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Abstract: Polymer nanodielectrics present a particularly challenging materials design problem for
capacitive energy storage applications like polymer film capacitors. High permittivity and breakdown
strength are needed to achieve high energy density and loss must be low. Strategies that increase
permittivity tend to decrease the breakdown strength and increase loss. We hypothesize that a
parameter space exists for fillers of modest aspect ratio functionalized with charge-trapping molecules
that results in an increase in permittivity and breakdown strength simultaneously, while limiting
increases in loss. In this work, we explore this parameter space, using physics-based, multiscale
3D dielectric property simulations, mixed-variable machine learning and Bayesian optimization
to identify the compositions and morphologies which lead to the optimization of these competing
properties. We employ first principle-based calculations for interface trap densities which are further
used in breakdown strength calculations. For permittivity and loss calculations, we use continuum
scale modelling and finite difference solution of Poisson’s equation for steady-state currents. We
propose a design framework for optimizing multiple properties by tuning design variables including
the microstructure and interface properties. Finally, we employ mixed-variable global sensitivity
analysis to understand the complex interplay between four continuous microstructural and two
categorical interface choices to extract further physical knowledge on the design of nanodielectrics.

Keywords: polymer nanodielectrics; capacitive stored energy; breakdown strength; extrinsic
interface; intrinsic interface; trap depth; finite difference simulations; latent variable gaussian process;
Bayesian optimization; global sensitivity analysis

1. Introduction

For capacitive energy storage applications, it is desirable to maintain low loss
(
ε
′′
r
)
,

while having high dielectric constant (ε′r) and high breakdown strength (Eb) to obtain a
high energy density (Ud), which is also referred to as stored energy density (SED),

Ud =
1
2

ε0ε′rE2
b . (1)

Polymer nanodielectrics are very well suited for this purpose as they can combine high
permittivity nanosized metal oxides particles with high breakdown strength polymers [1].
Experimental combinations at a range of volume fractions, particle functionalization, parti-
cle permittivity, and particle size and shapes have been explored and indicate a complex
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interplay between the properties of interest [2–4]. An increase in aspect ratio leads to
field concentrations in the polymer and hence can further increase the permittivity [5]. At
the same time, these field concentrations can decrease breakdown strength and increase
losses [6]. Functionalization of the nanoparticles using voltage stabilizing/carrier trap-
ping molecules can enhance breakdown strength [7,8]. However, both these strategies can
impact interfacial polarization and can increase the loss [9]. Conducting and magnetic
nanoparticles, through better electric polarization characteristic, can improve permittivity
but may create a percolation network leading to leakage currents, again leading to high
losses and low breakdown strength [10–14]. Overall, the results to date indicate that while
one property of the system can be improved, there is typically an adverse effect on the
other properties.

Another key aspect that greatly contributes to nanocomposite behavior is the proper-
ties of the interfacial region [15], which we call the interface in this paper. In addition to
being able to create an extrinsic interfacial region through the functionalization of nanopar-
ticles, local property measurements have shown the existence of an intrinsic interfacial
region with significantly changed material properties such as glass transition temperature,
elastic modulus, and permittivity due to changes in chain mobility, crosslink density, or
crystallinity [16,17]. It is well-established that properties and/or percolation of the interface
significantly influence nanocomposite properties [18,19] and hence must be considered in
the design approach. Past works have used an inverse fitting approach to bulk properties
to elucidate the local interface properties [20–23].

Combinations of extrinsic and intrinsic interface designs have been probed experimen-
tally, by grafting nanoparticles with both short and long-chain molecules. Bimodal brushes
consisting of short voltage stabilizing and a low graft density of long polymer chains have
been used to achieve control over both dispersion and breakdown strength [24–27]. There
have been only a few reported cases, however, of increases in both permittivity and break-
down strength. In those situations, the literature suggests that the charge-trapping ability
of the interface is what allows that unusual combination of properties [7,8]. In this work,
we hypothesize that we can increase the energy storage by using a modest aspect ratio
filler to increase the permittivity and mitigate the accompanying reduction in dielectric
breakdown strength by creating an extrinsic interface of charge-trapping ligands on the
particle surface [28–30]. Additionally, increases in loss could be mitigated by tailoring the
intrinsic interface [31].

Testing this hypothesis involves exploring a highly multidimensional design space
for probing properties at multiple different scales, namely first-principles calculations for
trap densities at interfaces, Monte Carlo for carrier mobility prediction and continuum
scale simulated permittivity-loss. This renders the polymer nanodielectrics design problem
difficult to handle solely with experiments or computational methods. Recently a great
deal of effort has been directed toward tackling materials design problems of such complex-
ity by combining experimental characterization, physics-based multiscale computational
models, and predictive modelling using machine learning (ML) methods [32,33]. Existing
computational designs are predominantly performed on 2D models and do not consider
the important role of various modes of interfacial design. Similarly, our previous work
provided a perspective on how multiple aspects of such a data-centric design process of
polymer nanodielectrics come together and interact with each other [34]. A case study
based on octyl silane-modified silica nanoparticles in a polystyrene matrix was used to
demonstrate the steps involved in the design approach. The framework was then adapted
to design 2D spherical nanoparticles with a designated choice of constituents like the matrix
polymer and the particle functionalization chemistry [34,35].
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To search for the above hypothesized optimal property niche in the wider multidimen-
sional design space proposed here, we build on our prior work in designing nanodielectrics
and use a modern computational design framework coupled with multiscale, physics-
based, 3D dielectric modelling and simulation methods [36]. Precisely, we propose a
design framework that tailors the microstructure (volume fraction (VF), aspect ratio (AR),
dispersion, and isotropy of nanofillers) and interface (extrinsic and intrinsic) choices to
identify the materials designs that optimize the conflicting dielectric loss and stored en-
ergy density properties. We use three conducting polymer ligands as extrinsic interface
options and employ four specific intrinsic interfaces that encompass differing degrees of
loss and permittivity relative to the neat matrix. These choices are compiled based on
existing work [20,23–27,29–31]. The first principle calculation of trap states corresponding
to each extrinsic molecule choice is performed and fed to Monte Carlo simulations of carrier
mobility. Prediction of breakdown strength from carrier mobility is based on an existing
calibration [34].

The four numerical microstructural and two interface choices constitute a mixed-
variable design space. As a result, the overall design framework exhibits a significant
advancement over any existing experimental study in terms of the number of design
parameters. Specifically, the design framework employs a large degree of freedom 3D
finite difference simulation strategy to evaluate nanodielectric properties of the complex
anisotropic microstructures, the novel Latent Variable Gaussian Process (LVGP) ML model
to learn the relationship between the mixed-variable design space and properties, and
Bayesian optimization (BO) to identify the novel nanodielectric designs. Finally, an impor-
tant highlight of this study is the implementation of the mixed-variable metamodel-based
global sensitivity analysis to gain and extract physical insights into the collective relation
between nanodielectric design variable properties.

The organization of this paper is as follows. First, Section 2 provides details regard-
ing the nanodielectrics generation, physics-based 3D dielectric property evaluation, the
machine learning and Bayesian optimization-based design framework, and the global
sensitivity analysis methods. Next, we present the solutions obtained from the design
optimization and global sensitivity analysis in Section 3 and we conclude our paper with a
discussion of the results and the conclusions drawn from our research in Section 4.

2. Materials and Methods

This section describes the material system of interest and further details on the material
design space, simulation methods for calculating dielectric properties (permittivity, loss,
breakdown strength, and stored energy density), the design optimization framework, and
the global sensitivity analysis.

2.1. The Mixed-Variable Nanodielectrics Design Space

Due to their complex structure, the design of nanodielectric materials requires special
attention. The design space of these materials contains multiple physical phenomena
integrated together. Specifically, a tailored microstructure and carefully selected interfacial
layers are required to design the material system for capacitor applications. Nanodielec-
tric morphology can be characterized by the four unique physical filler descriptors for
microstructure and two interfacial layer choices shown in Table 1. Here, the microstruc-
tural variables are represented in a quantitative space whereas the interfacial variables are
represented with qualitative choices, making the design space of nanodielectrics a mixed-
variable one. The bounds of the design space values were drawn from past experimental
data and interfacial properties analysis [20,23–27,29–31].
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Table 1. The Mixed Variable Nanodielectrics Design Space with bounds on the variable ranges. The
dispersion parameter refers to the nearest neighbor distance.

Design Variables Design Choices

M
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ct

ur
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(Q
ua

nt
it

at
iv

e) Volume Fraction (VF) (1,4)%

Aspect Ratio (AR) (1–6)

Dispersion (D) (11–36) nm

Orientation Variation (OV) (0,1)
In

te
rf

ac
ia

l
(Q

ua
li

ta
ti

ve
) Intrinsic Interface

Attractive Lossy, Attractive Non-Lossy,
Repulsive Lossy, Repulsive Non-Lossy,

No Interface

Extrinsic Interface Ferrocene, Terthiophene, Thiophene,
No Interface (No Extrinsic Interface)

2.2. The Design Framework

The nanodielectrics design optimization framework consists of multiple stages in-
tegrated together as shown in Figure 1. First, to learn the relationships between design
variables and properties, a mixed-variable initial design of experiments is created (Box 1 and
Table 1). Next, microstructures characterized by different physical descriptors and interface
choices are reconstructed using the methodology described in Sections 2.2.1 and 2.2.2 (Box
2). Reconstructed images are then passed on to the Property Evaluation stage to evaluate
the dielectric loss and stored energy density (SED) properties of the given nanodielectric
designs (Box 3, Section 2.2.3). Next, the Latent Variable Gaussian Process (LVGP) machine
learning model is trained to learn the relationships between the design variables and the two
properties. Then, a well-known metamodel-based multi-objective optimization algorithm,
Bayesian optimization, is implemented to identify the nanodielectric designs that optimize
both properties (Box 4, Section 2.2.4). Finally, the novel designs identified by the framework
are analyzed further to extract knowledge regarding the design of nanodielectrics (Box 5,
Section 2.2.5).
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Figure 1. The mixed-variable nanodielectrics design framework.
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2.2.1. Design of Experiments

To initialize the design optimization framework, we created a mixed-variable design of
experiments (DOE) using sliced-optimal Latin hypercube sampling with a specified number
of samples and variables based on Table 1 [37]. The sliced-optimum Latin hypercube
sampling is an extension of orthogonal sampling where optimum Latin hypercube sampling
is implemented to sample the initial space and the space is then divided into orthogonal
arrays to account for the qualitative (categorical) design variables in the design space.
Specifically, an optimal Latin hypercube space is created and for each qualitative variable,
the design space was sliced into pi sections, where pi represents the number of unique
options for each qualitative variable. Each DOE design is assigned to a qualitative variable
that falls under the sliced section. Compared to other sampling methodologies such as
orthogonal or random sampling, our DOE approach excels in providing optimum initial
design points that are sampled comprehensively throughout the design space for mixed-
variable (qualitative and quantitative) design optimization applications. As a result, this
approach enables us to select initial nanodielectric designs that cover the design space as
evenly as possible for sufficient model fitting.

2.2.2. Material Generation
Microstructure Characterization and Reconstruction

Microstructure Characterization and Reconstruction (MCR) is essential for extract-
ing critical microstructure features and creating statistically equivalent microstructures
that serve as inputs to structure-property evaluations. Inspired by existing experimental
images and previous work, we decided to characterize the complex microstructure of
nanodielectric materials with physical descriptors. Specifically, we determined that the
volume fraction (VF), aspect ratio (AR), dispersion, and orientation of fillers (isotropy)
are the main characteristics of these materials that differentiate one from another on the
microstructural level [35,36]. The Orientation Variation (OV) describes the isotropy of the
system by the variation of a normal distribution that assigns specific orientation to fillers.
The orientation distribution is generated through θ = N(π/2, OV ∗ π/2), where θ is a
vector of angles assigned to individual fillers. Here, OV of 0 generates a vector of angles
where all fillers are aligned in the Z-direction, making the structure anisotropic. OV of 1
generates a distribution of angles with a mean of π/2 and a variance of π/2, leading to an
isotropic structure. Overall, these four defined physical descriptors can uniquely character-
ize each nanodielectric material and provide the necessary information to reconstruct these
materials systems with tailored characteristics for property optimization.

To reconstruct the material systems, we implemented a simulated annealing algorithm
to generate three-dimensional microstructure images with specified design characteristics
and periodic boundary conditions. Initially, fillers are generated with predefined VF, AR,
and OV. Next, the simulated annealing algorithm optimizes the structure to satisfy two
important criteria. First, the reconstructed fillers must satisfy the predefined dispersion
value, which is defined as the mean nearest neighbor between fillers. Second, the fillers
must not collide to avoid violating a real physical system. These criteria are satisfied by
checking the algebraic separation condition between each filler defined in [38]. Once both
criteria are satisfied, the generated design is accepted for further analysis. Reconstruction
is conducted based on a microstructure with the dimensions of [150 nm, 150 nm, 150 nm].
Figure 2a,b shows examples of reconstructions with varying characteristics.

Interfacial Layers

The material system studied here is TiO2 particles in a Cross-linked polyethylene
(XLPE) polymer matrix. We simulate a multiphase system that considers, in addition to
particle and matrix, extrinsic, and intrinsic interfacial regions (Figure 2c,d).
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Extrinsic Interface

The extrinsic interface simulates the effect of short chains grafted to the particles
to enhance carrier trapping. We use three short ligand functionalization on the particle
surface, as listed in Table 2 and with the molecular structure shown in Figure 3, to modify
trap characteristics at the filler–matrix interface. For permittivity and loss calculations this
extrinsic interface layer is modeled as a thin layer with conductivity based on a frequency-
dependent loss characteristic: −σ

ωε0
. We have a fourth choice of ‘no extrinsic interface’ for

which default interface trap configuration is used for breakdown strength calculation
whereas no extrinsic phase is modelled for the permittivity-loss calculation.

Table 2. List of the molecule choices for the extrinsic interface and the conductivity used in the
modeling.

# Ligand Molecule Conductivity σ (S/cm)

1 Thiophene 1 × 10−10

2 Terthiophene 1 × 10−7

3 Ferrocene 1 × 10−1
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Figure 3. Characteristic structures of the three molecules considered here, attached to an amorphous
surface, surrounded by polymer (not shown for clarity). We simulate an ensemble of 15 structures
for each molecule to account for structural variations in the amorphous interface and predict trap
distributions for estimating dielectric breakdown strength (Section First-Principles Predictions of
Trap States).

Intrinsic Interface

The intrinsic interface is a result of particle–polymer interaction, with or without
particle surface functionalization. This interaction can change the permittivity and loss
(e.g., by reducing chain mobility, the polarizability is reduced decreasing permittivity, and
changing the loss frequency). We model all possible qualitative combinations of changes in
mobility and polarizability to capture a complete range of behaviors. This is conducted with
the help of the Debye series framework combined with scale factors Sα, Sβ for relaxation
times τn and Mα, Mβ for Debye coefficients ∆εn. C is an offset to instantaneous permittivity
component ε∞. Debye series, as shown in Equation (2), is a linear combination of complex
basis functions with Debye coefficients ∆εn that act as weights.

ε′(ω) = ε∞ +
N
∑

n=1

∆εn
1+(ωτn)

2

ε′′ (ω) =
N
∑

n=1

∆εnωτn
1+(ωτn)

2

(2)

The real part describes permittivity and the imaginary part describes loss characteris-
tics. Table 3 shows these scale factors for all combinations considered. Debye series for the
intrinsic interface, using a different set of scaling factors for α and β regime, is given by

ε′(ω) = ε∞ + C + Mα ∑
τn>τ0

∆εn
1+(ωSατn)

2 + Mβ ∑
τn<τ0

∆εn

1+(ωSβτn)
2

ε′′ (ω) = Mα ∑
τn>τ0

∆εnωτn
1+(ωSατn)

2 + Mβ ∑
τn<τ0

∆εnωτn

1+(ωSβτn)
2

(3)

Sα, Sβ < 1 implies repulsive interfacial interaction leading to faster relaxation of
polarization entities moving overall relaxation spectra and loss peak to the right on the
frequency axes, whereas Sα, Sβ > 1 implies the opposite behavior. Mα and Mβ modulate
the magnitude of permittivity and loss contributed by each Debye element. We choose C to
be zero assuming that the contribution from high frequency polarization mechanisms is
not being altered due to molecular mobility changes brought on by interfacial interactions.
Using separate scale factors enables control of alpha and beta regimes independently [20].
Although, for this design study, we assume that both the regimes exhibit changes in mobility
and polarizability in the same qualitative way.
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Table 3. List of the intrinsic interface choices and the associated parameters used in the modeling.

# Intrinsic Interface Sβ Mβ Sα Mα C

1 Attractive Lossy (AL) 5.0 1.2 7.0 1.1 0

2 Attractive Non-Lossy (ANL) 5.0 0.5 7.0 0.5 0

3 Repulsive Lossy (RL) 0.05 1.2 0.07 1.1 0

4 Repulsive Non-Lossy (RNL) 0.05 0.5 0.07 0.5 0

5 No Intrinsic Interface 1 1 1 1 0

XLPE dielectric permittivity and loss data is taken from dielectric spectroscopy mea-
surements and fitted to Equation (1) using a least square ridge regression with non-negative
weights constraints. Figure 4 shows the XLPE matrix and interface material properties used
for the simulations.
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2.2.3. Property Evaluation: Physics-Based Simulation Methods
Breakdown Strength Calculations

We perform Monte Carlo simulations of carrier hopping in an electronic energy land-
scape of the polymer nanocomposite to predict the mobility of carriers, following the pro-
cedure established and described in detail in [34]. We then calculate breakdown strength
from the predicted mobility using a calibration of computed mobilities and experimentally
measured breakdown strengths for microstructures extracted from the experiment, exactly
as in [34].

The only modification to this overall process for the present work is in the energy
landscape used for the Monte Carlo simulation. We previously accounted for the difference
in electronic energy levels in the filler and polymer matrix to introduce trap states at the
location of the fillers that control the carrier mobility, and hence, the breakdown strength.
In the present study, we have different surface functionalizations that will each introduce
different trap states in the extrinsic interface, in addition to those accounted for in the filler
and matrix (including intrinsic interface) as before. We predict these trap states from the
first principles as discussed below and incorporate them into the previously established
simulation framework [34].

First-Principles Predictions of Trap States

Trap states critically impact electronic transport in polymers and nanocomposites but
can only be indirectly inferred from experimental measurements such as transient depo-
larization current (TSDC) and luminescence spectroscopy, making it difficult to account
for their influence on breakdown strength in material design. We previously developed
a framework for systematic first-principles predictions of trap states at filler–polymer in-
terfaces and extracted the multi-modal distribution of trap states at polyethylene–silica
interfaces expected to significantly influence the carrier transport [39].
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Here, we extend that approach to predict trap states at the extrinsic interfaces of
functionalized fillers, focusing on molecules thiophene, terthiophene, and ferrocene at
the inorganic–polymer interface (Figure 3). We create an ensemble of 15 amorphous
interfaces containing each molecule, starting from random-walk polymer structures and
classical molecular dynamics quench simulations followed by first-principles structure
optimization to account for the randomness in the interfacial structure [39]. We then
perform electronic density-functional theory calculations using the JDFTx plane-wave
basis code [40], PBE-GGE exchange-correlation functional [41] with DFT-D2 dispersion
corrections, GBRV ultrasoft pseudopotentials [42], and a kinetic energy cutoff of 20 and
100 Hartrees on the wavefunction and charge density, respectively, for each of these 45
large interfacial structures, each with approximately 300 atoms and 1000 valence electrons.

From these ensembles of electronic DFT calculations, we extract the ensemble-averaged,
spatially resolved local density of electronic states (LDOS). Figure 5 shows the resulting
LDOS for each of the three functionalized interfaces, with several localized energy levels
visible at the interface within the energy gap of both the polymer and filler, which can act
as trap states to reduce the carrier mobility and increase the breakdown strength of the
nanocomposite. The thiophene-functionalized interface exhibits relatively fewer trap states
that are located closer to the conduction band, while the terthiophene case exhibits a greater
number of traps states that are more evenly spread out in energy and in space due to the
conjugated electronic structure of terthiophene. Ferrocene contains the most trap states,
which are localized and deeper in energy (closer to the center of the band gap), indicating
the most potential for carrier trapping and high breakdown strength.
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Finally, Figure 6 summarizes the energy distribution of these trap states extracted from
Figure 5, along with the orbitals of a characteristic trap state on the molecule in the extrinsic
interface. Thiophene and terthiophene trap states emerge from states delocalized across
the conjugated bonds, with a greater spatial extent for terthiophene, while the dominant
ferrocene trap states are localized d orbitals of the iron atom. We sample energies from the
above distributions to populate the energy landscape of the extrinsic interface region of the
Monte Carlo simulations, thereby combining these first-principles materials input with the
microstructure of fillers within the matrix in the overall breakdown strength simulation.
We expect ferrocene to exhibit the maximum reduction in carrier mobility and associated
increase in breakdown strength, due to its large number of shallow and deep trap states
covering a large energy range, followed by terthiophene and then thiophene.
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Permittivity and Loss Calculations

We model permittivity and loss properties using a continuum scale model. Each
microstructure is modelled as a multiphase continuum system consisting of four (4) phases
namely, polymer matrix, intrinsic interface layer, extrinsic interface layer, and particles
(Figure 2c,d). Details of methods to calculate continuum scale property values for extrinsic
and intrinsic layers are explained in Section Interfacial layers. Further, these microstructure
domains are discretized using a finite difference method to solve Poisson’s equation describ-
ing a complex-valued scalar potential field for dynamic (in frequency domain) steady-state
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currents. Effective permittivity and loss of the representative volume element (RVE)s is
calculated using average electric displacement across the RVE walls in real and imaginary
parts, respectively. Because of the anisotropy in the system, we do a full permittivity tensor
calculation by changing the field application directions. This amounts to three (3) calcula-
tions per data point. The frequency range considered for these applications is 10−2 Hz to
107 Hz. The main highlight of this method is our in-house implementation of the code that
uses the Hermitian matrix to solve linear systems of equations in complex spatial potential.
We employ structural and Dirichlet periodic boundary conditions for microstructure RVEs
to effectively mimic a larger continuum. The authors would like to mention that COMSOL
finite element simulations, while effective for their high-order field value accuracies and
readily available visualization capabilities, were rather difficult to integrate into the BO
optimization loop. The reasons involved auto geometry and auto mesh build failures for
complex geometries with high VF, and high AR systems as well as high compute memory,
build time and computational time requirement for 3D microstructures with number of
elements exceeding ten million.

2.2.4. Metamodeling and Multi-Objective Optimization
Latent Variable Gaussian Process (LVGP) for Metamodeling

Gaussian processes (GPs) are a specific interpolation-based machine learning model
that has been a popular choice for many engineering applications due to their ability to
provide both objective and uncertainty prediction. Although very powerful, one caveat
with GP metamodels is that due to the nature of their correlation functions, GP models
can only handle quantitative variables, and qualitative variables cannot be implemented
directly without a well-defined distance metric. However, for all physical qualitative vari-
ables, there exists an underlying, potentially high-dimensional, quantitative representation
that explains the qualitative variables’ impact on the response. Using this knowledge,
a novel Latent Variable Gaussian Process (LVGP) metamodel that approximates the ef-
fects of underlying quantitative variables through an implicit mapping from qualitative
variables into a low-dimensional quantitative latent has been developed [43]. With LVGP,
qualitative variables, along with the quantitative variables can be used together to provide
mixed-variable GP modeling. The spatial relationship of the latent variables provides
interpretability regarding the relationship of qualitative variables with the response and the
LVGP approach provides predictions and quantifies uncertainties, making it very suitable
for Bayesian optimization applications. As a result, we implemented the LVGP machine
learning model to learn the relationship between the mixed-variable nanodielectrics de-
sign parameters and properties. The mathematical formulation of LVGP is provided in
Appendix A.

Bayesian Optimization

Our main goal in this study is to optimize the design of nanodielectric materials for
the two conflicting capacitor properties in three directions (X, Y, Z). Explicitly, we would
like to minimize the dielectric losses and maximize the stored energy density values in all
three directions. Bayesian optimization (BO) is a well-known surrogate model-based opti-
mization methodology that has been previously implemented for optimization problems.
With its advantageous characteristics such as ease of implementation, and gradient-free
optimization, it has been widely used in the materials design community [35,44–46]. For
multi-objective optimization problems with a large number of objectives, a simple but
promising approach is to incorporate all objectives into a single objective. In this formu-
lation, each property is treated equally and optimized at the same time. For the design
optimization of nanodielectric materials, the single objective multi-criteria function is
defined as

y(x) = ε′′ xr + ε′′
y
r + ε′′ zr −Ux

d −Uy
d −Uz

d, (4)

where ∈i, Ui
d are the normalized dielectric loss and stored energy density properties

for three directions (i = x, y, z). BO selects the candidate designs through maximizing
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an acquisition function called the Expected Improvement (EI) that aims to balance the
exploration and exploitation of the design space. BO employs a surrogate model that
can provide both predictions and uncertainty quantification to evaluate the acquisition
function. Considering the mixed-variable design space, the LVGP is a very suitable choice
of surrogate model. Therefore, the EI acquisition function can be formulated as

EI(x) =
(
y∗ − yx

′ ) · ψ(y∗ − y′x
σx

)
+ σx · φ

(
y∗ − y′x

σx

)
, (5)

where y∗ is the lowest objective value observed so far in the optimization, y′x and σx are the
predicted objective and prediction uncertainty from LVGP at candidate design point x, ψ is
the cumulative distribution function (CDF), and φ is the probability density function (PDF).
The EI is calculated for all design candidates and the candidate with the highest EI value is
selected for property evaluations in each BO iteration.

2.2.5. Design Analysis

Once the optimization is completed, we analyze the results obtained from the frame-
work to identify novel designs and make conclusions regarding the design of nanodielectric
materials.

2.3. Global Sensitivity Analysis for the Mixed-Variable Design Space

Global Sensitivity analysis (GSA) is the study of how the input design variables,
independently or interactively, influence the design objective. In the context of this nanodi-
electrics design study, GSA can help us understand the influence of the six design variables,
individually or interactively, on the material properties. Among different types of GSA
methods, variance-based methods, specifically Sobol’s sensitivity indices are well-known
methods to explain the contribution of each design variable on the variability of the re-
sponse. Specifically, the two Sobol’s indices, Main Sensitivity Index (MSI) and the Total
Sensitivity Index (TSI), quantify how each design variable contributes to the response
individually and interactively with other design variables [47]. For a given design space
with q number of design variables, the formulation of Sobol’s indices, TSI and MSI are
given in Equations (6) and (7).

Si =
Varx

[
Ex1,...,xq y

∣∣∣xi

]
Varx1,...,xq [y]

=
Vi
V

, (6)

St
i = Si + Si,∼i, . (7)

Here, y is the response of interest, Vi is the variance of the response with respect to
the changes in design variable xi, V is the variance of the response, Si is the MSI, St

i is the
TSI of the design variables, and Si,∼i is the higher order Sobol’ sensitivity indices between
variable xi and remaining variables xi for i = 1, . . . , q.

Current Sobol’ indices calculations require a large number of objective evaluations
and are limited to quantitative design spaces only. With its capability of capturing the rela-
tionship between mixed-variable design spaces and providing fast and accurate response
predictions, we can overcome the aforementioned challenges by employing LVGP as a
metamodel to create a mixed-variable sensitivity analysis to incorporate qualitative vari-
ables into sensitivity studies [48]. To conduct the mixed-variable GSA, the mixed-variable
samples are first fed into the LVGP model for model fitting. Once the trained model is
ready, Sobol’ analysis is conducted through evaluating the Sobol’ sensitivity metrics, Main
Sensitivity Index (MSI) and Total Sensitivity Index (TSI), given in Equations (6) and (7)
using the fast and accurate predictions provided by the LVGP model.
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3. Results

Here, we present in Section 3.1, findings from the Base DoE of 100 nanodielectric
material designs that were simulated using the multiscale physics-based method described
in Section 2. Permittivity and loss simulations were performed in a full frequency space
whereas breakdown strength calculation was conducted in the limit of zero frequency.
Properties were calculated by applying the external field in three spatial directions (X, Y, Z)
due to the anisotropy of many of the samples in the DOE, where the default orientation
of particles is always in the Z direction. GSA with Sobol’s analysis performed on these
computational results was used to highlight the sensitivity of property values. Section 3.2
presents the results obtained from design optimization with ML model fitting and Bayesian
optimization at frequencies 60 Hz and 1000 Hz, two potential frequency regimes for
capacitive applications.

3.1. Initial Design of Experiments (DOE)

For the initial DOE points, we looked at the simulated property data scatter and linear
correlation between three basic dielectric properties—permittivity, loss, and breakdown
strength at the two representative frequencies 1000 Hz and 60 Hz. We also calculated
the linear correlation between stored energy density (SED) and loss as that pairing is
more relevant for applications and is used further to perform design optimization. We
observe a strong correlation between permittivity and loss (Table 4) which reflects the
expected strong fundamental mechanistic coupling between those entities. On the other
hand, an overall weak correlation between breakdown strength and loss was observed.
This result underscores that the mechanism of breakdown strength modeled here is not
directly coupled with polarization processes. Furthermore, combining breakdown strength
and permittivity in Equation (1) produces a moderate correlation between stored energy
density and loss, quantities that we put together in the Bayesian optimization.

Table 4. Linear correlation between dielectric properties in different directions at 60 Hz.

Properties/Directions X Y Z

Loss vs. Breakdown Strength 0.21 0.2 0.12

Loss vs. Permittivity 0.78 0.7 0.93

Loss vs. Stored Energy Density 0.63 0.54 0.85

Next, we fit our machine learning model, LVGP, to learn the relationships between the
design variables and the two dielectric properties that we are interested in optimizing, SED
and Loss. Figure 7 shows the latent variables obtained for the two properties at 60 Hz. Here,
each point corresponds to the latent variable of the interface design choices. For the SED,
we observe that the latent variables of qualitative (categorial) extrinsic interface choices
are further apart from each other, suggesting that their influence on the response are much
different from each other. In contrast, the intrinsic interface latent variables are much closer
in the latent space, suggesting that the choice of interface has a similar influence on the
SED. The ferrocene and thiophene choices have a similar influence on Loss, whereas using
no extrinsic interface or terthiophene could have a significant influence on the Loss. Finally,
although not shown here, similar observations were made for the latent variables obtained
at 1000 Hz.

To investigate and understand the influence of interface further, we looked at the
scatter plots at 60 Hz and 1000 Hz for properties in the z direction, with color coding of data
points according to extrinsic interface choice (Figure 8). First, we observed that the addition
of an extrinsic interface of charge-trapping molecules significantly improves breakdown
strength and permittivity over cases without any extrinsic interface (purple vs other colors).
However, this results in a significant increase in loss. Ferrocene results in the highest
breakdown strength which we attribute to the deeper trap distribution as determined from
DFT (blue vs. other colors). This finding is consistent with other work [27].
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Figure 7. The latent variables of the extrinsic and intrinsic interface design choices were obtained
from the LVGP models trained on the initial DOE at 60 Hz in the Z direction. Here, the axis (z1, z2)
represents the latent variables obtained from the LVGP model.
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Figure 8. Nanodielectrics properties in the z direction based on the DOE designs at two frequencies
1000 Hz and 60 Hz with respect to extrinsic interface design choices.

At 1000 Hz, composites with a thiophene extrinsic interface exhibit lower permittivity
compared to composites with terthiophene and ferrocene, whereas the permittivity is
comparable at 60 Hz (yellow vs other colors). Additionally, the thiophene results in the
largest loss at 1000 Hz. Finally, because of the above, the stored energy density for thiophene
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at 1000 Hz is significantly lower than ferrocene and terthiophene; however, it improves
at 60 Hz owing to improved permittivity at that frequency. For completeness of data
presentation, scatter plots and correlation indices for the X and Y direction are included in
Supporting Information.

Global Sensitivity Analysis

The GSA is used to gain knowledge of the cause–effect relationship and further
validate whether the simulation model created in (Section 2.2.4) matches the underlying
physical behavior. To extract the influence of design choices on the properties, we have
performed LVGP-based mixed-variable global sensitivity analysis (GSA) on the initial DOE
designs. The GSA aims to explain how each design variable contributes to the variability of
the properties both individually and collectively. To conduct GSA, we fitted LVGP models
on SED and Loss in the Z direction at 60 Hz and 1000 Hz frequencies. Figure 9 shows
Sobol’s sensitivity indices obtained from the GSA for each design variable. In the figure,
blue bars describe the individual contribution of each design variable on the response
(Main Index) and orange bars describe the interactive contribution of the design variable
with other variables on the response (Total Index).
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Figure 9. GSA of two Z components of design objectives, namely stored energy density and loss with
respect to design variables, both quantitative and qualitative.

We observe that the SED is highly sensitive to the choice of the extrinsic interface on
its own, consistent with the prior latent variable analysis in Figure 7 and demonstrating
its power to extract physical insight. There is also moderate interaction between extrinsic
interface choice, particle VF and AR to influence variability in SED which means a particular
combination of these three design variables can make a big difference in SED. Similarly,
for loss, we observe that the choice of the interface along with the aspect ratio and volume
fraction contribute to a significant variance in the loss. Furthermore, we observe high
Total Sensitivity Index (TSI) values between those design variables, meaning that they
interactively influence the loss. We also note that the choice of the intrinsic interface can play
a role in the variability of loss at lower frequencies as the latent variables suggested before
(Figure 8). We further investigated the individual GSA of permittivity and breakdown
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strength. Breakdown strength is highly sensitive to extrinsic interface and to some extent
to particle VF (Figure 10). A similar GSA for permittivity is shown in the Supporting
Information (Figure S2), demonstrating the influence of the microstructural parameters
and their frequency dependence.
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Figure 10. GSA of breakdown strength with respect to design variables, both quantitative and
qualitative.

These results on the significant influence and interaction of these parameters partially
confirm our hypothesis of the existence of a microstructural parameter space that can result
in improved SED while mitigating increases in loss. Combinations of VF, AR, and extrinsic
layers are consistently influential at low and high frequencies, whereas orientation, intrinsic
interface, and particle dispersion play a smaller role that varies with frequency.

3.2. Nanodielectrics Design Optimization

Armed with the promising sensitivity analysis, we built our LVGP machine learning
model based on the 100 sample designs from the base DOE for two frequencies (60 Hz
and 1000 Hz) and initiated Bayesian optimization to identify the nanodielectric designs
that optimize the single-objective multi-criteria defined in Section Bayesian Optimization.
Figures 11 and 12 show the top five (5) designs (red) obtained from BO in a sub-space
of three out of six optimized properties against the base DOE (black) and the indirectly
optimized Pareto front (light green) designs from BO for the operating frequencies 60 Hz
and 1000 Hz, respectively. Additionally, we have visualized the microstructure of each of
those top five designs and listed their design variable values.

We observed that these designs are dominated by high VF (maximum of the range
allowed is 4), high AR (maximum of the range is 6), ferrocene as an extrinsic interface,
and a non-lossy intrinsic interface layer. Furthermore, we see a comparable emphasis
between isotropic and anisotropic structures (OV) as well as low and high dispersion (D).
The reason behind high VF design choices is that the levels of volume fractions used in
these systems are still well below particle percolation network threshold that can lead
to connected network between particles leading to any leakage currents and resulting
losses [1,49].

To understand what is driving the choice of AR, extrinsic and intrinsic values, we
looked at the entire Pareto front. Figure 13 shows all Pareto points designs in SED com-
ponents space and loss components space, with coloring to denote AR. We see that the
low-loss corner of this space is predominantly populated by combinations of moderate AR
(especially around low loss in the Z direction) with ANL and occasionally with RNL. On
the other hand, in SED space, the high values corner is packed with high AR combined
with ferrocene and few with thiophene extrinsic interfaces. Thus, we infer that the choice
of the intrinsic layer is driven by loss minimization whereas the choice of AR and extrinsic
layer is driven by SED maximization.
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Next, to analyze choices of OV and dispersion, we looked at the SED and loss in all
three directions for the top designs from Figures 11 and 12 listed in Tables 5 and 6. It is
apparent that to maximize total SED, the model either tries to increase SED in one direction
(here, Z-direction) significantly or to combine moderate increase in SED in all directions.
Combination of high alignment (anisotropy, low OV)) and high dispersion (D) results in
high SED in the direction of alignment (z-direction), as seen in design 2 at 60 Hz and design
4 at 1000 Hz. On the other hand, combinations of isotropy (high OV) and high dispersion
produces a moderate balance of SED in all three directions, as witnessed in design 4 for
60 Hz and design 3 for 1000 Hz.

Table 5. Loss and SED components in x, y, and z directions for top 5 designs (visualized in Figure 11)
at 60 Hz.

Top Designs/
Properties Loss_x Loss_y Loss_z SED_x

(
×102) SED_y

(
×102) SED_z

(
×102)

1 0.068 0.041 0.309 2976 2411 5060

2 0.038 0.035 0.943 2364 2325 7709

3 0.108 0.074 0.381 2921 2709 5276

4 0.194 0.090 0.460 3638 2854 5459

5 0.117 0.104 0.319 3043 2941 4952
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Table 6. Loss and SED components in x, y and z directions for top 5 (visualized in Figure 12) at
1000 Hz.

Top Designs/
Properties Loss_x Loss_y Loss_z SED_x

(
×102) SED_y

(
×102) SED_z

(
×102)

1 0.055 0.033 0.300 2759 2432 4679

2 0.071 0.062 0.073 2880 2882 2931

3 0.179 0.074 0.376 3512 2885 5150

4 0.030 0.032 0.774 2316 2341 7238

5 0.107 0.077 0.153 3272 2828 3590

It is determined that the above changes in SED values across shown designs can be
attributed to changes in permittivity as the extrinsic interface choice is identical across all
the designs. Extrinsic interface choice predominantly drives changes in breakdown strength
as seen in the sensitivity analysis of Section 3.1, Figure 10. The enhancement in permittivity
with higher particle alignment is attributed to the interaction between field concentrations
around individual particles which reduces as the particles cluster (e.g., design 1 vs. 4 at
1000 Hz). Additionally, if the particles are dispersed isotropically (high OV), the properties
are isotropic. Relative increases or decreases in loss are interlinked with these changes in
permittivity due to mechanistic coupling between permittivity and loss.

Lastly, we observe that lower losses among these designs are attained by either re-
ducing the above-explained interactions through lower dispersion (design 1 at 60 Hz) or
diffusing those interactions in other directions through isotropy (design 5 at 1000 Hz).
Design 2 at 1000 Hz has relatively lower losses in all three directions. However, it could do
so by choosing smaller AR and at the cost of reduced total stored energy density (through
reduced permittivity) compared to other designs.

4. Discussion

We hypothesized that there exists a parameter space that combines moderately high
nanoparticle aspect ratios, extrinsic carrier trapping functionalization, and intrinsic inter-
face characteristics that can enable increasing breakdown strength and dielectric constant
simultaneously and minimize increases in loss. For this, we simulated a high dimensional
mixed variable base DoE of size 100 using multiscale physics-based property computation.
Using this base DoE, we cast the design of polymer nanodielectrics for capacitive energy
storage as a mixed-variable, multi-objective design problem and identify the optimized
designs between two fundamental capacitor device properties: Dielectric Loss and Stored
Energy Density. We integrated a Latent Variable Gaussian Process machine learning model
along with Bayesian optimization to approach the design challenge at hand. Finally, we
implemented a mixed-variable metamodel-based global sensitivity analysis to gain and
extract physical insights into the collective relation between design variables and output
properties of base DoE. We further used this insight to understand and assess optimized
design choices that emerged in the process.

The use of physics-based computational and machine learning-based optimization
algorithms helps explore this design space at a much quicker pace compared to experi-
mental design. Our design framework was able to identify promising dielectric properties
that contribute to enlarging property space between two conflicting properties. We found
through the design choices made by our metamodel, that a modest aspect ratio combined
with deeper surface trap densities and a non-lossy intrinsic interface layer can achieve
simultaneous increases in nanocomposite breakdown strength and dielectric constant while
limiting increases in loss. Here, among the extrinsic layer choices, ferrocene, with deeper
traps, shows the highest improvement in breakdown strength. Increases in simulated
effective nanocomposite permittivity is due to particle aspect ratio and additionally due
to interfacial polarization introduced by charge activity (modelled as conductivity-based
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loss component) of extrinsic layer. However, both strategies increase loss substantially.
Our optimal solutions tried to keep losses low by choosing a non-lossy intrinsic interface.
The design process also demonstrated that the interplay between particle alignment and
dispersion can yield optimal solutions with any combination of extreme values of each
descriptor through field concentration interactions. As seen in the past literature [9,50],
losses go up quickly as one employs means of increasing permittivity; however, some of
our design choices were able to keep the losses around 0.1. In our opinion, this is a key
design variable that has significant potential for further development by designing an
intrinsic layer to drive losses down even further.

Furthermore, we conclude that the simulated property trends are consistent with the
collective understanding of polymer nanodielectrics systems based upon past experimental
observations and multiscale physics such as polarization phenomena and electron carrier
hopping. The learned surrogate model predictions match well with the explicit DOE
simulations which are rooted in the physics of dielectric processes. A well-formed Pareto
front advanced towards the high stored energy density and low loss with efficient sampling
iterations. These observations verify the quality of the metamodel. The GSA finding
indicated interactions within the design variables and helped consolidate the hypothesis of
the existence of niche design space and validated our analysis of the interaction between
dispersion and degree of particle alignment.

However, this discussion would be incomplete without acknowledging some of the
limitations of the simulation methods. In the permittivity and loss model, the properties of
each interface layer are modelled as averages; specifically, the assumed conductivity of the
extrinsic layer is a bulk-level property value. Our model captures interfacial polarization
induced by charge transport via (1) the conductivity-based loss component (∈′′ ) for particles
and the extrinsic interface and (2) the mobility characteristics for the intrinsic interfacial
layer and the polymer which are modulated by frequency. Previous studies that have tried
to analyze and provide insight into interfacial polarization underline the importance of
local mobility [14,51]. It is important to differentiate between backbone mobility and polar
side group mobility [17,52,53]. For modelling effects of interfacial polarization via charge
transport simulation more accurately, it will be necessary to go beyond current dielectric
spectrum measurements which are averaged over the bulk. The same is true for modelling
charge transport through the intrinsic layer and is equally crucial as the intrinsic layer
is a significant part of the total phase composition. While the simulation results can be
improved, the data analysis and design approach presented in this work are generally
applicable to a wide range of nanocomposite and other materials designs where categorical
and continuous design variables co-exist.
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Appendix A. Latent Variable Gaussian Process (LVGP) Modeling

Given a mixed-variable design space with w =
[
xT , tT]T , where x =

[
x1, x2, . . . , xq

]T ∈
Rq are quantitative design variables and t = [t1, t2, . . . , tm]

T are qualitative design variables.
Each qualitative design variable tj has lj design options (levels), i.e., tj ∈

{
1, 2, . . . , lj

}
for j = 1, 2, . . . m. For real physical models, there are quantitative variables v

(
tj
)
=[

v1
(
tj
)
, v2
(
tj
)

. . . , vn
(
tj
)]
∈ Rn underlying each qualitative variable, which could be ex-

tremely high-dimensional. The key idea of LVGP is to learn a low-dimensional latent
space to approximate the original underlying qualitative space via statistical inference.
Although the dimensions of the latent variable vector z ∈ Rk can be freely chosen, a
two-dimensional (2D) latent vector, k = 2, is usually sufficient in most engineering designs,
which is also adopted in this study. Thus, each level of a qualitative variable tj is repre-

sented by a 2D latent vector z
(
tj
)
=
[
zj,1 , zj,2

]T . The transformed design space becomes

h =
[

xT , z(t)T
]
∈ R(q+m×2), where z(t) =

[
z1,1, z1,2, . . . , zj,1, zj,2, . . . , zm,1, zm,2

]T .
Now, consider a single response GP model with a prior constant mean µ to describe

the mean response at any given point in the design space h. A zero-mean Gaussian Process
is used to capture the variance of the response, described by a covariance function K(h, h′).
The covariance function K(h, h′) = σ2 · c(h, h′) describes the relationship or the correlation
of responses at any pairs of input points h and h′, where σ2 represents the prior variance of
the GP model and c(h, h′) is the correlation function. LVGP extends the commonly used
Gaussian correlation function to include latent variables,

c
(
h, h′

)
= exp

(
q

∑
i=1

φi
(
xi − x′i

)2 −
m

∑
j=1
‖zj,1 − z′j,1‖2

2 + ‖zj,2 − z′j,2‖2
2

)

where φi is a scaling parameter that will be estimated for each quantitative variable xi.
The mapping from qualitative variables to 2D latent variables is scaled so that the scaling
parameters of latent variables z(t) is a unity vector, are set to be 1 as they will be estimated
as hyperparameters. The rationale behind this correlation function is that points closed in
the design space h should also exhibit similar output patterns. For a given design space
with n number of points, the parameters, µ, σ, and φ, along with the 2D mapped latent
variables, z(t), are estimated through Maximum Likelihood Estimation (MLE), i.e., finding
parameters to maximize the log-likelihood function,

l(µ, σ, φ, z) = −n
2

ln
(

σ2
)
− 1

2
ln|c(z, φ)| − 1

2σ2 (y− µ1)Tc(z, φ)−1 (y− µ1),

where C is the n× n correlation matrix with Cij = c
(
hi, hj) for i, j = 1, 2, 3, . . . , n, 1 is a

vector of ones with dimensions of n× 1, and y = [y1, y2, . . . , yn]
T is the observed response

vector. Readers interested further in LVGP are referred to the original paper [43].

References
1. Zhang, G.; Li, Q.; Allahyarov, E.; Li, Y.; Zhu, L. Challenges and Opportunities of Polymer Nanodielectrics for Capacitive Energy

Storage. ACS Appl. Mater. Interfaces 2021, 13, 37939–37960. [CrossRef] [PubMed]
2. Wang, S.; Huang, X.; Wang, G.; Wang, Y.; He, J.; Jiang, P. Increasing the Energy Efficiency and Breakdown Strength of High-Energy-

Density Polymer Nanocomposites by Engineering the Ba0.7Sr0.3TiO3 Nanowire Surface via Reversible Addition–Fragmentation
Chain Transfer Polymerization. J. Phys. Chem. C 2015, 119, 25307–25318. [CrossRef]

https://doi.org/10.1021/acsami.1c04991
https://www.ncbi.nlm.nih.gov/pubmed/34370438
https://doi.org/10.1021/acs.jpcc.5b09066


Nanomaterials 2023, 13, 2394 22 of 24

3. Li, Q.; Xue, Q.; Hao, L.; Gao, X.; Zheng, Q. Large dielectric constant of the chemically functionalized carbon nanotube/polymer
composites. Compos. Sci. Technol. 2008, 68, 2290–2296. [CrossRef]

4. Zhang, X.; Liang, G.; Chang, J.; Gu, A.; Yuan, L.; Zhang, W. The origin of the electric and dielectric behavior of expanded
graphite–carbon nanotube/cyanate ester composites with very high dielectric constant and low dielectric loss. Carbon 2012, 50,
4995–5007. [CrossRef]

5. Ning, N.; Bai, X.; Yang, D.; Zhang, L.; Lu, Y.; Nishi, T.; Tian, M. Dramatically improved dielectric properties of polymer composites
by controlling the alignment of carbon nanotubes in matrix. RSC Adv. 2014, 4, 4543–4551. [CrossRef]

6. Grabowski, C.A.; Fillery, S.P.; Koerner, H.; Tchoul, M.; Drummy, L.; Beier, C.W.; Brutchey, R.L.; Durstock, M.F.; Vaia, R.A. Dielectric
performance of high permitivity nanocomposites: Impact of polystyrene grafting on BaTiO3 and TiO2. Nanocomposites 2016, 2,
117–124. [CrossRef]

7. Kim, P.; Jones, S.C.; Hotchkiss, P.J.; Haddock, J.N.; Kippelen, B.; Marder, S.R.; Perry, J.W. Phosphonic Acid-Modified Barium
Titanate Polymer Nanocomposites with High Permittivity and Dielectric Strength. Adv. Mater. 2007, 19, 1001–1005. [CrossRef]

8. Siddabattuni, S.; Schuman, T.P.; Dogan, F. Dielectric Properties of Polymer–Particle Nanocomposites Influenced by Electronic
Nature of Filler Surfaces. ACS Appl. Mater. Interfaces 2013, 5, 1917–1927. [CrossRef]

9. Zhang, G.; Brannum, D.; Dong, D.; Tang, L.; Allahyarov, E.; Tang, S.; Kodweis, K.; Lee, J.-K.; Zhu, L. Interfacial Polarization-
Induced Loss Mechanisms in Polypropylene/BaTiO3 Nanocomposite Dielectrics. Chem. Mater. 2016, 28, 4646–4660. [CrossRef]

10. Zdorovets, M.V.; Kozlovskiy, A.L.; Shlimas, D.I.; Borgekov, D.B. Phase transformations in FeCo—Fe2CoO4/Co3O4-spinel
nanostructures as a result of thermal annealing and their practical application. J. Mater. Sci. Mater. Electron. 2021, 32, 16694–16705.
[CrossRef]

11. Trukhanov, A.V.; Trukhanov, S.V.; Panina, L.V.; Kostishyn, V.G.; Chitanov, D.N.; Kazakevich, I.y.S.; Trukhanov, A.V.; Turchenko,
V.A.; Salem, M.M. Strong corelation between magnetic and electrical subsystems in diamagnetically substituted hexaferrites
ceramics. Ceram. Int. 2017, 43, 5635–5641. [CrossRef]

12. Sanida, A.; Stavropoulos, S.G.; Speliotis, T.; Psarras, G.C. Evaluating the multifunctional performance of polymer matrix
nanodielectrics incorporating magnetic nanoparticles: A comparative study. Polymer 2021, 236, 124311. [CrossRef]

13. Zhou, W.; Cao, G.; Yuan, M.; Zhong, S.; Wang, Y.; Liu, X.; Cao, D.; Peng, W.; Liu, J.; Wang, G.; et al. Core-Shell Engineering
of Conductive Fillers toward Enhanced Dielectric Properties: A Universal Polarization Mechanism in Polymer Conductor
Composites. Adv. Mater. 2023, 35, e2207829. [CrossRef] [PubMed]

14. Zhou, W.; Li, T.; Yuan, M.; Li, B.; Zhong, S.; Li, Z.; Liu, X.; Zhou, J.; Wang, Y.; Cai, H.; et al. Decoupling of inter-particle polarization
and intra-particle polarization in core-shell structured nanocomposites towards improved dielectric performance. Energy Storage
Mater. 2021, 42, 1–11. [CrossRef]

15. Schadler, L.S. 6.3 The Elusive Interphase/Interface in Polymer Nanocomposites. In Comprehensive Composite Materials II; Beaumont,
P.W.R., Zweben, C.H., Eds.; Elsevier: Oxford, UK, 2018; pp. 52–72.

16. Gupta, P.; Schadler, L.S.; Sundararaman, R. Dielectric properties of polymer nanocomposite interphases from electrostatic force
microscopy using machine learning. Mater. Charact. 2021, 173, 110909. [CrossRef]

17. Zhang, M.; Askar, S.; Torkelson, J.M.; Brinson, L.C. Stiffness Gradients in Glassy Polymer Model Nanocomposites: Comparisons
of Quantitative Characterization by Fluorescence Spectroscopy and Atomic Force Microscopy. Macromolecules 2017, 50, 5447–5458.
[CrossRef]

18. Qiao, R.; Catherine Brinson, L. Simulation of interphase percolation and gradients in polymer nanocomposites. Compos. Sci.
Technol. 2009, 69, 491–499. [CrossRef]

19. Qiao, R.; Deng, H.; Putz, K.W.; Brinson, L.C. Effect of particle agglomeration and interphase on the glass transition temperature
of polymer nanocomposites. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 740–748. [CrossRef]

20. Huang, Y.; Krentz, T.M.; Nelson, J.K.; Schadler, L.S.; Li, Y.; Zhao, H.; Brinson, L.C.; Bell, M.; Benicewicz, B.; Wu, K.; et al. Prediction
of interface dielectric relaxations in bimodal brush functionalized epoxy nanodielectrics by finite element analysis method. In
Proceedings of the 2014 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Des Moines, IA, USA, 19–22
October 2014; pp. 748–751.

21. Li, X.; Zhang, M.; Wang, Y.; Zhang, M.; Prasad, A.; Chen, W.; Schadler, L.; Brinson, L.C. Rethinking interphase representations for
modeling viscoelastic properties for polymer nanocomposites. Materialia 2019, 6, 100277. [CrossRef]

22. Wang, Y.; Zhang, Y.; Zhao, H.; Li, X.; Huang, Y.; Schadler, L.S.; Chen, W.; Brinson, L.C. Identifying interphase properties in
polymer nanocomposites using adaptive optimization. Compos. Sci. Technol. 2018, 162, 146–155. [CrossRef]

23. Zhao, H.; Li, Y.; Brinson, L.C.; Huang, Y.; Krentz, T.M.; Schadler, L.S.; Bell, M.; Benicewicz, B. Dielectric spectroscopy analysis
using viscoelasticity-inspired relaxation theory with finite element modeling. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3776–3785.
[CrossRef]

24. Natarajan, B.; Li, Y.; Deng, H.; Brinson, L.C.; Schadler, L.S. Effect of Interfacial Energetics on Dispersion and Glass Transition
Temperature in Polymer Nanocomposites. Macromolecules 2013, 46, 2833–2841. [CrossRef]

25. Virtanen, S.; Krentz, T.M.; Nelson, J.K.; Schadler, L.S.; Bell, M.; Benicewicz, B.; Hillborg, H.; Zhao, S. Dielectric breakdown strength
of epoxy bimodal-polymer-brush-grafted core functionalized silica nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2014, 21,
563–570. [CrossRef]

26. Prasad, A.S.; Wang, Y.; Li, X.; Iyer, A.; Chen, W.; Brinson, L.C.; Schadler, L.S. Investigating the effect of surface modification on the
dispersion process of polymer nanocomposites. Nanocomposites 2020, 6, 111–124. [CrossRef]

https://doi.org/10.1016/j.compscitech.2008.04.019
https://doi.org/10.1016/j.carbon.2012.06.027
https://doi.org/10.1039/C3RA45769A
https://doi.org/10.1080/20550324.2016.1223913
https://doi.org/10.1002/adma.200602422
https://doi.org/10.1021/am3030239
https://doi.org/10.1021/acs.chemmater.6b01383
https://doi.org/10.1007/s10854-021-06226-5
https://doi.org/10.1016/j.ceramint.2017.01.096
https://doi.org/10.1016/j.polymer.2021.124311
https://doi.org/10.1002/adma.202207829
https://www.ncbi.nlm.nih.gov/pubmed/36349800
https://doi.org/10.1016/j.ensm.2021.07.014
https://doi.org/10.1016/j.matchar.2021.110909
https://doi.org/10.1021/acs.macromol.7b00917
https://doi.org/10.1016/j.compscitech.2008.11.022
https://doi.org/10.1002/polb.22236
https://doi.org/10.1016/j.mtla.2019.100277
https://doi.org/10.1016/j.compscitech.2018.04.017
https://doi.org/10.1109/TDEI.2017.006563
https://doi.org/10.1021/ma302281b
https://doi.org/10.1109/TDEI.2014.004415
https://doi.org/10.1080/20550324.2020.1809250


Nanomaterials 2023, 13, 2394 23 of 24

27. Bell, M.; Krentz, T.; Keith Nelson, J.; Schadler, L.; Wu, K.; Breneman, C.; Zhao, S.; Hillborg, H.; Benicewicz, B. Investigation
of dielectric breakdown in silica-epoxy nanocomposites using designed interfaces. J. Colloid Interface Sci. 2017, 495, 130–139.
[CrossRef] [PubMed]

28. Huang, Y.; Wu, K.; Bell, M.; Oakes, A.; Ratcliff, T.; Lanzillo, N.A.; Breneman, C.; Benicewicz, B.C.; Schadler, L.S. The effects of
nanoparticles and organic additives with controlled dispersion on dielectric properties of polymers: Charge trapping and impact
excitation. J. Appl. Phys. 2016, 120, 055102. [CrossRef]

29. Krentz, T.M.; Huang, Y.; Nelson, J.K.; Schadler, L.S.; Bell, M.; Benicewicz, B.; Zhao, S.; Hillborg, H. Enhanced charge trapping in
bimodal brush functionalized silica-epoxy nanocomposite dielectrics. In Proceedings of the 2014 IEEE Conference on Electrical
Insulation and Dielectric Phenomena (CEIDP), Des Moines, IA, USA, 19–22 October 2014; pp. 643–646.

30. Krentz, T.; Khani, M.M.; Bell, M.; Benicewicz, B.C.; Nelson, J.K.; Zhao, S.; Hillborg, H.; Schadler, L.S. Morphologically dependent
alternating-current and direct-current breakdown strength in silica–polypropylene nanocomposites. J. Appl. Polym. Sci. 2017, 134.
[CrossRef]

31. Roy, M.; Nelson, J.K.; MacCrone, R.K.; Schadler, L.S. Candidate mechanisms controlling the electrical characteristics of silica/XLPE
nanodielectrics. J. Mater. Sci. 2007, 42, 3789–3799. [CrossRef]

32. Chen, W.; Schadler, L.; Brinson, C.; Wang, Y.; Zhang, Y.; Prasad, A.; Li, X.; Iyer, A. Materials Informatics and Data System for
Polymer Nanocomposites Analysis and Design. In Handbook on Big Data and Machine Learning in the Physical Sciences; World
Scientific Publishing: Hackensack, NJ, USA, 2020; pp. 65–125.

33. Wang, Y.; Zhang, M.; Lin, A.; Iyer, A.; Prasad, A.S.; Li, X.; Zhang, Y.; Schadler, L.S.; Chen, W.; Brinson, L.C. Mining structure–
property relationships in polymer nanocomposites using data driven finite element analysis and multi-task convolutional neural
networks. Mol. Syst. Des. Eng. 2020, 5, 962–975. [CrossRef]

34. Schadler, L.S.; Chen, W.; Brinson, L.C.; Sundararaman, R.; Gupta, P.; Prabhune, P.; Iyer, A.; Wang, Y.; Shandilya, A. A perspective
on the data-driven design of polymer nanodielectrics. J. Phys. D Appl. Phys. 2020, 53, 333001. [CrossRef]

35. Iyer, A.; Zhang, Y.; Prasad, A.; Gupta, P.; Tao, S.; Wang, Y.; Prabhune, P.; Schadler, L.S.; Brinson, L.C.; Chen, W. Data centric
nanocomposites design via mixed-variable Bayesian optimization. Mol. Syst. Des. Eng. 2020, 5, 1376–1390. [CrossRef]

36. Schadler, L.S.; Chen, W.; Brinson, L.C.; Sundararaman, R.; Prabhune, P.; Iyer, A. (Invited) Combining Machine Learning, DFT,
EFM, and Modeling to Design Nanodielectric Behavior. ECS Trans. 2022, 108, 51. [CrossRef]

37. Ba, S.; Myers, W.R.; Brenneman, W.A. Optimal Sliced Latin Hypercube Designs. Technometrics 2015, 57, 479–487. [CrossRef]
38. Wang, W.; Wang, J.; Kim, M.-S. An algebraic condition for the separation of two ellipsoids. Comput. Aided Geom. Des. 2001, 18,

531–539. [CrossRef]
39. Shandilya, A.; Schadler, L.S.; Sundararaman, R. First-principles identification of localized trap states in polymer nanocomposite

interfaces. J. Mater. Res. 2020, 35, 931–939. [CrossRef]
40. Sundararaman, R.; Letchworth-Weaver, K.; Schwarz, K.A.; Gunceler, D.; Ozhabes, Y.; Arias, T.A. JDFTx: Software for joint

density-functional theory. SoftwareX 2017, 6, 278–284. [CrossRef] [PubMed]
41. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[CrossRef]
42. Garrity, K.F.; Bennett, J.W.; Rabe, K.M.; Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci.

2014, 81, 446–452. [CrossRef]
43. Zhang, Y.; Tao, S.; Chen, W.; Apley, D.W. A Latent Variable Approach to Gaussian Process Modeling with Qualitative and

Quantitative Factors. Technometrics 2020, 62, 291–302. [CrossRef]
44. Zhang, Y.; Apley, D.W.; Chen, W. Bayesian Optimization for Materials Design with Mixed Quantitative and Qualitative Variables.

Sci. Rep. 2020, 10, 4924. [CrossRef]
45. Wang, Y.; Iyer, A.; Chen, W.; Rondinelli, J.M. Featureless adaptive optimization accelerates functional electronic materials design.

Appl. Phys. Rev. 2020, 7, 041403. [CrossRef]
46. Comlek, Y.; Pham, T.D.; Snurr, R.; Chen, W. Rapid Design of Top-Performing Metal-Organic Frameworks with Qualitative

Representations of Building Blocks. arXiv 2023, arXiv:2302.09184.
47. Sobol′, I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul.

2001, 55, 271–280. [CrossRef]
48. Comlek, Y.; Wang, L.; Chen, W. Mixed-variable global sensitivity analysis with applications to data-driven combinatorial materials

design. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; Paper
Number: IDETC2023-110756; American Society of Mechanical Engineers: New York, NY, USA, 2023.

49. Yu, K.; Wang, H.; Zhou, Y.; Bai, Y.; Niu, Y. Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites
for energy storage applications. J. Appl. Phys. 2013, 113, 034105. [CrossRef]

50. Li, B.; Randall, C.A.; Manias, E. Polarization Mechanism Underlying Strongly Enhanced Dielectric Permittivity in Polymer
Composites with Conductive Fillers. J. Phys. Chem. C 2022, 126, 7596–7604. [CrossRef]

51. Carroll, B.; Cheng, S.; Sokolov, A.P. Analyzing the Interfacial Layer Properties in Polymer Nanocomposites by Broadband
Dielectric Spectroscopy. Macromolecules 2017, 50, 6149–6163. [CrossRef]

https://doi.org/10.1016/j.jcis.2017.02.001
https://www.ncbi.nlm.nih.gov/pubmed/28193511
https://doi.org/10.1063/1.4959771
https://doi.org/10.1002/app.44347
https://doi.org/10.1007/s10853-006-0413-0
https://doi.org/10.1039/D0ME00020E
https://doi.org/10.1088/1361-6463/ab8b01
https://doi.org/10.1039/D0ME00079E
https://doi.org/10.1149/10802.0051ecst
https://doi.org/10.1080/00401706.2014.957867
https://doi.org/10.1016/S0167-8396(01)00049-8
https://doi.org/10.1557/jmr.2020.18
https://doi.org/10.1016/j.softx.2017.10.006
https://www.ncbi.nlm.nih.gov/pubmed/29892692
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1016/j.commatsci.2013.08.053
https://doi.org/10.1080/00401706.2019.1638834
https://doi.org/10.1038/s41598-020-60652-9
https://doi.org/10.1063/5.0018811
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1063/1.4776740
https://doi.org/10.1021/acs.jpcc.2c01592
https://doi.org/10.1021/acs.macromol.7b00825


Nanomaterials 2023, 13, 2394 24 of 24

52. Holt, A.P.; Griffin, P.J.; Bocharova, V.; Agapov, A.L.; Imel, A.E.; Dadmun, M.D.; Sangoro, J.R.; Sokolov, A.P. Dynamics at the
Polymer/Nanoparticle Interface in Poly(2-vinylpyridine)/Silica Nanocomposites. Macromolecules 2014, 47, 1837–1843. [CrossRef]

53. Cheng, S.; Mirigian, S.; Carrillo, J.-M.Y.; Bocharova, V.; Sumpter, B.G.; Schweizer, K.S.; Sokolov, A.P. Revealing spatially
heterogeneous relaxation in a model nanocomposite. J. Chem. Phys. 2015, 143, 194704. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1021/ma5000317
https://doi.org/10.1063/1.4935595

	Introduction 
	Materials and Methods 
	The Mixed-Variable Nanodielectrics Design Space 
	The Design Framework 
	Design of Experiments 
	Material Generation 
	Property Evaluation: Physics-Based Simulation Methods 
	Metamodeling and Multi-Objective Optimization 
	Design Analysis 

	Global Sensitivity Analysis for the Mixed-Variable Design Space 

	Results 
	Initial Design of Experiments (DOE) 
	Nanodielectrics Design Optimization 

	Discussion 
	Appendix A
	References

