021, 8, 044001. [Google Scholar] [CrossRef]
- Yang, Y.-Z.; Zhu, T.-X.; Li, Z.-P.; Zeng, X.-D.; Guo, N.-J.; Yu, S.; Meng, Y.; Wang, Z.-A.; Xie, L.-K.; Zhou, Z.-Q.; et al. Laser Direct Writing of Visible Spin Defects in Hexagonal Boron Nitride for Applications in Spin-Based Technologies. ACS Appl. Nano Mater. 2023, 6, 6407–6414. [Google Scholar] [CrossRef]
- Zhigulin, I.; Horder, J.; Ivády, V.; White, S.J.; Gale, A.; Li, C.; Lobo, C.J.; Toth, M.; Aharonovich, I.; Kianinia, M. Stark Effect of Blue Quantum Emitters in Hexagonal Boron Nitride. Phys. Rev. Appl. 2023, 19, 044011. [Google Scholar] [CrossRef]
- Karanikolas, V.; Iwasaki, T.; Henzie, J.; Ikeda, N.; Yamauchi, Y.; Wakayama, Y.; Kuroda, T.; Watanabe, K.; Taniguchi, T. Plasmon-Triggered Ultrafast Operation of Color Centers in Hexagonal Boron Nitride Layers. ACS Omega 2023, 8, 14641–14647. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.H.; Park, K.H.; Lee, Y.G.; Kang, S.J.; Park, Y.; Kim, Y.D. Color Centers in Hexagonal Boron Nitride. Nanomaterials 2023, 13, 2344. https://doi.org/10.3390/nano13162344
Kim SH, Park KH, Lee YG, Kang SJ, Park Y, Kim YD. Color Centers in Hexagonal Boron Nitride. Nanomaterials. 2023; 13(16):2344. https://doi.org/10.3390/nano13162344
Chicago/Turabian StyleKim, Suk Hyun, Kyeong Ho Park, Young Gie Lee, Seong Jun Kang, Yongsup Park, and Young Duck Kim. 2023. "Color Centers in Hexagonal Boron Nitride" Nanomaterials 13, no. 16: 2344. https://doi.org/10.3390/nano13162344
APA StyleKim, S. H., Park, K. H., Lee, Y. G., Kang, S. J., Park, Y., & Kim, Y. D. (2023). Color Centers in Hexagonal Boron Nitride. Nanomaterials, 13(16), 2344. https://doi.org/10.3390/nano13162344