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Abstract: For a very long period, tin was considered one of the most important metals for humans due
to its easy access in nature and abundance of sources. In the past, tin was mainly used to make various
utensils and weapons. Today, nanostructured tin and especially its oxide materials have been found
to possess many characteristic physical and chemical properties that allow their use as functional
materials in various fields such as energy storage, photocatalytic process, gas sensors, and solar cells.
This review discusses current methods for the synthesis of Sn/SnO, composite materials in form of
powder or thin film, as well as the application of the most advanced characterization tools based on
large-scale synchrotron radiation facilities to study their chemical composition and electronic features.
In addition, the applications of Sn/SnO;, composites in various fields are presented in detail.

Keywords: tin; tin oxides; nanostructures; thin films; synchrotron; X-ray spectroscopy; batteries;
energy conversation and storage; gas sensor; surface-enhanced Raman scattering

1. Introduction

Tin, one of the earliest metals known by human beings in 3500 BC, is still one of the
most important metals today. In the very ancient period, soft copper was combined with a
relative amount of tin to make bronze materials, which are much harder and can be applied
in various tools and weapons with high strength and long lifetime. During recent centuries,
with the development of fundamental scientific studies, a deeper understanding of tin’s
chemical and physical properties has been constructed. Tin and its compounds such as
tin oxides and tin sulfides, have been widely used as functional materials in electronics,
chemical engineering, energy storage, and bio-photonics [1].

Among the wide range of tin-related materials, metallic tin and its oxides, which
are the most usually existing tin states in nature, particularly attracting attention from
scientists because of their unique structures and properties [2]. Metallic tin is a semimetal
with atomic number 50 in the periodic table of elements. In general, there are three known
tin oxide forms: SnO, SnO,, and Sn30O4. SnO is a p-type semiconductor with a dielectric
constant of 15 and a bandgap about 2.4-2.7 eV [3]. At high temperature above 400 °C,
5SnO is thermodynamically unstable and disproportionate to metallic tin (0) and tin (IV)
oxide. SnO; is the most abundant and thermodynamically stable tin state in the nature.
In ambient conditions, the crystal of SnO, typically shows a tetragonal rutile structure.
Stoichiometric SnO; is generally be considered as an n-type semiconductor with a wide
bandgap about 3.6 eV [4]. Sn3Oy4 is a metastable intermediate between SnO, and SnO. It
has been discussed that Sn3O4 has a layered structure which is held together by van der
Waals forces [5]. As SnzOy4 has both Sn(IV) and Sn(II) ions, its electronic structure contains
features form both SnO, and SnO. In the reported literature, it is expected to be a p-type
semiconductor with a bandgap in the range of 2.2-3.0 eV [5].

During the last couple of decades, nanoscale materials and nanostructures have at-
tracted substantial attention due to the quantum size effect-induced novel properties when
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the size of a material is comparable to the Bohr radius [6,7]. Among all metal oxide semicon-
ductors, nanomaterials of tin/tin oxides have received considerable notification and have
found potential applications in various areas such as solar cells [8], lithium batteries [9], gas
sensors [10], and catalysis [11,12], as shown in Figure 1. At the nanoscale, the optoelectronic
properties of SnO, such as optical bandgap, conductivity, and photoluminescence can be
controlled via the incorporation of impurity or defects [13]. Moreover, Sn/SnO, materials
have high chemical and mechanical stability, have high abundance in nature, and are envi-
ronmentally friendly. All these properties and advantages make tin/tin oxides promising
candidates for constructing various next-generation energy storage and optoelectronic de-
vices. In this review, various synthesis routes for fabricating nanostructured tin/tin oxides
are presented, together with the introduction of state-of-the-art surface sensitive methods
using large-scale synchrotron radiation characterization tools to study their unique atomic
and electronic structure. Moreover, the different application potential for these functional
materials is discussed. It is expected to provide an overview for the development of tin/tin
oxide nanomaterials in recent years and promote related research.
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Figure 1. Schematic representation of the applications of tin/tin oxides materials in different areas.

2. Fabrication of Tin-Based Nanostructures and Thin Films

To further promote the widespread use of Sn/SnO, composite (nano)powders and thin
films, various fabrication methods have been developed with respect to the required prop-
erties, structures, and large-scale production. Among all fabrication methods, solid-state
based, solution-based, and vapor-based methods can be used to classify the different routes.

2.1. Solid-State Methods

In solid-state methods, reactions between solid reactants are usually generated with
additional heat or mechanic treatment. These methods are usually simple and efficient,
with one synthesis step, whereby many materials can be obtained with high concentration.
Furthermore, by adjusting different parameters, it is possible to control the size of the
obtained materials.

Sinha et al. fabricated spherical Sn/SnO, nanoparticles with 50 nm diameter on a
gram level using a focused solar irradiation approach [14]. By stirring a strong NaOH
solution with SnCl, power, black microplates of SnO were observed. Upon further solar
irradiation, a transformation into high-bandgap Sn/SnO; nanoparticles was obtained.
On the other hand, solid-state methods are mainly applied to synthesize pure tin oxide
materials, such as SnO or SnO,. For example, Li et al. synthesized tin oxide nanoparticles
in the size range of 3-15 nm through a convenient inexpensive and efficient one-step solid-
state process [15]. Tin chloride, KCl, and KOH are typical reactants which can be mixed,
accompanied by the emission of water vapor, followed by a wash and annealing step.
According to the annealing temperature controlling, SnO, nanoparticles with different sizes
can be synthesized. The obtained SnO, nanoparticles have high yield and gas sensitivity to
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EtOH, Hy, and CO. Yang et al. applied a mechanochemical reaction between SnCl, and
NayCO3 with NaCl as a diluent, followed by heat treatment at 600 °C to make tin oxide
nanocrystals with an average crystal size of about 28 nm [16]. Chakravarty et al. also
applied this method to synthesis mesoporous tin oxide in the range of 6-12 nm with a large
surface area of 265 & 16 m? g~ !. The so-obtained mesoporous tin oxide can be used as an
advanced sorbent material for biological applications [17]. Apart from traditional solid-
based methods to get 3D nanoparticles, more efforts are currently going toward fabricating
2D materials because of their unique physical and chemical properties. Jiang et al. obtained
a 2D SnO nanosheet via mechanical exfoliation using Scotch tape, as shown in Figure 2 [18].
By adjusting the peeling process, nanolayers with varying thicknesses were formed, and
the authors further found that the obtained nanostructures showed physical properties
that were strongly thickness-dependent. The bandgap could be tuned from the IR range
(0.60 eV) for bulk SnO to the UV range (3.65 eV) for the monolayer. On the other hand, it was
reported that 2D SnO could be a good precursor for the synthesis of Sn/SnO, composites,
as presented in the next section related to wet chemical Sn/SnO, composite formation.
Additionally, it should be pointed out that classical solid-state methods such as mechanical
milling can be used for the formation of Sn/SnO, composites where tin oxide and metallic
tin are mixed and milled in different stoichiometric ratios. Sivashanmugam et al. showed
that a matrix in which metallic tin can be distributed without aggregation is essential for
realizing Sn/SnO, anodes with high cyclability [19].

b
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Figure 2. SEM images of 2D SnO nanosheets obtained via mechanical exfoliation before (a) and
after (b) calendaring treatment [18]. (¢) Schematic diagram of the mechanical exfoliation process [18].
Reprinted with permission from Ref. [18]. Copyright 2022, Springer Nature.

2.2. Solution-Based Methods

Another popular route to synthesize Sn-based materials is based on the solution
process, which usually includes an intensive chemical reaction in solution. The materi-
als obtained using these methods are more uniformly distributed, and the experimental
conditions are easily controlled.

One of the most important applications of Sn/SnO, nanostructures is in electrodes for
lithium-ion batteries, sensors, and supercapacitors. To increase the capacity, it is necessary
to combine them with carbon materials, and solution processes provide an easy way to
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realize the synthesis. For example, Zhu et al. created a roughly 3 um flower-like Sn/SnO,
graded-structure with excellent ethanol gas-sensing properties using 2D SnO sheets and
a hydrothermal technique [20]. Hassan et al. applied an easy solution process using
SnCl,-2H,0 as a precursor and CMK-3 as a carbon framework [21]. After stirring, drying,
and annealing processes, uniformly Sn/SnO, embedded within the carbon pore walls
could be obtained, exhibiting high and stable performance in lithium-ion batteries. Using
a similar process, Wang et al. obtained evenly distributed Sn/SnO, nanoparticles with
5 nm average diameter in multilayers of graphene sheets, presenting a hollow spherical
structure [22].

Another technique to synthesize Sn/SnO; nanoparticles is the electrochemical ap-
proach [23]. Saito et al. developed a surfactant-free direct-current electrolysis method
using KClI as the electrolyte, as shown in Figure 3a—c [24]. By controlling the applied
voltage and the concentration of the electrolyte, the obtained Sn/SnO, particle size could
be tuned from 200 to 1000 nm. Santiago-Giraldo et al. studied the reaction time when
mixing SnCly, cetyltrimethylammonium bromide, and ammonium hydroxide directly in an
aqueous medium under reflux [25]. More photocatalytic activity was found with a longer
reaction time.
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Figure 3. (a) Schematic diagram of the experimental process for the formation of Sn/SnO, nanopar-
ticles by electrolysis in liquid [24]. (b,c) SEM images of Sn/SnO, by electrolysis with electrolyte
concentration at 1.0 M and 0.1 M, respectively [24]. (d—-g) SEM images of SnO, synthesized by
hydrothermal methods without additive (d), in the presence of aminoterephthalic (e) and oxalic
(f-g) acid at 7 wt.% and 150 wt.% of the weight of SnO;, respectively [26]. Reprinted with permission
from Refs. [24,26]. Copyright 2014 & 2016, Elsevier.

In addition to the abovementioned methods, other solution-based ways include the
hydrothermal process and sol-gel method. The hydrothermal method is one of the most
classic routes to synthesize nanoparticles, and it gives a flexible way to control conditions.
By applying high-pressure conditions, intensive chemical reactions can happen in a solution
above its boiling point. Using this method, it is easier to fabricate tin oxide materials. For
example, by utilizing the redox activity of dicarboxylic acid, it is possible to realize signifi-
cant control over the composition and morphology of the synthesized SnO; structures, as
reported by Zima et al. and shown in Figure 3d-g [26]. The control over dicarboxylic acid
can lead to the formation of single-phase Sn3O, in hexagonal nanoplates and SnO, /Snz 04
mixed phases in hierarchical flower-like structures. Furthermore, Akhir et al. found it is
easy to change the crystallite size of SnO, nanostructures by simply varying the precursor
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concentration, as well as reaction temperature and duration, during the hydrothermal
synthesis [27]. More specifically, the crystal size could be obtained in the range of 7.88 to
18.41 nm.

2.3. Vapor-Based Methods

Vapor-state methods mainly applied for thin-film deposition. These processes gen-
erally include the evaporation of the primary precursors, followed by vigorous reactions
with or without co-reactants. The benefits of these methods are well-controlled deposi-
tion conditions, uniformly distributed layers, high purity, and reproducibility. However,
vapor-based methods usually require high-vacuum equipment and, therefore, bring high
cost to large-scale production. Nevertheless, the electronic industry widely employs these
technologies to obtain high-quality functional layers.

Sputtering is a promising technique as it can bring less contamination and high
purity [28,29]. Sn/SnO; can be used as the Sn and O sources in the sputtering technique.
For example, Hsu et al. reported that, by controlling the sputtering conditions such as
temperatures and pressure when using the robust Sn/SnO, mixed target, the deposited
films could be tuned from pure n-type SnO; to pure p-type SnO, with a p-type Hall mobility
of up to 2 cm? V=1 s~1. One typical morphology of SnO, obtained by sputtering deposition
is shown in Figure 4c [30-32]. On the other hand, the same technique can be used for the
formation of Sn/SnO, composites, as Mohamed et al. reported the feasibility of tuning the
composition Sn/SnO; during the deposition by controlling the sputtering conditions [33].

Figure 4. (a) Schematic diagram of a hot wall ALD reactor with direct port and charge cell precursor
delivery [34]. (b—e) SEM images of Sn/SnOx thin film obtained by (b) low-temperature atomic
layer deposition at 120 °C, (c) sputtering deposition [30], (d) electrochemical deposition [35], and
(e) plasma-enhanced atomic layer deposition at 300 °C [36]. (f) Schematic diagram of an ALD process
of the deposition of tin-based layer, (1) precursor absorption process; (2) purge process; (3) co-reactant
process; (4) purge process [36]. Reprinted with permission from Ref. [30] Copyright 2014, Elsevier;
Ref. [34] Copyright 2018, AIP; Ref. [37] Copyright 2010, ACS; Ref. [35] Copyright 2022, Elsevier;
Ref. [36] Copyright 2022, MDPL

Chemical vapor deposition (CVD) has been widely used in the commercial deposition
industry because of its inexpensive nature and flexibility in the production of synthesis
thin films and 1D nanostructures with high quality [38-41]. Many studies have described
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the CVD process of Sn-based thin films using SnCly and Snly as the tin precursors. In our
previous studies, we also presented the deposition of Sn/SnO; thin films using tin(IV) tert-
butoxide as the tin and oxygen source [42,43]. This method is fast and simple for depositing
Sn/SnO; thin films with a dense structure, and the morphology and composition can
be easily changed by varying the deposition temperatures and substrates, as we showed
previously [38]. Compared with CVD, atomic layer deposition (ALD) is expected to yield
an extremely thin layer with high purity for applications in the precision electronic industry.
The structure of a normal ALD reactor is shown in Figure 4a. Typical Sn-based thin films
deposited by low-temperature and plasma enhanced ALD are shown in Figure 4b,e. This
method usually consists of several deposition steps in cycles to deposition films on an
atomic scale, as shown in Figure 4f. The normally used precursors include SnCl, [34],
Cy2H26-N3»Sn [37], Sn(acac), [44], TDMA-5n [36], and Sn(edpa), [45]. Additionally, vapor—
liquid-solid (VLS) growth [46] can be used for the realization of Sn/SnO, composite
systems. Wang et al. used SnO vapor transport to the silicon wafer surface covered with
Au-Ag catalyst at 650 °C for Sn/SnO, nanostructure formation [47]. On the other hand,
it should be mentioned that the potential electrical and optical device performance of
tin-based composites obtained in such a way is limited due to the surface contamination by
gold, as well known from VLS-grown silicon nanowires [48].

Another method to deposit tin-based thin layers is the electrochemical approach.
Knapik et al. reported the electrodeposition of SnO, from a SnCl, solution containing
HNOj3; the SEM image of this film is presented in Figure 4d [35]. Using different potentials
and durations, the tin-based composite could be further controlled through a subsequent
annealing process. The deposited layer showed promising photoelectrochemical prop-
erties and is expected to be applied in photoanodes. Additionally, 10-50 nm Sn/SnO,
nanocomposites in a core-shell structure covered with multilayer graphene could be syn-
thesized via a one-step process of electrical wire explosion in liquid medium. For this
purpose, Song et al. used a 0.3 mm diameter tin wire with 1-octanol (CgH;7;OH) as the
liquid medium, and the electrical explosion process was performed at a charging volt-
age of 15 kV. The observed nanocomposite electrode showed a high specific capacity of
1270 mAhg~! after 100 cycles and high reversible capacity of around 650 mAhg~! at a
current density of 5000 mAg~! [49]. These results indicate that Sn/SnO, nanocomposites
are promising material systems to improve the electrochemical performance of anode
materials for lithium-ion batteries.

3. Applications

From the application point of view, Sn/SnO, composites have received considerable
attentions as they show up in many different fields. For example, the synergic properties of
Sn and SnO, were found to benefit electrochemical performance in a supercapacitor [50].
In the semiconductor area, Sn/SnO, was reported to fabricate high-response UV photode-
tectors with tunable ultraviolet and blue emissions [51,52]. In this review, some of the most
realistic applications such as metal-ion batteries, energy storage/conversation, gas sensing,
and catalysis are emphasized.

3.1. Li-Ion and Na-Ion Batteries

Lithium-ion batteries have been considered the most promising and commercially suc-
cessful energy storage devices due to their high capacity, long stability, and low cost [53,54].
They have been very widely applied in different electronic devices and mobile vehicles, sig-
nificantly reducing energy wasting in the transformation process. Sn-based materials have
been carefully studied as the anode material in Li-ion batteries because of their high theo-
retical capacity (781 mAhg~!) compared with traditional graphite anodes (372 mAhg~1).
However, in practical research, it has been found that, during the charging and discharging
process of lithium-ion batteries, large volume changes and agglomeration of tin materials
occur, resulting in severe attenuation of battery capacity during long cycle operation. To
solve this problem, special nanostructured tin-based materials can be implemented. From
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this point-of-view, Sn-based materials, such as Sn, SnO, and SnO,, are highly promising
anode materials for lithium-ion batteries, as potential substitutes for the conventional
graphite anode due to their estimated theoretical capacity values such as 994 mAhg~!,
~875 mAhg !, and ~782 mAhg !, respectively, which are much higher than that of the
commercialized graphite anode [55]. Moreover, these high capacities of Sn-based anode
materials for lithium-ion batteries have been attributed to the formation of the Lis.4Sn
alloy [56].

Wang et al. synthesized Sn/SnOy core—shell nanospheres using a modified polyol
process, with the possibility to tune the material size [57]. By applying 45 nm nanospheres,
the Li-ion battery exhibited capacity as high as 3443 mAhcm 3. In addition, other nanos-
tructures have also been developed, such as compact Sn/SnO, microspheres [58], hollow
spheres [59], and nanosheets [59]. Another way to modify tin materials is to combine
them with some special porous carbon materials, as the carbon structure not only provides
mechanical strain relief during skeleton volume changes, but also improves conductivity,
thereby increasing electron transfer efficiency [50,60-63]. Xie et al. applied a porous carbon
framework that allowed SnO, nanoparticles to separate in a novel nanofiber structure,
resulting in a high reversible capacity of 986 mAhg~! even after 200 cycles, with a high
initial coulombic efficiency of 73.5%, as shown in Figure 5 [64]. This design was found to
efficiently reduce the side reactions and promote the reversible conversion of Sn to SnO,.
The authors also found that the dispersed Sn-SnO; nanoclusters in a carbon nanotube net-
work could provide abundant active sites for Li-ion storage and, therefore, yield excellent
rate capability and stability [61]. Other carbon materials, such as graphene oxide [49,65,60],
carbon nanofiber [67,68], nano-porous carbon [69-71], carbon nanosheets [59,72], hexahe-
dral carbon frameworks [73,74], core—shell carbon structures [75], and carbon paper [76],
have also been found to have a good synergistic effect with Sn-based materials to improve
battery performance. To further improve battery performance, researchers have also used
some other methods. For example, Kravchyk et al. used a simple ligand-exchange proce-
dure using inorganic capping ligands to facilitate electronic connectivity with the Sn/SnO,
nanocrystals on the anode [77]. Using this method, a high capacity above 700 mAhg !
was obtained after 100 cycles of deep charging at a relatively high current of 1000 mAhg~!.
Other materials, such as MoS, [78], SiO, [79], and MXene (TizC,Tyx) [80], have also been
studied in combination with Sn-based materials to gain better anode performance in Li-ion
batteries. In addition, other methods such as doping with nitrogen [81] and coating with
polydopamine [82] are also expected to help Sn-based materials be an excellent anode for
Li-ion batteries.

In addition to Li-ion batteries, sodium-ion (Na*) batteries have attracted great attention
and are considered an alternative new energy storage device because of the abundant
sodium resources and low cost. In particular, Sn has been investigated as a potential
anode material in sodium-ion batteries because of its high theoretical specific capacity at
845 mAhg~!. Tang et al. synthesized a mesoporous Sn/SnO, composite and applied it
into sodium-ion batteries as an anode to get good performance [83]. The specific capacity
was as high as 372 mAhg~! at a current density of 50 mAg~!, and the battery exhibited
good cycling performance even after 50 cycles. Similar to the application of Sn/SnO; in
lithium-ion batteries, the combination of carbon and tin-based materials can generate a
sodium-ion battery with much better performance. Li et al. employed porous carbon
as the tin skeleton, and a very high specific capacity at 1148.1 mAhg~! was obtained, as
shown in Figure 6 [84]. The great enhancement comes from the increased conductivity and
suppressed volume expansion during cycling.



Nanomaterials 2023, 13, 2391

8 of 27

Potential vs.(LI/LI") Capacity (mAn g )
(C) 1800 B
baaad Charge ——S$n0,@voids@C
1400 | @ Discharge — SnO, @voids@C
@ 120
=
2 1000 14
00
%" Charge — SO,
2 o0 @ Discharge — $nO,
3 wl Charge - — $n0,@C
@ Discharge - SnO,@GC
200 -
°

125 150 s 200

(d)m (e)"" ~ charge-— Discharge- SnO /voids@C
180 |- ~O~ charge-9— Discharge—SnO,
- » 1000 N ~~ charge-9— Discharge-Sn0,@C
E 2 P Pp2Ag"04Ag" 08Ag 1.6Ag" 32Ag" 02Ag"
g wt $n0,@voidS@C - ¢
H 3
€ nE m’ g“"' e
w ac 2 2
g in
0
§ b J 0o
”b “wo
200 -
“ °

° 0 “ L :yc‘.‘:w'b‘:: w0 10 10 200 c;. Nu":.' s “ ”

Figure 5. The application of SnO,/C nanofibers in Li-ion batteries [64]. (a) SEM and (b) TEM
images of the prepared SnO,/C nanofibers. (¢) Cycling performance, (d) coulombic efficiency, and
(e) rate performance of the SnO, and SnO, /C nanofibers electrodes at 200 mAg~!. Reprinted with
permission from Ref. [64], Copyright 2016, Elsevier.

3.2. Energy Conversation and Storage

“Green energy” sources such as solar energy, wind energy, or waste heat are greatly
influenced by the fluctuation of weather and atmospheric (year season) conditions, as well
as light regime (day and night) [85,86]. For that reason, the development of reliable energy
and waste heat technologies has high importance for the permanent energy supply. It
should be mentioned that, at this time, most of the world’s power is generated by heat
engines which are operated at 30—40% efficiency, which means that over 10 terawatts
of heat is lost to the environment as waste heat. One of the promising energy storage
technologies, along with battery-based technology, is related to thermal energy storage
(TES) using phase change materials (PCMs) as a highly effective technology to solve the
permanent energy delivery problem. PCMs as latent heat storage materials have high
energy storage density and relatively constant operating temperature; thus, they have been
widely investigated for promising applications in solar thermal energy storage [87,88],
waste heat recovery [89,90], thermal management [91-93], buildings [94,95], etc. In the
medium-temperature (373-673 K) range, in comparison to organic-based and molten salt-
based PCMs, many studies have shown that metals and alloys as PCMs have higher thermal
conductivity and large thermal energy storage density. Indium, tin, bismuth, and their
alloys are promising candidates for use in a medium-temperature TES system. However,
on the other hand, such materials are chemically unstable in bare form (as not encapsulated
into the inert matrix); it follows that metal-based PCMs as heat storage media can leak and
corrode the container during the solid-liquid phase transition. The main challenge when
engineering such types of materials is related to the metallic PCMs effectively packaged in a
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chemically stable matrix. As reported previously, composite PCMs with porous supporting
additives [96-98] and encapsulation to make the core—shell structured capsules [99-101]
can solve the problems of leakage and corrosion of the solid-liquid PCMs. In particular, the
core—shell capsules with stabilized shells can isolate the inside core materials with outside
air, thereby avoiding the leakage and oxidation of core PCMs. In the medium-temperature
range, metallic tin (Sn) is the best candidate with highest enthalpy and low cost, which has
been preliminarily studied by several groups. For instance, Navarrete et al. [102] carried out
the coating of SiO, and Al,Os shells using atomic layer deposition, and they successfully
prepared Sn@SiO; and Sn@Al,O3; nanoparticles, which showed higher thermal stability.
Metal or semiconducting nanoparticles embedded in insulating matrices have been the
object of continuously increasing interest due to their peculiar physical properties such as
strong size-dependent shifts in the optical bandgap and in exciton binding energy when
the size of the particle is on the order of the excitonic Bohr radius [25,26,103,104]. On the
other hand, for implementing such materials in different environments, the realization
of PCMs in the form of thin layers is preferable, e.g., ion implantation [105]. However,
such a formation method is expensive, and more economically relevant formation methods
are requested. Sheng et al. reported a simple wet chemical approach for the formation of
5n/SnO, composite; after 100 melting—freezing cycles, the phase change properties and
structures without any cracks or leakage remained, making such a material very promising
for energy storage applications [7].
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Figure 6. The application of Sn/SnO; /porous carbon nanocomposites in sodium-ion batteries [84].
(a) Schematic diagram of the synthesis process of Sn/SnO, /porous carbon and SnO, /porous carbon.
(b,c) SEM images of Sn/SnO, /porous carbon. (d) Cycling and (e) rate performances of pristine porous
carbon, SnO, /porous carbon, and Sn/SnO; /porous carbon in sodium-ion batteries. Reprinted with
permission from Ref. [64], Copyright 2017, Elsevier.
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As the most sustainable energy source, solar is always the hope for the next generation.
Solar cells are considered the most valuable next-generation green energy devices. Many
different solar cells have been developed in the last few decades, but the working principle
of these cells is similar [106-108]. By absorbing photon energy, the active material in solar
cells can be excited and generate electrons and holes. These photogenerated carriers can be
transport by the electron transport layer (ETL) and hole transport layer (HTL), respectively,
resulting in photocurrent. In previous ETL studies, TiO, was considered a good candidate
because of its high electron transport efficiency, and a record efficiency at 24.8% could
be obtained in perovskite solar cells (PSCs) [109]. However, the application of Sn/SnO,
composites in solar cells as ETLs is limited because the existence of metallic Sn results
in a potential recombination center and blocks the charge transfer. However, pure SnO,
has been found to be a very promising material in solar cells as the ETL to replace TiO,
because of its excellent energy band alignment with the active absorber materials and high
electron mobility [110-123]. To further promote tin based materials, the applications of
tin oxides are worthy of discussion. For example, SnOy-based electrodes were applied in
flexible organic solar cells in a recent publication, with a very high efficiency over 25% [119].
Furthermore, the up-to-date efficiency recorded for PSCs applying SnO, was a power
conversion efficiency (PCE) of 26% [124]. In fact, Sn-based ETLs have shown great potential
for highly efficient and stable PSCs, especially for low-temperature flexible PSCs.

Morphology brings huge effects in terms of the electron transfer ability of SnO,.
Mali et al. studied the morphology effect of SnO, ETLs for PSC performance and found
that the nanobelts SnO, ETL exhibited over 30% higher PCE than PSCs applying SnO,
with nanofiber morphology, as shown in Figure 7 [125]. In addition, Singh et al. found that
PSCs using a combination of both SnO, nanoparticles and compact SnO, layers as ETLs
enabled a higher PCE and much better stability compared to the single morphology [126].
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Figure 7. The application of SnO, nanofibers and nanobelts in perovskite solar cells [125]. (a,b) SEM
images of SnO, nanofibers and (c,d) nanobelts. (e) ]-V characteristics of SnO, nanofibers and
nanobelts; the inset shows a schematic diagram of the energy levels of SnO, ETL, perovskite, and
HTM. (f) The respective IPCE spectra and calculated integrated current density. Reprinted with
permission from Ref. [125], Copyright 2018, Royal Society of Chemistry.
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However, due to the defects in SnO,, the bulk and interfacial nonradiative recombina-
tion significantly suppresses the further enhancement of the PCE and stability of Sn-based
PSCs [127,128]. To overcome this obstacle, doping could be a route to increase the perfor-
mance of Sn-based ETL [129]. For example, Xiong et al. found that Mg-doped SnO; films
had higher mobility than undoped SnO,, thus exhibiting a nearly 92.8% enhancement in
PCE [130]. The reason for this is that suitable Mg doping dramatically reduces free electron
density and substantially increases the electron mobility of pristine SnO;. A fullerene
derivative named fullerenoacetate was also found to suppress charge recombination in
PSCs due to the efficient passivation of oxygen vacancy-related defects on the surface of
the SnO; ETL, as reported by Liu et al. [131]. An improved photovoltaic performance with
efficiency up to 21.3% was obtained with negligible hysteresis.

Bi et al. reported a novel and effective multifunctional modification strategy through
incorporating Girard’s Reagent T molecules with multiple functional groups to modify
5SnO; nanoparticles [132]. This method led to very much reduced recombination losses and
efficiently passivated interfacial defects. As a result, a much higher PCE of 21.63% was
obtained, together with reduced hysteresis, compared with the reference. Recently, MXenes,
a class of two-dimensional transition metal carbides and nitrides, have been found to have
great potential for introduction into Sn-based ETLs [133]. Yang et al. studied titanium
carbide Ti3CpTx quantum dot-modified SnO; and found that it can help to rapidly induce
perovskite nucleation from the precursor solution and improve the crystal quality and
phase stability of the as-fabricated perovskite film [134]. A steady-state PCE of up to 23.3%
was obtained with amazing stability against humidity and light soaking. Another study also
found that the application of TisC, MXene in SnO, ETLs can provide superior charge transfer
paths and enhance electron extraction and transfer, leading to higher photocurrents [135].

3.3. Gas Sensors

Gas sensors play an important role in everyday life for dangerous gas detection,
environmental pollution monitoring, and safety alerts in sensitive working areas. Among
all gas sensor materials, Sn-based materials have attracted particular attention due to their
high selectivity and sensitivity, as well as their low cost with an easy production process,
making them good candidates for gas sensing under an atmospheric environment [10,136].
By absorbing gas molecules on the surface, the induced physical and chemical changes
make tin-based sensors respond immediately. With fabrication via a simple solvothermal
route, Verma et al. obtained Sn/SnO, nanocomposites with a high specific surface area of
118.8 m? /g, exhibiting excellent sensitivity to xylene at room temperature and they found
that the Sn metal plays a critical catalytic role for enhanced performance [137]. To make
Sn/SnO; with a special nanostructure, the gas-sensing property can be further adjusted.
For example, Zhu et al. reported that 3D hierarchical flower-like Sn/SnO, exhibited high
selectivity and sensitivity to ethanol gas due to the rise in the Schottky barrier caused by
the in situ production of tin particles [20]. Yuan et al. proposed that metallic Sn atoms in
the Sn/SnO, composites could serve as active sites for the sensing reaction, and they found
that the density of unsaturated Sn atoms with dangling bonds at the SnO; surface could
have a significant influence on the sensing performance [138].

Although Sn/SnO, composites with special nanostructures have been found to have
excellent gas-sensing performance, the applications of pure tin oxide materials for gas
sensing are more widely studied because of the easier fabrication process and lower cost.
From the economic and mass production point of view, it is worth presenting these studies.
For different oxide states of Sn, the fabricated gas sensors have different properties. For
example, Sn3O4 was found to have very high selectivity to NO, relative to CO, while
SnO exhibited the highest selectivity to NO; relative to H, and CHy, and SnO, had lower
performance in the detection of NO, [139-142]. However, the combination of SnO and
5SnO; to form a p—n heterojunction enabled high sensing selectivity for NO,, with a limit
of detection and sensitivity of 0.1 ppm and 0.26 ppm !, respectively, at a relatively low
operating temperatures of about 50 °C [143].
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Another efficient method involved the introduction of other functional materials. For
example, Wang et al. applied SnO-5nO,-modified 2D MXene Ti3C, Ty to make high acetone
gas-sensing devices with a short recovery time and outstanding reproducibility, attributed
to the formation of heterojunctions and high conductivity of the metallic phase TizC, Ty,
as shown in Figure 8 [144]. Wang et al. applied SiC nanofibers as the support of SnO,
nanosheet with a hierarchical architecture, showing an ultrafast response/recovery rate,
as well as high sensitivity to various target gases such as ethanol, methanol, hydrogen,
isopropanol, acetone, and xylene [145]. The superior sensing performance came from the
hierarchical architecture and synergetic effect of the SnO,-SiC heterojunction, with many ac-
tive sites from the vertically ultrathin SnO, nanosheets. Yan et al. synthesized microporous
Sn-SnQO, / carbon heterostructure nanofibers and found that the introduction of metallic tin
helped to get improved sensing ethanol properties because of its effective electron transfer
property [146]. Moreover, the carbon skeleton also provided good permeability for gas
detection. Similarly, Sn-5nO, with doped nitrogen also have high gas sensor performance
to toxic NHj3 gas [136]. Other functional materials, such as CuO [147], ZnO [148], and
PdO [149] also brought outstanding gas sensor properties for Sn-based materials. Fur-
thermore, the selectivity and sensitivity of such sensors can be easily adjusted by make
different nanostructured SnO, [20,150-152]. For example, SnO, nanoclusters embedded on
a mesoporous Sn organophosphonate framework was found to be an efficient approach to
enable gas sensors to have remarkable sensitivity toward ammonia and acetone [153]. SnO,
nanowires synthesized by the CVD process were also reported to have high sensitivity
toward different gases, such as HyS [154], NO; [155,156], and water vapor [157]. Hollow
SnO; microfiber was found to have high sensitivity toward triethylamine, with a limit of
detection as low as 2 ppm [158]. Some additional small treatments such as doping also
bring big improvements regarding to gas-sensing performance. Liang et al. reported that
a Ce-doped SnO; thin film could enable the adsorption of a large number of oxygen ions
on the surface, resulting in an increased ethanol vapor-sensing response [159]. Nd-doped
SnO; nanorod layers were also proven to exhibit excellent sensing response toward alcohol
at a temperature of 260 °C [160]. The good catalytic properties of Nd dopant were able to
increase the number of active sites on the surface of SnO;, thus enabling higher sensitivity.

3.4. Photocatalytic and Bio-Photonic Applications

Wide-bandgap semiconductor materials such as TiO; and ZnO have been regarded as
important photocatalysis for the applications of degrading organic pollutants and hydrogen
production. With a similar energy band structure, tin oxides have also attracted interest in
these areas.

The transformation of Sn to SnO, was found to have better photocatalytic properties
because of an improved surface area and higher stability toward adverse environmental
conditions. It was found that metallic Sn in SnO; can improve the charge separation
efficiency and, therefore, bring faster degradation of cationic dye molecules [14]. Li et al.
reported the Sn/SnO;_, hetero-nanostructure form built-in semiconductor—metal Schottky
junctions and promote charge carrier separation, as well as accelerate surface catalytic oxy-
gen evolution reaction kinetics [161]. At last, a high photocurrent density of 245 pA cm 2
at 1.23 V versus the reversible hydrogen electrode was obtained, as shown in Figure 9.

Pure SnO; has also been found to have good catalytic properties. For example,
Gao et al. developed highly active SnO, catalyst via a spontaneous exchange reaction
between CuO substrate and sputtered Sn particles, and the synthesized SnO; sites were
found to selectively catalyze CO generation from CO; reduction [162]. SnO, with different
morphologies has also been studied for the photocatalytic properties of the degradation
of methyl-orange, which is a well-known organic pollutant in water [163]. It was found
that tin oxide with different nanostructures presents a barrier effect to slow the product
volatilization and thermal transport during decomposition of the polymer, thus enabling
better photocatalytic performance.
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Figure 8. The application SnO-SnO;/Ti3C,Tx nanocomposites in an acetone gas sensor [144].
(a) Schematic diagram of the preparation of SnO-SnO, / Ti3C;, Tx nanocomposites. (b) SEM images
of TizCy Ty and (c,d) SnO-SnO; /TizC, Ty nanocomposites. (e) Gas response of acetone in different
samples (TizCy Ty, SNO-SnO,, and SnO-SnO, /TizC,Tx) at different concentrations (10-100 ppm).

(f) Response time and recovery time of the sensors for 100 ppm acetone at room temperature.
Reprinted with permission from Ref. [144], Copyright 2021, Elsevier.
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Figure 9. The application of Sn/SnO,_, in photoelectrochemical water oxidation [161]. (a) Schematic
diagram of the preparation process of Sn/SnO;_y. (b,c) SEM images of synthesized Sn/SnO;_y.
(d) The linear sweep voltammetry curves recorded in 0.5 M Na;SO4 (pH = 7) solution with a scan
rate of 10 mVs~1. (e) Long-term stability of SnO, and Sn/SnO;_y at 1.23Vgryg. Reprinted with
permission from Ref. [161], Copyright 2019, Royal Society of Chemistry.
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Furthermore, additional functional materials can also help to improve the photocat-
alytic process. For example, the combinations of Sn and SnO,, as well as carbon, have been
found to have high photocatalytic activity for the degradation of reactive brilliant blue
KN-R dye under visible-light irradiation [164]. The metallic Sn and adsorbed oxygen as
the sinks of photoinduced electron and electronic scavenges resulted in a hindrance of the
recombination of photoexcited electron-hole pairs, as well as enhanced the photocatalytic
activity. With a similar composition, C-supported Sn—-SnO; also showed photocatalytic
activity for the degradation of Rhodamine B [165] and methylene blue dyes [166,167].
Kaleji et al. introduced TiO, into SnO, and found high optical absorption in the visible-
light area. Lastly, there was high photocatalytic ability for the degradation of methylene
blue dye, and the increase in surface oxygen vacancies and hydroxyl groups contributed to
this result. Other materials, such as Pt [168], Ag [169], Ga [170], and GdS [171] have also
been found to be able to tune the photocatalytic properties of tin oxides.

Raman spectroscopy is an important tool in bioanalysis since it is highly specific and
provides clear information about the chemical structure of the probed molecules—without
the need for labels. Wavelengths from the deep UV to the IR range are used for excitation,
enabling the identification and differentiation of individual components up to whole mi-
croorganisms and tissue. The UV range, in particular, is very interesting for proteins, as they
specifically absorb light below 400 nm, thereby resonantly enhancing vibrational modes
characteristic of the peptide backbone and certain amino-acid residues. The low-intensity
characteristic Raman modes can be compensated for by the use of surface enhanced Raman
spectroscopy (SERS) substrates. In SERS, the probed molecules interact with metal nanos-
tructures, which enables ultra-sensitive detection down to single molecules. The signal
enhancement is based on the excitation of surface plasmons in rough metal nanostructures,
which can be electrodes, colloids, or island films, as shown in Figure 10a. When the incident
laser wavelength is chosen such that it matches the absorption maximum of the plasmon
resonance of the substrate, an enormous electromagnetic field is generated. Molecules in
the immediate vicinity to the metal surface experience a Raman signal enhancement up to
10 [172-174]. 1t is noteworthy that the spectral quality and reproducibility are strongly
influenced by the size, shape, and dimension of the SERS substrates. For measurements in
the visible-light range (i.e., 418-785 nm), Au, Ag, and Cu nanostructures are highly efficient.
SERS in the deep UV range (<300 nm) has not yet been systematically explored and applied,
but it could be very promising for the structural analysis of proteins since the resonance
Raman effect is added to the SERS enhancement. While, in the visible range, SERS has been
successfully applied to amyloid fibril analysis [175-177], so far, only one protein-related
proof-of-principle experiment with UV-SERS has been published [178]. Other UV-SERS
studies have been limited to the investigation of adenine, tryptophan, and dyes. The so-far-
employed nanostructures include the following metals and wavelengths: Al (244 nm [179],
257 nm [180], 266 nm [181]), Ru, Rh (325 nm [182,183]), and In (266 nm [184], 325 nm [185]).
Nonetheless, in the last few years, a couple of scientific publications have been reported
on the Sn/SnO,_, hetero-nanostructure potential in light-driven processes such as photo-
electrochemical water oxidation [161] or (UV)-SERS [186,187]. According to the previously
published theoretically estimated light absorption property of tin-based systems, plasmonic
properties similar to those of noble metals have been observed [188,189]. It was also shown
that the localized surface plasmon resonance (LSPR)-induced light absorption range of
Sn-based systems can be varied from the ultraviolet (about 200 nm) to the near-infrared
region (about 600 nm) by controlling the particle size, as shown in Figure 10b [187,188].
From this point of view, Sn-based systems could be very powerful as SERS substrates for
protein structure analysis.
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Figure 10. (a) Schematic diagram of SERS, which involves inelastic light scattering by molecules
adsorbed onto corrugated metal surfaces such as silver or gold nanoparticles. (b) Mie theory compu-
tations of the scattering (Qsca) and absorption (Qabs) efficiencies of Sn metallic nanoparticles (MNPs)
of distinct diameters: D = 20 (black lines), 50 (blue) and 80 (red) nm [188]. Reprinted with permission
from Ref. [172], Copyright 2019, ACS; Ref. [188], Copyright 2014, Springer Nature.

4. Atomic and Electronic Features Studies in Tin/Tin Oxide Nanostructures

As discussed in previous sections, the functionality of devices and/or materials cru-
cially depends on the achieved surfaces atomic and electronic structure. Therefore, it
is essential to determine the surface atomic and electronic structure and peculiarities of
materials. However, the typical analytical characterization techniques in the lab, such as
microscopy, spectroscopy, and diffraction, are mostly bulk methods which are not surface-
sensitive and cannot detect the chemical/physical properties on the surface. In comparison
to the lab techniques (where only X-ray photoelectron spectroscopy (XPS) is possible), syn-
chrotron radiation facilities have a higher photon number, which leads to higher resolution
and sensitivity to small material amounts (especially important for nano-scaled materi-
als) and higher sensitivity, especially in the case of tin, which has a low photoionization
cross-section, as shown in our previous publication [190]. The X-ray absorption near-edge
structure (XANES) method has a probing depth of 5 nm compared to the probing depth
of 2 nm for the XPS method. The combination of XANES and XPS measurements at the
same spot using high-resolution synchrotron facilities can allow a precise reconstruction
of the atomic and electronic structure of the studied surfaces. It should be noted that
the presence of vacancies or lower oxidation degrees of tin can be brilliantly visualized
using the XANES method in the surface-sensitive mode (using soft X-rays) due to the
presence of additional electronic states presented in the spectrum as separate features. In
addition, by using synchrotron facilities and varying the excitation wavelength of photons
(550-1000 eV) in XPS, it is possible to vary the inelastic mean electron-free paths or, in
other words, to change the depth of analysis from a few A to 20 A, which, in combination
with XANES, can give an “overall picture” of the atomic and electronic structure of the
surface, which is impossible with the XPS laboratory technique. In our previous studies, the
XANES technique was successfully used to reveal the function of suboxide layers on silicon
nanowires for a high production of hydrogen during photocatalytic water splitting [191]. In
addition, such surface-sensitive methods have also been successfully applied to investigate
the mechanism of charge transfer and optimize performance in batteries [192,193] and
catalysis research [194,195].

Synchrotron radiation involves electromagnetic radiation emitted along the tangent
direction by charged particles whose speed is close to the speed of light when moving in a
curve—also called synchrotron light. The light source produced has many advantages. It
has a continuous spectrum from far infrared to X-ray, and a monochromator can be used
to call out light with an applicable wavelength in the spectrum. At the same time, high
light intensity brings benefits in the study of trace elements in extremely small samples
and materials. Moreover, because the synchrotron radiation light is emitted by the periodic
movement of the electron beam cluster in the storage ring, it has a nanosecond to microsec-
ond time pulse. By utilizing this characteristic, time-related chemical reactions, physical
excitation processes, and changes in biological cells can be studied. Many techniques have
been developed on the basis of synchrotron radiation. A number of X-ray and electron
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spectroscopy techniques together with known sample preparation/modification techniques
can be applied to study the specificity of the local atomic environment of the tin, oxygen,
and silicon atoms over the surface layer and the bulk of all structures formed [196-198].

Synchrotron studies can allow us to obtain precise information about the atomic and
electronic structure, local atomic surrounding specificity, and physical-chemical state of the
as-prepared composite nanostructures or modified ones: under certain formation condi-
tions, after storage at normal atmospheric conditions, and after in operando measurements.
In this review, the focus is on XPS and XANES, as they are the most widely used for Sn-
based material research and can provide a wealth of information regarding the electronic
and elemental characterizations [199-203].

XPS employs X-rays to excite the surface of the studied materials, while measuring the
kinetic energy of electrons emitted within a few nanometers of the surface and recording
the spectrum with respect to the intensity, as shown in Figure 11a. The peaks appearing in
the XPS spectrum result from the emission of electrons with a certain characteristic energy
in the atom. The energy and intensity of photoelectron peaks can be used for qualitative
and quantitative analysis of all surface elements (except for H and He elements). Generally,
the information of element composition, chemical state, and molecular structure on the
sample surface can be obtained from the peak position and peak shape of the XPS spectrum,
and the element content or concentration on the sample surface can be obtained from the
peak area [204].

After X-ray irradiation on a substance, it is absorbed by the substance, but the absorp-
tion coefficient does not change monotonically throughout the entire wavelength band.
At certain positions, there are absorption jumps, becoming absorption edges. There are
some discrete peaks or fluctuations near the absorption edge and its high-energy extension,
known as X-ray absorption spectroscopy, as shown in the schematic diagram of Figure 11b.
Its distribution is about 1000 eV from the front of the absorption edge to the high-energy
side behind the absorption edge. According to the different formation mechanisms and
processing methods, it is usually divided into two distinct parts: extended X-ray absorp-
tion fine structure (EXAFS) and XANES, also known as near-edge X-ray absorption fine
structure (NEXAFS). EXAFS exhibits a continuous and slow weak oscillation at 50-1000 eV
after the absorption edge. It can represent the structure information of atomic clusters in a
small range, including the coordination number of atoms, atomic spacing, type, thermal
disturbance, and other neighboring geometric structures around the absorption atoms [205].
XANES includes 50 eV before and after the absorption edge, characterized by continu-
ous strong oscillations. It can represent a wealth of information about the neighboring
structure, such as the bond angle of neighboring atoms, and the electronic and valence
states of detected element atoms. In spite of the broad application perspectives, weak
fundamental studies on tin oxide nanostructures have been reported. To overcome the
lateral resolution limitation of the XANES technique, a different spectromicroscopy tech-
nique can be applied for wide composition and morphology studies of the surface at “one
spot” [206-209]. This means that the employment of laterally resolved surface sensitive soft
X-ray absorption edge analysis for composite structure studies promises to be very informa-
tive, taking into account previously published results from Si-O [210-213] and Sn—O system
studies [203,214-218]. The high-energy and high-spatial-resolution synchrotron methods
deal with low-intensity signals, where intensive excitation radiation plays the key role for
obtaining reliable information. As pointed out before, X-ray absorption fine structures
are extremely sensitive to the specificity of given atoms in the local environment [219],
which allows us to estimate the weak atomic and electronic structural changes in Sn-O
systems localized around silicon nanowires or planar silicon surfaces. Photo-emission
electron microscopy (PEEM) in soft XANES spectroscopy mode can be efficiently applied
for Sn—O system studies in different environments [220]. Only Kolmakov et al. on SnO,
nanowires [221] and Turishchev et al. on tin oxide-covered silicon nanowire arrays [190]
presented PEEM results, showing a lack of studies on the surface of low-dimensional tin
oxide nanostructures, which makes this topic extremely important.
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Figure 11. Schematic diagram of the theory of XPS (a) and XANES (b) [222]. Reprinted with
permission from Ref. [222], Copyright 2023, NSF.

In our previous studies, we showed the possibility of applying XANES (NEXAFS)
to identify Sn crystal phases in silicon nanowire matrices [42,190]. This nondestructive
surface-sensitive technique allows the precise detection of metallic Sn, Sn(II), and Sn(IV),
which originates from the electronic features, as shown in Figure 12. Chuvenkova et al.
employed XANES and XPS to investigate the surface defects in SnO, crystals, showing
their informative and sensitive properties to the local atomic environment, attributed to the
oxygen vacancies in obtained Sn-based composite thin films [216,223]. Gago et al. combined
XRD and XANES to investigate the transition from SnO to SnO, by increasing the O, partial
pressure during the sputtering process [224]. XRD and XANES provide complementary
results about the formation of single- and mixed-phased films. Furthermore, XANES give
unique information about defects such as the incorporation of O, molecules at high O,
partial pressure [225]. Zhou et al. revealed the origin of the multicolor luminescence from
SnO, by combing the results from time-resolved X-ray excited optical luminescence and
XANES [226].
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Figure 12. The application of XANES for studying Sn/SnO, in SiNWs [42]: (a) SEM images of
Sn/SnO;, deposited in SiNWs. (b) O K-edge and (c) Sn M-edge XANES spectra of Sn/SnO, in SINWs.
Reprinted with permission from Ref. [42], Copyright 2023, Wiley.

In Li-ion batteries, XANES can be powerful as an operando analytic tool for in situ
monitoring of the charge and discharge process in a running device. Birrozzi et al. studied
the de-/lithiation mechanism of SnO; nanoparticles, as well as the synergetic impact of
Co and Mn doping, by recording the XANES spectra from Sn L-edge, Mn K-edge, and Co
K-edge, as these spectra provide fruitful information about the changes between oxidation
states and metallic states during the working process of Li-ion batteries [227]. Similarly,
Pelliccione et al. also investigated the dynamic changes in the Sn atomic environment to
analyze the formation of Sn—Li phases within the electrodes by employing XANES, and
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they further revealed the reasons for poor electrochemical performance and rapid capacity
decline [201].

In PSCs, the SnO; ETL is normally fabricated via a solution process, and one of the
biggest challenges comes from the -OH groups on its surface because of the proton-rich
conditions, which are harmful for PSCs because they can degrade the stability and efficiency
of PSCs. XPS and XANES could enable a powerful investigation of the interface chemical
environment, addressing this drawback. For example, Jeon et al. applied XPS and XANES
to confirm the substantial reduction in surface hydroxyl groups on SnO, ETL by passivation,
and they further found that the surface hydroxyls groups act as defect sites to reduce the
charge transfer and carrier lifetime of perovskites [228]. On the other hand, these tools
can also explore the degradation and working principle of Sn-based perovskites, as the
oxidation of Sn(Il) to Sn(IV) from O, and HyO™ in perovskite can be easily captured by
XPS and XANES [229,230]. These findings could provide insights into the mechanistic
picture of tin halide perovskites and promote them as alternatives to Pb-based materials in
PSCs as they are less toxic and cheaper.

5. Conclusions

Nanostructured tin/tin oxide composites have been extensively studied and proven
their unique functions in various devices such as gas sensors, energy storage, solar cells,
photocatalysis, and bio-photonic devices. The flexibility to fabricate tin-based materials
for various applications can be controlled using different synthesis routes with varying
synthesis conditions. Among all methods, solid-based methods usually give the possi-
bility to produce nanoparticles with uniform sizes, while solution-based methods have
more flexibility to produce tin/tin oxide materials with greater morphological diversity,
simpler processes, and lower costs. However, gas-based methods can provide the greatest
homogeneity on substrates to meet the high demands of the electronics industry. Modern
synchrotron radiation-based characterization techniques provide more opportunities to
investigate the atomic and electronic structure, local atomic surrounding specificity, and
physical-chemical states of tin/tin oxide materials, which enhances the understanding
of these materials and their mechanism of operation in various devices. The outstanding
performance of nanostructured tin/tin oxides in various fields has been presented. In
order to realize industrial applications, more efforts are also needed to develop better
synthesis pathways and equipment to reduce production costs. However, achieving theo-
retically maximum parameters still requires further optimization of this family of materials.
Understanding the relationship between structure and properties still deserves further
investigation to obtain the most optimized device performance.
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