Construction of Porous Carbon Nanosheet/Cu2S Composites with Enhanced Potassium Storage
Abstract
:1. Introduction
2. Experiment
2.1. Material Preparation
2.2. Material Characterization
2.3. Electrochemical Measurement
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.C.; Zhao, J.; Chen, Y.; Zhu, K.; Ye, K.; Wang, Q.; Yan, J.; Cao, D.X.; Wang, G.L.; Miao, C.X. Molybdenum sulfide selenide ultrathin nanosheets anchored on carbon tubes for rapid-charging sodium/potassium-ion batteries. J. Colloid Interface Sci. 2022, 628, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.H.; Shen, Y.H.; Lv, F.; Zhang, W.Y.; Lin, F.X.; Zhang, W.S.; Wang, K.; Luo, H.; Wang, Q.; Yang, H.; et al. Ultrathin metallic NbS2 nanosheets with unusual intercalation mechanism for ultra-stable potassium-ion storage. Adv. Funct. Mater. 2022, 32, 2204495. [Google Scholar] [CrossRef]
- Yuan, J.J.; Gan, Y.F.; Xu, X.J.; Mu, M.Q.; He, H.S.; Li, X.K.; Zhang, X.K.; Liu, J. Construction of Fe7Se8@Carbon nanotubes with enhanced sodium/potassium storage. J. Colloid Interface Sci. 2022, 626, 355–363. [Google Scholar] [CrossRef]
- Wu, Y.H.; Zhang, Q.C.; Xu, Y.; Xu, R.; Li, L.; Li, Y.L.; Zhang, C.L.; Zhao, H.P.; Wang, S.; Kaiser, U.; et al. Enhanced potassium storage capability of two-dimensional transition-metal chalcogenides enabled by a collective strategy. ACS Appl. Mater. Interfaces 2021, 13, 18838–18848. [Google Scholar] [CrossRef]
- Lin, H.Z.; Liu, J.Y.; Li, M.L.; Chen, N.; Xuan, W.; Liu, L.; Yao, S.Y.; Du, F. Joint enhancement in the electrochemical reversibility and cycle lives for copper sulfide for sodium- and potassium-ion storage via selenium substitution. ACS Appl. Mater. Interfaces 2021, 13, 58763–58770. [Google Scholar] [CrossRef]
- Zheng, J.F.; Wu, Y.J.; Tong, Y.; Liu, X.; Sun, Y.J.; Li, H.Y.; Niu, L. High capacity and fast kinetics of potassium-ion batteries boosted by nitrogen-doped mesoporous carbon spheres. Nanomicro Lett. 2021, 13, 174. [Google Scholar] [CrossRef]
- Liu, J.D.Y.; Yu, X.; Bao, J.; Sun, C.-F.; Li, Y.F. Carbon supported tin sulfide anodes for potassium-ion batteries. J. Phys. Chem. Solids 2021, 153, 109992. [Google Scholar] [CrossRef]
- Yan, Z.H.; Huang, Z.Y.; Yao, Y.; Yang, X.X.; Li, H.X.; Xu, C.X.; Kuang, Y.F.; Zhou, H.H. Monodispersed Ni2P nanodots embedded in N, P co-doped porous carbon as super stable anode material for potassium-ion batteries. J. Alloys Compd. 2021, 858, 158203. [Google Scholar] [CrossRef]
- Cao, J.M.; Li, J.Z.; Li, D.D.; Yuan, Z.Y.; Zhang, Y.; Shulga, V.; Sun, Z.Q.; Han, W. Strongly coupled 2D transition metal chalcogenide-MXene-carbonaceous nanoribbon heterostructures with ultrafast ion transport for boosting sodium/potassium ions storage. Nanomicro Lett. 2021, 13, 113. [Google Scholar] [CrossRef]
- Chen, Y.X.; Shi, X.D.; Lu, B.G.; Zhou, J. Concave engineering of hollow carbon spheres toward advanced anode material for sodium/potassium-ion batteries. Adv. Energy Mater. 2022, 12, 2202851. [Google Scholar] [CrossRef]
- Fang, L.Z.; Xu, J.; Sun, S.; Lin, B.W.; Guo, Q.B.; Luo, D.; Xia, H. Few-layered tin sulfide nanosheets supported on reduced graphene oxide as a high-performance anode for potassium-ion batteries. Small 2019, 15, e1804806. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.J.; Liu, W.; Zhang, X.K.; Zhang, Y.H.; Yang, W.T.; Lai, W.D.; Li, X.K.; Zhang, J.J.; Li, X.F. MOF derived ZnSe–FeSe2/RGO nanocomposites with enhanced sodium/potassium storage. J. Power Sources 2020, 455, 227937. [Google Scholar] [CrossRef]
- Yuan, J.J.; Mu, M.Q.; Xu, X.J.; Gan, Y.F.; He, H.S.; Zhang, X.K.; Li, X.K.; Kuang, F.G.; Li, H.X.; Liu, J. Three-dimensional porous FeS@N doped carbon nanosheets for high-rate and high-stable sodium/potassium storage. Compos. B Eng. 2022, 247, 110300. [Google Scholar] [CrossRef]
- Jian, Z.L.; Luo, W.; Ji, X.L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569. [Google Scholar] [CrossRef] [PubMed]
- An, Y.L.; Fei, H.F.; Zeng, G.F.; Ci, L.J.; Xi, B.J.; Xiong, S.L.; Feng, J.K. Commercial expanded graphite as a low–cost, long-cycling life anode for potassium–ion batteries with conventional carbonate electrolyte. J. Power Sources 2018, 378, 66–72. [Google Scholar] [CrossRef]
- Bie, X.F.; Kubota, K.; Hosaka, T.; Chihara, K.; Komaba, S. A novel k-ion battery: Hexacyanoferrate(ii)/graphite cell. J. Mater. Chem. A 2017, 5, 4325–4330. [Google Scholar] [CrossRef]
- Komaba, S.; Hasegawa, T.; Dahbi, M.; Kubota, K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 2015, 60, 172–175. [Google Scholar] [CrossRef]
- Chen, M.; Wang, W.; Liang, X.; Gong, S.; Liu, J.; Wang, Q.; Guo, S.; Yang, H. Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1800171. [Google Scholar] [CrossRef]
- Tao, L.; Liu, L.; Chang, R.F.; He, H.B.; Zhao, P.; Liu, J. Structural and interface design of hierarchical porous carbon derived from soybeans as anode materials for potassium-ion batteries. J. Power Sources 2020, 463, 228172. [Google Scholar] [CrossRef]
- Tian, S.; Guan, D.C.; Lu, J.; Zhang, Y.; Liu, T.Z.; Zhao, X.Y.; Yang, C.H.; Nan, J.M. Synthesis of the electrochemically stable sulfur-doped bamboo charcoal as the anode material of potassium-ion batteries. J. Power Sources 2020, 448, 227572. [Google Scholar] [CrossRef]
- Gong, S.; Wang, Q. Boron-doped graphene as a promising anode material for potassium-ion batteries with a large capacity, high rate performance, and good cycling stability. J. Phys. Chem. C 2017, 121, 24418–24424. [Google Scholar] [CrossRef]
- Ju, J.H.; Xu, A.D.; Song, Y.; Sun, H.; Fu, L.; Yan, Y.R.; Wu, S.P. FeS2 Nanoparticles encapsulated in N/S-doped hollow carbon spheres as anode materials for potassium-ion batteries. ACS Appl. Nano Mater. 2021, 4, 4863–4871. [Google Scholar] [CrossRef]
- Gao, H.; Zhou, T.F.; Zheng, Y.; Zhang, Q.; Liu, Y.Q.; Chen, J.; Liu, H.; Guo, Z.P. CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702634. [Google Scholar] [CrossRef]
- Wang, L.Q.; Han, Z.L.; Zhao, Q.Q.; Yao, X.Y.; Zhu, Y.Q.; Ma, X.L.; Wu, S.D.; Cao, C.B. Engineering yolk–shell P-doped NiS2/C spheres via a MOF-template for high-performance sodium-ion batteries. J. Mater. Chem. A 2020, 8, 8612–8619. [Google Scholar] [CrossRef]
- Wang, L.C.; Li, D.; Li, Q.Q.; Pan, Q.C.; Zhang, M.; Zhang, L.X.; Zheng, F.H.; Huang, Y.G.; Wang, H.Q.; Li, Q.Y. Ultrafine ZnS nanoparticles embedded in N-doped carbon as advanced anode materials for lithium ion batteries and sodium ion batteries. J. Alloys Compd. 2022, 910, 164783. [Google Scholar] [CrossRef]
- Cai, J.Y.; Reinhart, B.; Eng, P.; Liu, Y.Q.; Sun, C.-J.; Zhou, H.; Ren, Y.; Meng, X.B. Nitrogen-doped graphene-wrapped Cu2S as a superior anode in sodium-ion batteries. Carbon 2020, 170, 430–438. [Google Scholar] [CrossRef]
- Fang, Y.J.; Yu, X.Y.; Lou, X.W. Bullet-like Cu9S5 hollow particles coated with nitrogen-doped carbon for sodium-ion batteries. Angew. Chem. Int. Ed. 2019, 58, 7744–7748. [Google Scholar] [CrossRef]
- Huang, H.W.; Etogo, C.A.; Chen, C.; Bi, R.; Zhang, L. Realizing fast diffusion kinetics based on three-dimensional ordered macroporous Cu9S5@C for potassium-ion batteries. ACS Appl. Mater. 2021, 13, 36982–36991. [Google Scholar] [CrossRef]
- Jia, X.X.; Zhang, E.J.; Yu, X.Z.; Lu, B.G. Facile synthesis of copper sulfide nanosheet@graphene oxide for the anode of potassium-ion batteries. Energy Technol. 2019, 8, 1900987. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, B.H.; Qin, H.Z.; Cao, L.; Ou, X. Highly active and stable Cu9S5-MoS2 heterostructures nanocages enabled by dual-functional Cu electrocatalyst with enhanced potassium storage. J. Mater. Sci. Technol. 2023, 143, 107–116. [Google Scholar] [CrossRef]
- Cao, K.Z.; Zheng, R.T.; Wang, S.D.; Shu, J.; Liu, X.G.; Liu, H.Q.; Huang, K.J.; Jing, Q.S.; Jiao, L.F. Boosting coulombic efficiency of conversion-reaction anodes for potassium-ion batteries via confinement effect. Adv. Funct Mater. 2020, 30, 2007712. [Google Scholar] [CrossRef]
- Deng, J.H.; Huang, X.G.; Wang, M.; Xu, M.W. Facile synthesis of Cu2S nanoplates as anode for potassium ion batteries. ACS Mater. Lett. 2020, 262, 127048. [Google Scholar] [CrossRef]
- Kim, N.R.; Choi, J.; Yoon, H.J.; Lee, M.E.; Son, S.U.; Jin, H.-J.; Yun, Y.S. Conversion reaction of copper sulfide based nanohybrids for sodium-ion batteries. ACS Sustain. Chem. Eng. 2017, 5, 9802–9808. [Google Scholar] [CrossRef]
- Kapuria, N.; Imtiaz, S.; Sankaran, A.; Geaney, H.; Kennedy, T.; Singh, S.; Ryan, K.M. Multipod Bi(Cu2−xS)n nanocrystals formed by dynamic cation-ligand complexation and their use as anodes for potassium-ion batteries. Nano Lett. 2022, 22, 10120–10127. [Google Scholar] [CrossRef]
- Zhao, D.; Yin, M.M.; Feng, C.H.; Zhan, K.; Jiao, Q.Z.; Li, H.S.; Zhao, Y. Rational design of n-doped CuS@C nanowires toward high-performance half/full sodium-ion batteries. ACS Sustain. Chem. Eng. 2020, 8, 11317–11327. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, H.Y.; Zhang, Q.L.; Li, T.Q.; Li, Y.; Lin, N.; Qian, Y.T. Carbon nanotube-stabilized Co9S8 dual-shell hollow spheres for high-performance K-ion storage. Chem. Commun. 2019, 55, 1406–1409. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.J.; Chen, J.T.; Lei, S.L.; Guo, R.S.; Li, H.X.; Shi, S.Q.; Yan, X.B. Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors. Adv. Energy Mater. 2017, 8, 1702409. [Google Scholar] [CrossRef]
- Yan, Z.H.; Liu, J.D.; Wei, H.; Yang, X.X.; Yao, Y.; Huang, Z.Y.; Li, H.X.; Kuang, Y.F.; Ma, J.M.; Zhou, H.H. Embedding FeS nanodots into carbon nanosheets to improve the electrochemical performance of anode in potassium ion batteries. J. Colloid Interface Sci. 2021, 593, 408–416. [Google Scholar] [CrossRef]
- Han, J.Q.; Ren, J. Optimization of cycling performance of hollow Cu2S@NC cubes anode for lithium-ion batteries in ether-based electrolyte. J. Mater. Sci. 2021, 56, 19119–19127. [Google Scholar] [CrossRef]
- Yu, B.; Ji, Y.X.; Hu, X.; Liu, Y.J.; Yuan, J.; Lei, S.; Zhong, G.B.; Weng, Z.X.; Zhan, H.B.; Wen, Z.H. Heterostructured Cu2S@ZnS/C composite with fast interfacial reaction kinetics for high-performance 3D-printed sodium-ion batteries. Chem. Eng. J. 2022, 430, 132993. [Google Scholar] [CrossRef]
- Peng, Q.K.; Zhang, S.P.; Yang, H.; Sheng, B.B.; Xu, R.; Wang, Q.S.; Yu, Y. Boosting potassium storage performance of the Cu2S anode via morphology engineering and electrolyte chemistry. ACS Nano 2020, 14, 6024–6033. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.W.; Ren, M.M.; Xu, H.; Liu, W.L.; Hei, J.P.; Su, L.W.; Wang, L.Z. Cu2S@ N, S dual-doped carbon matrix hybrid as superior anode materials for lithium/sodium ion batteries. ChemElectroChem 2018, 5, 2135–2141. [Google Scholar] [CrossRef]
- Liu, X.Q.; Li, X.Y.; Lu, X.L.; He, X.; Jiang, N.; Huo, Y.; Xu, C.G.; Lin, D.M. Metal-organic framework derived in-situ nitrogen-doped carbon-encapsulated CuS nanoparticles as high-rate and long-life anode for sodium ion batteries. J. Alloys Compd. 2021, 854, 157132. [Google Scholar] [CrossRef]
- Shi, N.X.; Xi, B.J.; Huang, M.; Ma, X.J.; Li, H.B.; Feng, J.K.; Xiong, S.L. Hierarchical octahedra constructed by Cu2S/MoS2 subset carbon framework with enhanced sodium storage. Small 2020, 16, e2000952. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, M.; Li, B.; Yu, J.; Ding, J.; He, H.; Li, X.; Mou, J.; Yuan, J.; Liu, J. Construction of Porous Carbon Nanosheet/Cu2S Composites with Enhanced Potassium Storage. Nanomaterials 2023, 13, 2415. https://doi.org/10.3390/nano13172415
Mu M, Li B, Yu J, Ding J, He H, Li X, Mou J, Yuan J, Liu J. Construction of Porous Carbon Nanosheet/Cu2S Composites with Enhanced Potassium Storage. Nanomaterials. 2023; 13(17):2415. https://doi.org/10.3390/nano13172415
Chicago/Turabian StyleMu, Meiqi, Bin Li, Jing Yu, Jie Ding, Haishan He, Xiaokang Li, Jirong Mou, Jujun Yuan, and Jun Liu. 2023. "Construction of Porous Carbon Nanosheet/Cu2S Composites with Enhanced Potassium Storage" Nanomaterials 13, no. 17: 2415. https://doi.org/10.3390/nano13172415
APA StyleMu, M., Li, B., Yu, J., Ding, J., He, H., Li, X., Mou, J., Yuan, J., & Liu, J. (2023). Construction of Porous Carbon Nanosheet/Cu2S Composites with Enhanced Potassium Storage. Nanomaterials, 13(17), 2415. https://doi.org/10.3390/nano13172415